
Hierarchical ERG models

Fast Variational Algorithms for Statistical Network
Modeling

and other network modeling advances

David Hunter
Michael Schweinberger

Duy Vu
Ruth Hummel

Department of Statistics, Penn State University

MURI meeting, Nov 12, 2010

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Outline

1 Variational EM

2 Maximum Likelihood Estimation for ERGMs

3 Hierarchical ERG models

4 On the horizon: Relational event models and degeneracy theory

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Outline

1 Variational EM

2 Maximum Likelihood Estimation for ERGMs

3 Hierarchical ERG models

4 On the horizon: Relational event models and degeneracy theory

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Variational EM algorithms

Goal: Scalable algorithm for clustering of nodes and simultaneous
estimation of network parameters of interest (e.g., reciprocity,
propensity to form edges) that:

assumes dyadic (not edgewise) independence;

assumes the nodes are partitioned in (latent) categories;

allows for categorical (not merely 0/1) edge values;

is scalable to large (≥ 1e + 5 nodes) networks;

allows for statatistical inference (e.g., confidence intervals).

dyadic latent scalable cat. stat.
indep. cat. alg. edges inf.

N & S (2001) yes yes no yes no
D, P & R (2008) no yes yes no no

Nowicki & Snijders (2001); Daudin, Picard, & Robin (2008)
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Hierarchical ERG models

Dyadic independence ERGM with reciprocity

Work with Duy Vu, graduate student at PSU:

Assume edges are directed, taking three values: −1,+1, 0

There are five different types of dyads.

Assuming homogeneity for now, Let πi denote the probability
of each type:

π1 = Pθ(Yij = −1,Yji = 0)
π2 = Pθ(Yij = 1,Yji = 0)
π3 = Pθ(Yij = −1,Yji = 1)
π4 = Pθ(Yij = −1,Yji = −1)
π5 = Pθ(Yij = 1,Yji = 1)

Because we assume independent dyads, these parameters give
the full model.
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Hierarchical ERG models

Mixture structure

Assume each node comes from one of C latent classes.

Instead of five parameters π1, . . . , π5, we introduce
π1

k`, . . . , π
5
k`, where k and ` range from 1 to C .

Therefore, conditional on Zi = k and Zj = `,

π1
k` = Pθ(Yij = −1,Yji = 0)

π2
k` = Pθ(Yij = 1,Yji = 0)

π3
k` = Pθ(Yij = −1,Yji = 1)

π4
k` = Pθ(Yij = −1,Yji = −1)

π5
k` = Pθ(Yij = 1,Yji = 1)

Note: We assume π4
k` = π4

`k and π5
k` = π5

`k .

Conditional on all the Zi , we have a closed-form loglikelihood
(from earlier development).

Marginally, let λk = P(Zi = k).
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Hierarchical ERG models

Variational approach

For MLE, goal is to maximize the loglikelihood
`(π, λ).

Basic idea: Establish lower bound

J(π, λ, τ) ≤ `(π, λ) (1)

Create an EM-like algorithm guaranteed to
increase J(π, λ, τ) at each iteration.

If we maximize the lower bound, then we’re
hoping that the inequality (1) will be tight enough
to put us close to a maximum of `(π, λ).
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Hierarchical ERG models

The eOpinion dataset (Richardson et al, 2003)

General consumer review site Epinions.com.

Members of the site can decide whether to ”trust” each other.

“Web of Trust” combined with review ratings to determine
which reviews are shown to the user.

131,828 nodes, 841,372 signed edges

To choose number of clusters, we use an Integrated Completed
Likelihood (ICL) criterion as in Daudin et al (2008):

2 3 4 5 6 7 8 9 10
−1.29 −1.23 −1.19 −1.17 − 1.147 −1.25 −1.32 −1.44 −1.45
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Hierarchical ERG models

Standard Error Estimates

Earlier, we established a lower bound

J(π, λ, τ) ≤ `(π, λ).

Standard procedure: Find Hessian matrix
∇2`(π̂, λ̂)

Flawed alternative: Use ∇2J(π̂, λ̂, τ̂)

Better: Parametric bootstrap idea, which Duy has
made scalable

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Outline

1 Variational EM

2 Maximum Likelihood Estimation for ERGMs

3 Hierarchical ERG models

4 On the horizon: Relational event models and degeneracy theory

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Motivation: The likelihood function and MLE

The ERG model class:

Pθ(Y = y) =
exp{θtg(y)}

κ(θ)
, where κ(θ) =

∑
all possible

graphs z

exp{θtg(z)}

θ is a parameter vector to be estimated.

g(y) is a user-defined vector of graph statistics.

The loglikelihood function is

`(θ) = θtg(yobs)− log κ(θ).

The MLE is the maximizer θ̂ of the likelihood; finding it is
very hard.
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Hierarchical ERG models

MCMC MLE, a new problem, and new solutions

Fix θ0. By randomly simulating networks from the θ0 model using
MCMC, we can approximate the MLE.
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Unfortunately, the quality of the
approximation gets very poor as we move
away from θ0.

Solution #1: Use a different (lognormal)
approximation

Solution #2: Use a “stepping” algorithm that
tricks the estimation into staying close to θ0.

These solutions (Ruth Hummel’s work) are
now part of publicly available software

More work to be done here!
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Hierarchical ERG models

Theory and Applications of hierarchical ERG models

A typical ERG model makes a nodal homogeneity assumption:
All nodes have similar network-forming characteristics.

Some of this is correctible by describing observable features
(age, sex, job, etc.)

Problem remains. For instance, consider degree heterogeneity:

Some nodes may be qualitatively different in their
relationship-forming propensity
This quality may not be captured by an observable nodal trait.

Michael Schweinberger has developed the hergm package to:

Impose a latent (unobserved) “edge-formation” attribute on
the nodes;
use Bayesian methodology to perform inference for the result
mixture model.
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Hierarchical ERG models

hergm: Application to disaster networks

Michael Schweinberger (PSU) and Miruna Petrescu-Prahova (UW)
studied the emergent multiorganizational networks (EMONs)
formed during the first 12 days following the 9/11 attacks in New
York.

EMONs characterized by a small number of high-degree nodes
and a large number of low-degree nodes

Employed hierarchical ERGM methodology

Goal: Consider organizational attributes such as type
(government, non-profit, profit, collective) and scale (local to
federal) to identify the processes that have given rise to the
observed structure of the networks.

Possible implications for disaster planning and emergency
management result.
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Hierarchical ERG models

Relational event models

Idea: When timing data are available on a network, do not merely treat
the time-aggregated network;
Instead, consider each edge as an instantaneous event; model the
stochastic process that produces these events.

Duy Vu has begun to look at extending the ideas in Carter Butts’
2008 article on relational events.

One can model “nodal intensity” processes or “dyadic intensity”
processes. Scalable algoirthms possible for the former; more difficult
for the latter.

Applications to very large datasets such as citation networks; Duy
has ideas for incorporating textual information (from, say, abstracts)
to learn about citation networks

Numerous collaborations with other MURI team members will be
possible in this area: Carter’s group, Padhraic’s group, possibly
others.
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Hierarchical ERG models

Contrastive Divergence (CD)

Consider the idea of MCMC MLE:

Suppose we fix η0. A bit of algebra shows that

− log Eη0

[
exp

{
(η − η0)

tg(Y )
}]

= `(η)− `(η0). (2)

The Law of Large Numbers suggests obtaining a sample of Y
from the model using θ0 as the parameter, then approximating
the expectation by a sample mean.

Q: How do we sample from g(Y ) using θ0 as the parameter?
A: Run MCMC infinitely long.

But what if we only run MCMC for a single step (starting at
yobs), for a randomly chosen Yij?

For this Yij , we’re sampling from the conditional distribution
given (yobs)cij .
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Contrastive Divergence (CD)

To summarize:

Running an infinitely long Markov chain leads to the
loglikelihood.

Running a 1-step Markov chain leads to the pseudolikelihood.

Thus, if we alternately sample and then optimize the resulting
”likelihood-like” function, we can view MLE and MPLE as two
ends of a spectrum, the “contrastive divergence” spectrum.
(MLE is CD-∞ and MPLE is CD-1.)
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Hierarchical ERG models

Contrastive Divergence (CD)

Considering CD-1. . .
Q: Is it better to

1 Repeatedly pick i 6= j at random, or

2 Cycle through all possible i 6= j in some systematic fashion?

A: The latter.

Considering CD-n. . .
Q: What is a good choice of n? How to optimize the tradeoff
between n and sample size?
A: We don’t yet know, but Arthur has been working on an answer.
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Hierarchical ERG models

Instability and near-degeneracy of ERGMs

ERGMs with interaction terms (e.g., stars, triangles) and strong
node-homogeneity assumptions tend to be near-degenerate.

Work begun by Michael Schweinberger sheds light on the
near-degeneracy of ERGMs by introducing the notion of instability

Can prove that unstable ERGMs tend to be asymptotically
degenerate in a certain sense. sense of Strauss.

Applications: ERGMs with Markov dependence and curved ERGMs

Conclusion: Interaction in ERGM terms must be sufficiently weak.

Michael’s preliminary characterizations of these instabilities are the

simplest I’ve seen. With further development, these ideas could be

extremely useful in guiding effective modeling of networks.
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Thank you!

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Extra slides on variational EM
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Hierarchical ERG models

Dyadic independence ERGM with reciprocity

Assume edges are directed, taking three values: −1,+1, 0

Extension of p1 model of Holland and Leinhardt (JASA,
1981):

Pθ(Y = y) ∝ exp

{
5∑

i=1

θigi (y)

}
, where

g1(y) = total # of −1 edges
g2(y) = total # of +1 edges
g3(y) = total # of discordant −1,+1 dyads
g4(y) = total # of concordant −1,−1 dyads
g5(y) = total # of concordant +1,+1 dyads

NB: In principle, it would be easy to add more terms (say,
nodal covariate terms)
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Hierarchical ERG models

Reparameterize for simplicity

Pθ(Y = y) =
exp

{∑5
i=1 θigi (y)

}
κ(θ)

There are five different types of dyads.

Assuming homogeneity for now, Let πi denote the probability
of each type:

π1 = Pθ(Yij = −1,Yji = 0)
π2 = Pθ(Yij = 1,Yji = 0)
π3 = Pθ(Yij = −1,Yji = 1)
π4 = Pθ(Yij = −1,Yji = −1)
π5 = Pθ(Yij = 1,Yji = 1)

Because we assume independent dyads, these parameters give
the full model.
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Hierarchical ERG models

Another reparameterization

Recall

Pθ(Y = y) =
exp

{∑5
i=1 θigi (y)

}
κ(θ)

,

where g1(y) = total # of −1 edges, etc.

Therefore, the mean value parameterization is

µ1
def
= Eθ[g1(Y )] =

∑
i

∑
j 6=i

Pθ(Yij = −1) =
∑

i

∑
j<i

2 [π4 + π3 + π1]

because

π1 = Pθ(Yij = −1,Yji = 0)
π3 = Pθ(Yij = −1,Yji = 1)
π4 = Pθ(Yij = −1,Yji = −1)

Similarly, each µi is easily written in terms of π.

MURI meeting November 2010 Algorithms for network modeling



Hierarchical ERG models

Why Three Parameterizations?

The dyad probabilities (the πi ) are convenient.

The canonical (θ) and mean-value (µ) parameters are linked
by duality theory:

Let A(θ) = log κ(θ) be the log normalizing constant.
Then

A∗(µ)
def
= sup

θ

[
θ>µ− A(θ)

]
is the entropy of the model under θ(µ).
Furthermore,

A(θ) = sup
µ

[
θ>µ− A∗(µ)

]
Since the entropy may be written explicitly in terms of π, we
obtain an explicit formula for the loglikelihood (including the
normalizing constant!) in terms of π.
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Hierarchical ERG models

A lower bound and variational EM

Clever variational idea: Augment the parameter set, letting

τik = P(Zi = k) for all 1 ≤ i ≤ n and 1 ≤ k ≤ C .

Let Rτ (Z ) =
∏

i Mult(zi ; τi ) denote the joint dist. of Z .

Direct calculation gives

J(π, λ, τ)
def
= `(π, λ)− KL {Rτ (Z ),P(Z |Y )}
= . . .

= Eτ [log P(Y ,Z )]− H [Rτ (Z )] .

Thus, an EM-like algorithm consists of alternately:

maximizing J(λ, π, τ) with respect to τ (“E-step”)
maximizing Eτ [log P(Y ,Z )] with respect to π, λ (“M-step”)
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Hierarchical ERG models

The Slashdot Zoo dataset (Kunegis et al, 2008)

Technology-related news website known for its specific user
community.

In 2002 Slashdot introduced the Slashdot Zoo feature, which
allows users to tag each other as friends or foes.

The network was obtained in February 2009.

79,120 nodes, 515,581 signed edges

To choose number of clusters, we use an Integrated Completed
Likelihood (ICL) criterion as in Daudin et al (2008):

2 3 4 5 6 7 8 9 10
−8.76 −8.50 −8.12 −8.02 −7.93 −7.83 −7.75 −9.02 −9.16
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Slashdot reciprocity parameters

The ICL criterion chose 8 clusters.

Here are the within-group estimates for discordant,
−1-concordant, and +1-concordant parameters.

Asymptotic standard errors in parentheses.

Parameters discordant (θ3) −1-concordant (θ4) +1-concordant (θ5)
Group 1 (269 actors) 0.2140 (0.4071) 2.7148 (0.2188) 3.1862 (0.0995)
Group 2 (55596 actors) 13.1101(0.0403) 13.8155(0.0570) 12.6018 (0.0427)
Group 3 (7206 actors) 8.6447 (0.2116) 10.0198(0.2456) 8.8422 (0.1164)
Group 4 (9257 actors) 9.0203 (0.1675) 10.9795(0.1759) 10.7145 (0.0705)
Group 5 (3492 actors) 4.7432 (0.2068) 8.0928 (0.1125) 7.5580 (0.0485)
Group 6 (1848 actors) 2.4766 (0.4102) 5.2717 (0.1968) 5.1187 (0.0793)
Group 7 (597 actors) 1.6174 (0.3697) 4.7837 (0.0903) 5.3132 (0.1339)
Group 8 (796 actors) 2.8147 (0.2064) 5.6858 (0.2303) 5.6640 (0.0402)
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eOpinion reciprocity parameters

The ICL criterion chose 6 clusters.

Here are the within-group estimates for discordant,
−1-concordant, and +1-concordant parameters.

Asymptotic standard errors in parentheses

Parameters discordant (θ3) −1-concordant (θ4) +1-concordant (θ5)
Group 1 (5102 actors) 9.0377 (0.3258) 11.1657 (0.4108) 10.2289 (0.1154)
Group 2 (13007 actors) 7.6427 (0.1167) 10.1946 (0.1383) 9.4737 (0.0271)
Group 3 (107668 actors) 13.1540 (0.0208) 13.8155 (0.0294) 12.4924 (0.0230)
Group 4 (4303 actors) 2.7610 (0.1662) 5.9872 (0.1311) 6.1862 (0.0174)
Group 5 (976 actors) 0.3536 (0.0723) 2.7972 (0.0472) 3.6937 (0.0188)
Group 6 (738 actors) 1.7554 (0.3495) 5.5189 (0.5427) 4.4886 (0.0270)
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Clustering coefficients

As a check on the model, we compare the fitted model to the
observed network based on four mixture-model clustering
coefficients:

Friend of friend is a friend

i.e., P(Ykm = 1 |Ykl = Ylm = 1)

Enemy of Enemy is a friend

Friend of enemy is an enemy

Enemy of friend is an enemy
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•  Topic models are useful for analyzing data: 
–  Text corpora, image databases, social networks 
–  But many of these data sets are massive! 

•  This toolbox focuses on efficient & scalable inference: 
–  Parallel/distributed inference (700x speedup on 1K procs) 
–  Accelerated Gibbs sampling and variational inference 

(“real-time” learning) 
–  Efficient inference for the Relational Topic Model 

•  MATLAB, C, & MPI code available at: http://
www.ics.uci.edu/~asuncion/software/fast.htm 

FAST: Fast And Scalable Topic-Modeling 
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