Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward

Efficient Algorithms for Latent Space Embedding

Minkyoung Cho, David Mount, and Eunhui Park

Department of Computer Science University of Maryland, College Park

MURI Meeting - Nov 12, 2010

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
●000000			

Motivation

- Social networks exhibit various structural features:
 - Transitivity
 - Homophily on attributes
 - Clustering
- Analysis of social networks seeks to uncover deeper structure, as evidenced by network ties.
- The likelihood of a tie is often correlated with the similarity of attributes of the actors. (E.g., geography, age, ethnicity, income).
- Attributes may be observed or unobserved (latent).
- Motivating Question: Through analysis of network structure, can we recover an understanding of these, possibly hidden, attributes?

Looking Forward

Latent Space Embedding (LSE)

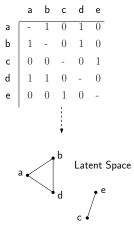
Hypothesis

The likelihood of relational ties in social networks depends on the similarity of attributes in an **unobserved latent space**.

Problem Statement

Given a network $Y = [y_{i,j}]$ with *n* nodes, estimate a set of positions $Z = \{z_1, \ldots, z_n\}$ in \mathbb{R}^d that best describes this network relative to some model.

Network



Looking Forward

Latent Space Embedding (LSE)

Usefulness of LSE

- Provides a parsimonious model of network structure (O(dn) rather than $O(n^2)$ size)
- Allows for natural interpretation of geometric relations, such as "betweenness," "surroundedness," and "dimensionality"
- Can be used for cluster analysis of nodes
- Provides a means to perform visual analysis of network structure through spatial relationships (when dimension is low), and outlier detection.

Latent Space Embeddings	LSE Comp
0000000	0000

LSE — Stochastic Model

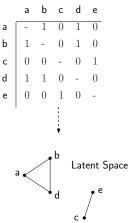
Input

Y: An n × n sociomatrix
(y_{i,j} = 1 if there is a tie between i and j)

Model Parameters

- Z: The positions of n individuals, $\{z_1, \ldots, z_n\}$ in latent space
- α : Real-valued scaling parameter

Network



Latent Space Embeddings	LSE Computations	Computational Tools
0000000	0000	000000

LSE — Stochastic Model

Logistic Regression Model [HRH02]

Hypotheses: Ties are statistically independent, and the odds of a tie decreases exponentially with attribute distance.

$$\Pr[Y \mid Z, \alpha] = \prod_{i \neq j} \Pr[y_{i,j} \mid z_i, z_j, \alpha]$$

$$\log \operatorname{odds}(y_{i,j} = 1 \mid z_i, z_j, \alpha) = \alpha - \|z_i - z_j\|.$$

Defining $\eta_{i,j} = \alpha - ||z_i - z_j||$, we have

$$\log \Pr[Y \mid \eta] = \sum_{i \neq j} (\eta_{i,j} y_{i,j} - \log (1 + e^{\eta_{i,j}})).$$

Latent Space	Embeddings
0000000	

LSE Computation: 0000 Computational Tools 0000000 Looking Forward

LSE — Stochastic Model

LSE Model

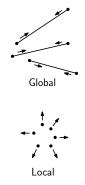
Let
$$\eta_{i,j} = \alpha - \|z_i - z_j\|$$
.

$$\log \Pr[Y \mid \alpha, \eta] = \sum_{i \neq j} (\eta_{i,j} y_{i,j} - \log (1 + e^{\eta_{i,j}})).$$

Global Component: $\sum_{i \neq j} \eta_{i,j} y_{i,j} \Rightarrow$ Avoid long edges

Local Component:

 $-\sum_{i\neq j} \log (1 + e^{\eta_{i,j}}) \Rightarrow$ Encourage dispersion



LSE — MCMC Algorithm

Markov-Chain Monte-Carlo (MCMC)

- For k = 0, 1, 2, ...
 - Perturbation: Sample a random perturbation Z_* of Z_k .
 - Evaluation: Compute the decision variable

$$\rho = \frac{\Pr[Y \mid Z_*, \alpha]}{\Pr[Y \mid Z_k, \alpha]} \quad \leftarrow \text{(Computational bottleneck)}$$

• Decision: Accept Z_* as Z_{k+1} with probability min $(1, \rho)$

Convergence requires many iterations (tens of thousands and more).

Existing computational approaches, based on brute-force evaluation of probabilities, are unacceptably slow and do not scale to large networks.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
000000	0000	000000	0000

LSE — Efficient LSE Computations

- Naive (exact) computation for each iteration requires quadratic time.
- Computation involves retrieval of spatial relations and distances.
- Need efficient geometric retrieval data structures.
- Important features:
 - Approximate: Exact structures are too slow.
 - Incremental: MCMC algorithms involve repeated perturbation of point positions.
 - Adaptable: Queries are highly non-uniform, and structures should adapt to these patterns.
 - Variational-Sensitive: Approximations must preserve small relational variations.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
000000	0000	000000	0000

LSE — Efficient LSE Computations

- Naive (exact) computation for each iteration requires quadratic time.
- Computation involves retrieval of spatial relations and distances.
- Need efficient geometric retrieval data structures.
- Important features:
 - Approximate: Exact structures are too slow.
 - Incremental: MCMC algorithms involve repeated perturbation of point positions.
 - Adaptable: Queries are highly non-uniform, and structures should adapt to these patterns.
 - Variational-Sensitive: Approximations must preserve small relational variations.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
0000000	0000	000000	0000

LSE — Computational Challenges

- Almost all prior work on geometric data structures has focused on fairly static structures.
- Geometric MCMC is extremely dynamic:
 - Classical dynamics: Point insertion, point deletion.
 - Incremental dynamics: Many points change positions (but motion is small).
 - Block dynamics: Groups of points move in unison.
- Incremental dynamics, adaptivity, variational-sensitivity are unstudied in computational geometry.
- Such nimble data structures will be broadly applicable to a wide variety of settings.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
000000	0000	000000	0000

LSE — Computational Challenges

- Almost all prior work on geometric data structures has focused on fairly static structures.
- Geometric MCMC is extremely dynamic:
 - Classical dynamics: Point insertion, point deletion.
 - Incremental dynamics: Many points change positions (but motion is small).
 - Block dynamics: Groups of points move in unison.
- Incremental dynamics, adaptivity, variational-sensitivity are unstudied in computational geometry.
- Such nimble data structures will be broadly applicable to a wide variety of settings.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
000000	0000	000000	0000

LSE — Efficient LSE Computations

This MURI grant has enabled significant advances on these issues.

High Priority	Prior Art	Current Art
Incremental	None	Kinetic net tree [ISAAC'09]
Dynamic	Limited	Dynamics + range search
	(no range updates)	[SoCG'10]
Variation-Sensitivity	None	For block dynamics
Middle Priority	Prior Art	Current Art
Adaptable	None	Self-adjusting quadtree
Space/Time Tradeoffs	Suboptimal	Optimal at extremes
		[JACM'09], [SoCG'10]
		(submission to STOC'11)
Desirable	Prior Art	Current Art
Compressed	None	[AlgoSensor'09] [ESA'10]
Kinetic	Yes	Greater flexibility
		[CGTA'09]

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
	0000		

LSE Algorithm Engineering

Objective: Achieve \geq 90% reduction in running time with \leq 1% error.

• Local Component:

- Tapering: Keep all the "heavy hitters"
- Sampling: Sample the rest
- Global Component:
 - Sparse networks: If sparser than local sampling rate, use brute force.
 - Dense networks: Apply dynamic net trees with block dynamics.

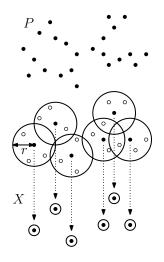
Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
000000	0000	000000	0000

Computational Tools – Nets

Net

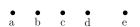
P is a finite set of points in a \mathbb{R}^d . Given r > 0, an *r*-net for *P* is a subset $X \subseteq P$ such that,

$$\max_{\substack{p \in M \\ x \neq x'}} dist(p, X) < r \text{ and}$$
$$\min_{\substack{x, x' \in X \\ x \neq x'}} ||x - x'|| \ge r.$$



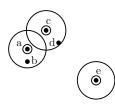
Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		000000	

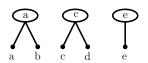
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, P⁽¹⁾, P⁽²⁾,..., P^(h), where P⁽ⁱ⁾ is a (2ⁱ)-net for P⁽ⁱ⁻¹⁾.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.



Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		000000	

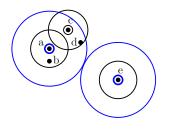
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, P⁽¹⁾, P⁽²⁾, ..., P^(h), where P⁽ⁱ⁾ is a (2ⁱ)-net for P⁽ⁱ⁻¹⁾.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

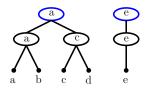




Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		000000	

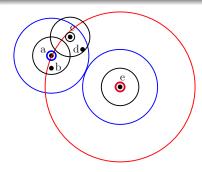
- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a (2^i) -net for $P^{(i-1)}$.
- Each node on level i 1 is associated with a parent, at level i, which lies lies within distance 2ⁱ.

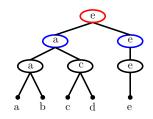




Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		000000	

- The leaves of the tree consists of the points of *P*.
- The tree is based on a series of nets, $P^{(1)}, P^{(2)}, \ldots, P^{(h)}$, where $P^{(i)}$ is a (2^i) -net for $P^{(i-1)}$.
- Each node on level *i* 1 is associated with a parent, at level *i*, which lies lies within distance 2^{*i*}.

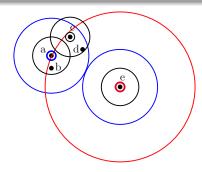


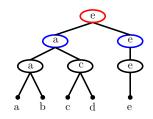


	Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
			000000	
-				

Net Trees - Results

- Presented algorithms for net trees under incremental motion.
- Proved bounds on the competitive ratio of our algorithm, relative to the optimal algorithm.
- Demonstrated that net trees can be applied to block dynamics in LSE computations.





Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		000000	

Background: BD-tree

Box Decomposition tree (BD-tree)

A geometric data structure based on a hierarchical decomposition of space into d-dimensional axis-aligned rectangles.

- Each node is associated with a region of space, cell.
- Each cell has an outer box and optional inner box.
- Partition operations: split and shrink.
- Internal nodes: split nodes and shrink nodes.
- A leaf has a single point or a single inner box.

 cell

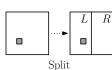
Latent		Embeddings
	000	

LSE Computation

Computational Tools 0000€00 Looking Forward

BD-tree: Partitioning Operations

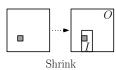
A split partitions a cell by an axis-orthogonal hyperplane that bisects the cell's longest side.



Subdivision:

Shrink

A shrink partitions a cell by a shrinking box, which lies within the cell.



Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
		0000000	

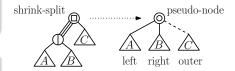
Pseudo-nodes

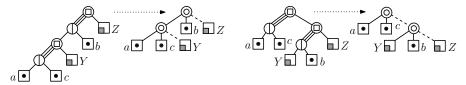
Shrink-split property

The inner child of each shrink node is a split node.

Pseudo-node

Merged shrink-split pair into a single node



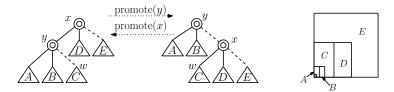


Examples of transformation to pseudo-nodes

Lat	ent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
00			000000	
_				

Promotion: Rotation on pseudo-nodes

- BD-trees can be rebalanced through rotation, called promotion.
- Promotion does not alter subdivision, just the tree structure.



Results

- Developed a randomized balanced quad tree structure, quadtreap.
- Supports efficient insertion, deletion, approximate proximity queries.
- We are developing a self-adjusting variant of this structure, generalizing the 1-dimensional splay tree.

	0000	000000	●000		
Future/Further Work					

We have significantly advanced the state of the art of dynamic geometric data structures, but many questions remain:

- Intrinsic (net-tree like) variants of the quadtreap and self-adjusting quadtree?
- Establishing variational-sensitivity for incremental dynamics?
- Efficient MCMC updates for networks of moderate density.
- Continued prototyping of algorithms, analysis, and subsequent dissemination of software.

Closing the circle: Apply the tools and algorithms we have developed for the analysis of actual networks.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
			0000

Some Work Supported by this Grant

- Storing and Retrieving Information from Dynamic Data Sets:
 - Maintaining Nets and Net Trees under Incremental Motion (with M. Cho and E. Park), ISAAC'09.
 - A Dynamic Data Structure for Approximate Range Searching (with E. Park), SoCG 2010.
- Efficient Algorithms and Data Structures for Geometric Retrieval:
 - Space-Time Tradeoffs for Approximate Nearest Neighbor Searching (with S. Arya and T. Malamatos), JACM'09.
 - Tight Lower Bounds for Halfspace Range Searching (with S. Arya and J. Xia), SoCG 2010 (invited to a special issue of DCG).
 - A Unifying Framework for Approximate Proximity Searching (with S. Arya and G. Fonseca), ESA 2010.
 - Approximate Polytope Membership Queries (with S. Arya and G. Fonseca), (submitted to STOC 2011).
- Compression and Retrieval of Kinetic Data:
 - Compressing Kinetic Data From Sensor Networks (with S. Friedler), AlgoSensors'09.
 - Spatio-Temporal Range Searching Over Compressed Sensor Data (with S. Friedler), ESA 2010.

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
			0000

Thank you!

Latent Space Embeddings	LSE Computations	Computational Tools	Looking Forward
			0000
DULU			

Bibliography

- [CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach., 42:67–90, 1995.
- [HRH02] P. D. Hoff, A. E. Raftery, and M. S Handcock. Latent space approaches to social network analysis. J. American Statistical Assoc., 97:1090–1098, 2002.
- [HRT07] M. S. Handcock and A. E. Raftery and J. M. Tantrum. Model-based clustering for social networks. J. R. Statist. Soc. A, 170, Part 2, 301–354, 2007.