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Outline

e Communication data as co-appearance data
e Inferring groups: theory and applications

e Statistical approach: latent variable modeling
e Quick illustration

e Application: large-scale email analysis
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Sociological motivation for latent sets

Theoretical foundations:

e Simmel: people's social identities defined by their
membership to various groups (e.g. family, occupation,
neighborhood, other organizations)

e Feld: shared foci help explain dyadic interactions among
actors (e.g. activities and interests, either known or
unknown)

e Homans: groups of people (partially) defined by
Interactions

Takeaway: a fair amount of intuition behind the idea of
(possibly overlapping) latent sets



Practical application: emalil services

Prediction of other possible recipients on an email
e Favorable response to Gmail's experimental tools,
"What about Bob?" and "Wrong Bob?"
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Practical application: emalil services

Automatic group detection
e People are unwilling to manually create groups
e People prefer to interact differently with separate social
groups (e.g. work / family)

My Contacts (103)




Statistical models for network data

Goals:
e Make predictions about missing or future data
e Explore scientific hypotheses
e Do the above in a general and principled framework

.. even if we have ...

e missing data

e sparse data

e either egocentric or global data

e additional covariates about actors and/or events
e large, dynamic datasets



Model Development
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Probabilistic Model

K
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Probabilistic Model
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lllustration: Davis' Southern Women

e Perfect for exploring the utility of a new method aimed
at two-mode data
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A single sample of W (left) and Z (right).
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Estimate of posterior
predictive distribution
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Missing data experiment on Davis

ROC Curve
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Prediction performance with 25% of dyads missing



Groups in the Eckmann Email Data
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Groups in the Eckmann Email Data
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Advantages of this approach

e Latent set models a natural choice for co-appearance data
e Validate predictively
e Allows missing data and egocentric data
e Interpretable model estimates
o Inferred groups of actors

o Actors within each set likely to appear together

e Scalable
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Model Development

Assume T events, N actors, K latent sets

Unknown variables
e Z: binary NxK matrix indicates set memberships

e W: binary TxK matrix indicates each event's "active" sets
e omega: vector of K reals.

Noisy OR:
K

Pr(yz’:}' — 1) =1- H(l — Wy, ) VIkAIk

k=1
Interpretation of omega:

e probability actor j is present for event i when j is in set k
and only set k is active



Inference

e Data augmentation

e EM: tough to analytically compute expectation step because
W and Z depend on each other

e Markov chain Monte Carlo
o Gibbs sampling: sample a variable conditioned on
everything else (NB: can integrate out a few things)
o Iteratively sample W matrix, Z matrix, and omegas
o Make predictions by averaging over samples

e Beware of local modes!
o Initializing with hierarchical clustering or kmeans seems
to work well in practice



