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Motivation

Social networks exhibit various structural features:

Transitivity
Homophily on attributes
Clustering

Analysis of social networks seeks to uncover
deeper structure, as evidenced by network ties.

The likelihood of a tie is often correlated with the
similarity of attributes of the actors.
(E.g., geography, age, ethnicity, income).

Attributes may be observed or unobserved
(latent).

Motivating Question: Through analysis of network
structure, can we recover an understanding of
these, possibly hidden, attributes?
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Latent Space Embedding (LSE)

Hypothesis

The likelihood of relational ties in social
networks depends on the similarity of attributes
in an unobserved latent space.

Problem Statement

Given a network Y = [yi,j ] with n nodes,
estimate a set of positions Z = {z1, . . . , zn} in
R

d that best describes this network relative to
some model.
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Latent Space Embedding (LSE)

Usefulness of LSE

Provides a parsimonious model of network structure
(O(dn) rather than O(n2) size)

Allows for natural interpretation of geometric relations, such as
“betweenness,” “surroundedness,” and “dimensionality”

Can be used for cluster analysis of nodes

Provides a means to perform visual analysis of network structure
through spatial relationships (when dimension is low), and outlier
detection.
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LSE — Stochastic Model

Input

Y : An n × n sociomatrix
(yi,j = 1 if there is a tie between i and j)

Model Parameters

Z : The positions of n individuals,
{z1, . . . , zn} in latent space

α: Real-valued scaling parameter Latent Space

Network
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LSE — Stochastic Model

Logistic Regression Model [HRH02]

Hypotheses: Ties are statistically independent, and the odds of a tie
decreases exponentially with attribute distance.

Pr[Y | Z , α] =
∏

i 6=j

Pr[yi,j | zi , zj , α]

log odds(yi,j = 1 | zi , zj , α) = α− ‖zi − zj‖.

Defining ηi,j = α− ‖zi − zj‖, we have

log Pr[Y | η] =
∑

i 6=j

(ηi,jyi,j − log (1 + eηi,j )).
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LSE — Stochastic Model

LSE Model

Let ηi,j = α− ‖zi − zj‖.

log Pr[Y | α, η] =
∑

i 6=j

(ηi,jyi,j − log (1 + eηi,j )).

Global Component:∑
i 6=j ηi,jyi,j ⇒ Avoid long edges

Local Component:
−
∑

i 6=j log (1 + eηi,j ) ⇒ Encourage dispersion

Global

Local
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LSE — MCMC Algorithm

Markov-Chain Monte-Carlo (MCMC)

For k = 0, 1, 2, . . .

Perturbation: Sample a random perturbation Z∗ of Zk .
Evaluation: Compute the decision variable

ρ =
Pr[Y | Z∗, α]

Pr[Y | Zk , α]
← (Computational bottleneck)

Decision: Accept Z∗ as Zk+1 with probability min(1, ρ)

Convergence requires many iterations (tens of thousands and more).

Existing computational approaches, based on brute-force evaluation of
probabilities, are unacceptably slow and do not scale to large networks.
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LSE — Efficient LSE Computations

Naive (exact) computation for each iteration
requires quadratic time.

Computation involves retrieval of spatial relations
and distances.

Need efficient geometric retrieval data structures.

Important features:

Approximate: Exact structures are too slow.
Incremental: MCMC algorithms involve repeated
perturbation of point positions.
Adaptable: Queries are highly non-uniform, and
structures should adapt to these patterns.
Variational-Sensitive: Approximations must
preserve small relational variations.
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LSE — Computational Challenges

Almost all prior work on geometric data structures
has focused on fairly static structures.

Geometric MCMC is extremely dynamic:

Classical dynamics: Point insertion, point
deletion.
Incremental dynamics: Many points change
positions (but motion is small).
Block dynamics: Groups of points move in
unison.

Incremental dynamics, adaptivity,
variational-sensitivity are unstudied in
computational geometry.

Such nimble data structures will be broadly
applicable to a wide variety of settings.
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LSE — Efficient LSE Computations

This MURI grant has enabled significant advances on these issues.

High Priority Prior Art Current Art

Incremental None Kinetic net tree [ISAAC’09]
Dynamic Limited Dynamics + range search

(no range updates) [SoCG’10]
Variation-Sensitivity None For block dynamics

Middle Priority Prior Art Current Art

Adaptable None Self-adjusting quadtree
Space/Time Tradeoffs Suboptimal Optimal at extremes

[JACM’09], [SoCG’10]
(submission to STOC’11)

Desirable Prior Art Current Art

Compressed None [AlgoSensor’09] [ESA’10]
Kinetic Yes Greater flexibility

[CGTA’09]
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LSE Algorithm Engineering

Objective: Achieve ≥ 90% reduction in running time with ≤ 1% error.

Local Component:

Tapering: Keep all the “heavy hitters”
Sampling: Sample the rest

Global Component:

Sparse networks: If sparser than local sampling rate, use brute force.
Dense networks: Apply dynamic net trees with block dynamics.
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Computational Tools – Nets

Net

P is a finite set of points in a R
d . Given

r > 0, an r -net for P is a subset X ⊆ P

such that,

max
p∈M

dist(p,X ) < r and

min
x,x′∈X

x 6=x′

‖x − x ′‖ ≥ r .

r

P

X
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Net Trees

Net Tree

The leaves of the tree consists of the points of P .

The tree is based on a series of nets, P(1),P(2), . . . ,P(h), where P(i)

is a (2i )-net for P(i−1).

Each node on level i − 1 is associated with a parent, at level i , which
lies lies within distance 2i .
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Net Trees - Results

Net Tree

Presented algorithms for net trees under incremental motion.

Proved bounds on the competitive ratio of our algorithm, relative to
the optimal algorithm.

Demonstrated that net trees can be applied to block dynamics in
LSE computations.
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Background: BD-tree

Box Decomposition tree (BD-tree)

A geometric data structure based on a hierarchical decompostion of
space into d-dimensional axis-aligned rectangles.

Each node is associated with a region of space, cell.

Each cell has an outer box and optional inner box.

Partition operations: split and shrink.

Internal nodes: split nodes and shrink nodes.

A leaf has a single point or a single inner box.

cell

box

leaves
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BD-tree: Partitioning Operations

Split

A split partitions a cell by an
axis-orthogonal hyperplane that
bisects the cell’s longest side.

Shrink

A shrink partitions a cell by a
shrinking box, which lies within the
cell.

Split

Shrink
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Subdivision: Tree:
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Pseudo-nodes

Shrink-split property

The inner child of each shrink node
is a split node.

Pseudo-node

Merged shrink-split pair into a single
node
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Examples of transformation to pseudo-nodes
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Promotion: Rotation on pseudo-nodes

BD-trees can be rebalanced through rotation, called promotion.

Promotion does not alter subdivision, just the tree structure.
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Results

Developed a randomized balanced quad tree structure, quadtreap.

Supports efficient insertion, deletion, approximate proximity queries.

We are developing a self-adjusting variant of this structure,
generalizing the 1-dimensional splay tree.
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Future/Further Work

We have significantly advanced the state of the art of dynamic geometric
data structures, but many questions remain:

Intrinsic (net-tree like) variants of the quadtreap and self-adjusting
quadtree?

Establishing variational-sensitivity for incremental dynamics?

Efficient MCMC updates for networks of moderate density.

Continued prototyping of algorithms, analysis, and subsequent
dissemination of software.

Closing the circle: Apply the tools and algorithms we have developed for
the analysis of actual networks.
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Some Work Supported by this Grant

Storing and Retrieving Information from Dynamic Data Sets:
Maintaining Nets and Net Trees under Incremental Motion

(with M. Cho and E. Park), ISAAC’09.
A Dynamic Data Structure for Approximate Range Searching

(with E. Park), SoCG 2010.

Efficient Algorithms and Data Structures for Geometric Retrieval:
Space-Time Tradeoffs for Approximate Nearest Neighbor Searching

(with S. Arya and T. Malamatos), JACM’09.
Tight Lower Bounds for Halfspace Range Searching

(with S. Arya and J. Xia), SoCG 2010 (invited to a special issue of DCG).
A Unifying Framework for Approximate Proximity Searching

(with S. Arya and G. Fonseca), ESA 2010.
Approximate Polytope Membership Queries

(with S. Arya and G. Fonseca), (submitted to STOC 2011).

Compression and Retrieval of Kinetic Data:
Compressing Kinetic Data From Sensor Networks

(with S. Friedler), AlgoSensors’09.
Spatio-Temporal Range Searching Over Compressed Sensor Data

(with S. Friedler), ESA 2010.
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Thank you!
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