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Modeling Dynamic Networks:
Challenges and Advances

« Target area for our project, with many challenges

+ Parameterizing models in a sensible and computable way

+ Models must reflect phenomenological understanding, but must
also scale to real data

+ Making inference both principled and practical
+ Want accurate estimates, but can't wait forever for results
+ Dealing with rich, dynamic data

+ Real-world problems involve systems with complex covariates
(e.g., geography, external events) that change over time

-+ Significant progress on several fronts

+ Panel data models, relational event models, latent structure
models (see other talks, posters today!)

_°.. This talk: some highlights and insights from one
"~ "thread" of this research



Scalability

+ General problem: need to be able to model
dynamic networks of reasonable size

+ Increasing number of data sets (including our
own) with 100s/1000s of vertices, time points

+ Important for questions regarding large
organizations, disasters, other complex settings

« At project start, primary approach (SIENA)
limited to tens of vertices, fewer time points

..'+ General temporal ERGM (TERGM) difficult,
.. but there are workarounds (as we shall see)



Vertex Set Dynamics
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Context Effects: Spatial Context
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Bernoulli Realization (from Butts, 2010)
b 50 W g 7 i
+ Large-scale networks are usually geographically distributed

Choctaw, MS (N= 9,758) w/Spatial

Important to capture these effects (but computation a challenge)



Context Effects Temporal Context

Expected Log Rate Modifier
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Human organlzatlonal behawor shaped by seasonal mechanlsms

Need to capture seasonal, episodic influences on network evolution
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Context Effects: External Forcing
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« If all that weren't
enough, networks
experience

external A e =
perturbations [ g

Strength Categories

+ External forcing is i = e
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Getting to Scalability: the Lagged
Logistic Network ??Mpdﬁ_el

. Most serious obstacle to scalability: the ERG
normalizing factor

+ Approximate workaround: assume conditional
dependence of edges, given the past

+ Introduced by Robins and Pattison (2001), extended by
Hanneke and Xing (2007) and others

+ We extend existing practice by relaxing Markov assumption,
adding vertex set dynamics

+ Consequence: lagged logistic network model

+ Network at time 7 is modeled as logistic regression on prior
states, along w/covariates

+ Allows us to leverage extensive machine learning literature
on fast logistic regression for sparse matrices

°



Adding in Vertex Dynamlcs

+ When the vertex set also evolves, we mclude |t W|th|n the
same framework

- Support assumption: V' is drawn from some maximal set I/

- Dependence assumptions: adjacency matrix Y depends on
current vertex set, I/; both Z=(Y,’) can depend onpast Z =(Y .V )
(generally up to some fixed k)

+ Assuming that each Y., V., are independent given the above leads
to a joint logistic formulation:

N
Pr4{Z4 15" . .y Bpip) = l_Ilog;it_1 (w( v, € Vi), Zi1,. -, sz)>

PI‘(YVtH/;g,Zt_l,...,Zt_k) — H IOgit_l (U(}/;j’t,‘/t,zil,.u,zik)>
(2,5)€EVe X V4

Y I Net result: flexible framework (TERGM subfamily) that
. readily scales to thousands of vertices/time points



Behavioral Interpretab'-ility'
Stochastic Choice Dynamlcs

« Simple bridge from choice theory to network
dynamics

« Core assumptions

+ Edge states unilaterally controlled (e.g., by sending actor)
- Edge states may be reset at each time point

+ Edge state decisions made myopically, simultaneously, and
in isolation; can depend upon past states or past/current
environment, but not other decisions at same time point

+ Propensity to select a state (log odds) linear in expected
utility difference to actor under conjectural variations

"+ Compare w/actor oriented framework of Snijders;

we relax restriction on backward-looking behavior

|



Stochastic Choice Dynamlcs

- Above implies that Pr(Y:=y:)=]1;; Pr(Yw =V t)

+ Yt state of adjacency structure at time ¢

+ Probability can depend on any past state of Y, external
covariates, etc.

+ Behavioral rule implies logistic choice:
PI'(Y;'j,t — 1)

logit Pr(Y;;: = 1) =1n

Pr(Yi;: = 0)
— Y Y, — ) — u; (Y|Y.4 =
S ihos. (Y'Y =1) (Y'Y = 0)
i (Y'Y =1
Pr(Yij,t &3 1) o eXp [’LL ( | J,t )]

exp |u; (Y[Yy5c = 1)] + exp [u; (Y55 = 0)]
+ which is the lagged logistic network model

?



Example Case: Hurri

« Dynamic network of 1,577
organizations mobilized in
the 13 days following storm *
formation 5

+ Daily snapshots; inclusion
based on response activity,
edges reflect collaboration on
response tasks

+ Network shows classic

iy

pattern of mass convergence '

+ Grows from 13 to 775 |
organizations in a matter of \
days

|

+ Geographical effects,
extreme heterogeneity
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Katrina Edge Model nghllghts

e [a + Bms e L i

Some ewdence of
Edge Parameter Estimates

Model 1 Model 2 Model 3 Modeld  Model 5 ' preferential

BIC 45264.0197 32806.8854 32388.7420 31998.4055 31810.0173 . attachment, apparent
Density  -8.735*  -8.6447%  6.1638*  -5.7431% _ -4.3685" B
(0.024)  (0.0288)  (0.028%)  (0.0292)  (0.0293) i coordinative
Yio1 6.8045* 6.8713* 5.9812* 5.8815* g brokerage (per Spiro)
(0.0601)  (0.0597)  (0.0627)  (0.0639)
log(rs—1) 0.4018%  -0.4998%  40.5323% :
(0.0048) (0.0049) (0.0049) % Homoph"y by org
Two-path -0.009 -0.0859* -0.1214% &
(0.0298)  (0.0292) | (0.0297) ¥ type, but not by scale
Average Degree (0010800681*) (01877*) of ope ration S;
HQ State  2.4444%  1.8518*  1.7365%  1.6519%  A.2508% ¥ proximity in the
(0.0293)  (0.0392)  (0.0389)  (0.0396) | (0.04) 0w ¥

HQ City  0.8156%  0.6271%  0.6484*  0.6744% | 10.3382* ¢ ‘lineage” structure

(0.038) (0.0544)  (0.0542)  (0.0549) (0.055) 3 (Butts, 2009)
Fema Region -0.3591%  -0.3191%  -0.3149%  -0.2196%  -0.3715% '

(0.028)  (0.0364)  (0.0362)  (0.0367)  (NO3W) ¥ important

Type 1.1564%  0.8226%  0.7919%  0.7923%  0.6179%
(0.0263)  (0.0320)  (0.0328)  (0.0332) | (0.0335) | b

Scale  0.3641* 01904  0.22%  0.1726% | 0.0735 ¥ Fairly strong
e (0.0324)  (0.0428)  (0.0426)  (0.0431) (10.:905183462 propinquity effects

| | (071021) ! from pre-disaster HQ
bos Dist HQ ety i ! location, despite

TABLE 1. Edge portion of Models 1 through 5 ranked by BIC score. Sig- emergent natu re of

nificance: “*’ p-value < 0.05; z-test, under limiting assumptions, standard th t k
errors estimates based on resulting approximate EM algorithm of Gelman € networ

(2008) with a cauchy prior distribution centered at 0 with a scale parameter
of 2.5.
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Katrlna Vertex Model nghllghts

Vertex Parameter Estimates Overa" pOSItlve

Model 1 Model 2 Model 3 Model 4 Model5 | MERLIEIeloE=1od eI |
BIC 45264.0107 32800.8854 323887420 310984955 31810.0173 [ [MEEVNITY (MEIOPAEe

Intercept -1.5749%* -2.3377* -4.8207* -4.7432%* -4.5078%* .
ntereep y 0 collaborations

(0.017)  (0.0202)  (0.0204)  (0.0204)  (0.0205) f :
Y, 2.8074% 25377  2.4185* 2.268* / also more likely
(0.035)  (0.0353)  (0.0356)  (0.0356) -
log(1¢_1) 0.4547%  0.4525%  0.4273% to S50
(0.0035)  (0.0035)  [(0.0035) | SEgleloJl{¥Z:Tel
Degree 0.2025%* 0.1989%
(0.0309)  (0.0309) |
HQ State  -0.1679%  -0.043*  -0.0724*  -0.0671*  -02974* | SN [Tal-1 g1 MR gL
(0.0171)  (0.0204)  (0.0205)  (0.0206)  (0.0206) e
HQ City  0.403* 0.2786* 0.305* 0.2813%  0.3044% mOb'I'Z_at'_on of
(0.0182)  (0.0217)  (0.0219)  (0.022)  (0.0221) | Ml Tl E1dl
(0.017)  (0.0203)  (0.0205)  (0.0205)  (0.0206) < J
Type  0.6832%  0.4285%  0.4687%  0.4724*  0.4519* encourages
(0.017)  (0.0203)  (0.0205)  (0.0206)  (0.0206) | EEESETe) oIV 2=\le]g
Scale  -0.4681*  -0.2228*%  -0.2668*  -0.3123*  -0.3264% ,
00171)  (0.0203)  (0.0205) (00206  (0.0206) | SRl LIRETe1 [

Sum of Lineage;_1 -0.2943* Statellineage dare

(0:003) .
Storm-track log Dist;_ 0.0046%* heteroph"OUS)

(0.001) ,
TABLE 1. Vertx portion of Models 1 through 5 ranked by BIC score. Sig- HH -
nificance: “*’ p-value < 0.05; z-test, under limiting assumptions, standard | M_Oblllzatlon
errors estimates based on resulting approximate EM algorithm of Gelman . Sllg htly enhanced
(2008) with a cauchy prior distribution centered at 0 with a scale parameter | by being farther

from storm track




On Knowing Who Will Show Up
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On Knowing Who Will Show Up

Connectedness y Triad Census: 2

Bl Observed
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'Best case™ model with correct vertex set prediction
tracks network evolution fairly well

"'Worst case” model with simplistic vertex set
component does horribly

Bottom line: to predict edge structure, you need to
know who will show up!




Example Case: DNC/RNC Blogs

Interactions among partisan (s .
political blogs during the 2004 ' £:%
electoral cycle

Dynamic network of 47 blogs
over 121 day period

+ 34 credentialed for DNC, 14 for
RNC (1 both)

+ Sampled 4 times daily, for 484
time points

Example of interaction among
contending parties

Opportunity to study seasonal,

. period effects on behavior

|



Blog Network Edge Model: nghllghts

i e R o + Wms R e

DNC-RNC Blog Network Payoff to mgroup C|tat|ons

Estimate, St. Error z value P(>|z]) hlgher than CrOSS-grOUp
DNC -4.52 0.02 -191.79 0.

RNC [ -3.21 s citations (but less true for

C—RNC | -5. 06 -93. 0.00 -- : :
RNCoDNG Wt 50 004 11028 000 _ RNC on a per-tie basis)

Yi 1 10.32 0.03 396.08 0.00
Clique 0.34 0.03 11.08 0.00 ¥ S
Reciever 0.05 0.00 19.15 0.00 N "
Sender ' -0.020 V000 -927  0.00 #+ Clique and two-path

Group-2-path 0.21 0.01 2245  0.00 :
Coss-Group-2-path 0.33 0.03 10.70 —0.00 'f embeddedness aCt as

Group-Reciprocity {1 -0.51 SEEECCIINN . citation incentives; tend to

Between-Group-Reciprocity 0.63 . 291 0.00

op1 010 02 491 0.00 cite others who are widely
-0.16 . -5.43 0.00

0.12 03 872 0.00 . cited, but not to cite those
-0.35 . -9. 0.00

IR TR T Y . With many out-citations
Indegreex Hy -0.12 . -2, .02 B4
Indegreex H3 -0.18
Indegreex Hy -0.11 .06 -1. . % i §
VoixH 020 004 4 . ! Reciprocation pays off, but
Y;_1 x H. -0.30 . : = : A
TRV . not in one's own group!
SRR G SOV | | (Deference vs conflict)
RNCCon -1.95 A
PreDeb -1.82
T Sl | Temporal effects, including

Elec -2.42

PostEle <195 005 -4026 0. ® interactions and period
| effects
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Behavioral Seasonality

vkl P T =

Edge Formation Payoffs, Seasonal Component L8 "'L_'. Hourly Interaction Effects
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Baseline propensity to form edges changes both by day and by week
*Highest at the start of the day, declining as the day goes on
*Builds and recedes during the week, lowest during the weekend




Behavioral Seasonality

Edge Formation Payoffs, Seasonal Component f-:-'.-‘_--‘ Hourly Interaction Effects
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*Other mechanisms also show daily seasonality

Inertia highest in early/mid-morning, and in early evening
«. *Sensitivity to others' popularity highest at night (when tie formation
~ tendencies also strongest); suggests attention shift
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Directions and Discoveries:
Vertex Dynamics

+ Vertex set model critical for dynamlc network
prediction

+ Network size largely controls density, which shapes
other factors

+ Vertex identities matter

+ Vertices carry their history and their covariates with them -
errors in vertex prediction thus propagate into the edge model

+ When activity distributions skewed, accurate prediction of

participation by a few "key players” can be critical to capturing
other network properties

Some current directions

+ Models for co-occurence (Smyth group)
+ "Open system” models from Dirichlet processes

°
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Directions and Discoveries:
Context Effects

Internal dynamics are not enough

+ Need temporal, spatial, contextual covariates to predict networks in
realistic settings

Time matters in complex ways

+ Both edge structure and vertex set affected by past history

+  Mechanisms of action themselves change due to biological (e.g., sleep),
institutional (e.g., work week), and other factors

Geography matters, but not just as a baseline

+ In large networks, external forcing can be spatially contained; need to
know when and where key events happen

Some current directions

+ Dynamic latent feature models (Smyth group)

+ Geospatial computation, modeling for networks (Butts, Eppstein,
Goodrich, Mount groups)



Conclusion

We have made some exciting advances in
our ability to model complex, dynamic
networks

Substantive advances as well as
methodological ones

Many new directions to pursue

Problem illustrates benefits of our
interdisciplinary approach
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