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Motivation

@ Social networks exhibit various structural features:

@ Transitivity
@ Homophily on attributes
o Clustering

@ Analysis of social networks seeks to uncover
deeper structure, as evidenced by network ties.

@ The likelihood of a tie is often correlated with the
similarity of attributes of the actors.
(E.g., geography, age, ethnicity, income).

@ Attributes may be observed or unobserved
(latent).

@ Motivating Question: Through analysis of network

structure, can we recover an understanding of
these, possibly hidden, attributes?
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Latent Space Embedding (LSE)

Network

The likelihood of relational ties in social
networks depends on the similarity of attributes
in an unobserved latent space.

Problem Statement

Given a network Y = [y; ;] with n nodes, b
estimate a set of positions Z = {z,...,z,} in a Latent Space
RY that best describes this network relative to g

e
some model. /
(o}
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Latent Space Embedding (LSE)

Usefulness of LSE

@ Provides a parsimonious model of network structure
(O(dn) rather than O(n?) size)

@ Allows for natural interpretation of geometric relations, such as
“betweenness,” “surroundedness,” and “dimensionality”

@ Can be used for cluster analysis of nodes

@ Provides a means to perform visual analysis of network structure
through spatial relationships (when dimension is low), and outlier
detection.
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LSE — Stochastic Model

Network

@ Y: An n X n sociomatrix
(vij = 1 if there is a tie between i and j)

Model Parameters

@ Z: The positions of n individuals, \
{z1,...,2z,} in latent space b

@ «a: Real-valued scaling parameter aq Latent Space
d

v
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LSE — Stochastic Model

Logistic Regression Model [HRHO02]

Hypotheses: Ties are statistically independent, and the odds of a tie
decreases exponentially with attribute distance.

PriY | Z,a] = HPr[y,-’j | i, zj, o
i)
logodds(yij =11 z,z,0) = a—|zi -zl
Defining n; j = o — ||z — z||, we have

log Pr[Y [ n] = Z(Ui,jy/',j — log (1 + €"7)).
i
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LSE — Stochastic Model

LSE Model

Let n;ij = o — ||z — z]|.

0gPrY [avn] = S (miyis—log(L+em)). | =2
i2j \

Global

Global Component: s
S migvij = Avoid long edges BT
Local Component: PN

— Zi#j log (1 + €™#) = Encourage dispersion Local




Latent Space Embeddings
000000e

LSE — MCMC Algorithm

Markov-Chain Monte-Carlo (MCMC)
@ For k=0,1,2,...

o Perturbation: Sample a random perturbation Z, of Z.
o Evaluation: Compute the decision variable

PriY | Zi, o]

= PrY [ Ze.a] + (Computational bottleneck)

o Decision: Accept Z,. as Zi1 with probability min(1, p)

Convergence requires many iterations (tens of thousands and more).

Existing computational approaches, based on brute-force evaluation of
probabilities, are unacceptably slow and do not scale to large networks.
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LSE — Efficient LSE Computations

@ Naive (exact) computation for each iteration

requires quadratic time.

@ Computation involves retrieval of spatial relations
and distances.

@ Need efficient geometric retrieval data structures.
@ Important features:

3
o

(9

Approximate: Exact structures are too slow.
Incremental: MCMC algorithms involve repeated
perturbation of point positions.

Adaptable: Queries are highly non-uniform, and
structures should adapt to these patterns.
Variational-Sensitive: Approximations must
preserve small relational variations.
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LSE — Efficient LSE Computations

@ Naive (exact) computation for each iteration
requires quadratic time.

@ Computation involves retrieval of spatial relations
and distances.
@ Need efficient geometric retrieval data structures.
@ Important features:
@ Approximate: Exact structures are too slow.
9 Incremental: MCMC algorithms involve repeated
perturbation of point positions.
@ Adaptable: Queries are highly non-uniform, and
structures should adapt to these patterns.
o Variational-Sensitive: Approximations must
preserve small relational variations.
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LSE — Computational Challenges

@ Almost all prior work on geometric data structures
has focused on fairly static structures.
@ Geometric MCMC is extremely dynamic:
9 Classical dynamics: Point insertion, point
deletion.
@ Incremental dynamics: Many points change
positions (but motion is small).
9 Block dynamics: Groups of points move in
unison.

@ Incremental dynamics, adaptivity,
variational-sensitivity are unstudied in
computational geometry.

@ Such nimble data structures will be broadly
applicable to a wide variety of settings.
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LSE — Efficient LSE Computations

This MURI grant has enabled significant advances on these issues.

High Priority Prior Art Current Art
Incremental None Kinetic net tree [ISAAC'09]
Dynamic Limited Dynamics + range search

(no range updates) | [SoCG'10]

Variation-Sensitivity None For block dynamics

Middle Priority Prior Art Current Art
Adaptable None Self-adjusting quadtree
Space/Time Tradeoffs | Suboptimal Optimal at extremes

[JACM'09], [SoCG'10]
(submission to STOC'11)

Desirable Prior Art Current Art
Compressed None [AlgoSensor'09] [ESA'10]
Kinetic Yes Greater flexibility

[CGTA'09]
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LSE Algorithm Engineering

Objective: Achieve > 90% reduction in running time with < 1% error.

@ Local Component:

@ Tapering: Keep all the “heavy hitters”
@ Sampling: Sample the rest

@ Global Component:

@ Sparse networks: If sparser than local sampling rate, use brute force.
o Dense networks: Apply dynamic net trees with block dynamics.
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Computational Tools — Nets

Net o . . )

P is a finite set of points in a RY. Given
r >0, an r-net for P is a subset X C P
such that,

dist(p, X) < d
Iz ist(p, X) r an

min ||x = x'|| > r.
x,x' exX
sl
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Net Trees

@ The leaves of the tree consists of the points of P.
@ The tree is based on a series of nets, P, P P") \where P
is a (2/)-net for PU—1).

@ Each node on level i — 1 is associated with a parent, at level i, which
lies lies within distance 2'. )
C
[ )
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Net Trees

@ The leaves of the tree consists of the points of P.
@ The tree is based on a series of nets, P, P2 .. P where P(1)
is a (27)-net for PU—1).

@ Each node on level / — 1 is associated with a parent, at level /, which
lies lies within distance 2'. )
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Net Trees - Results

@ Presented algorithms for net trees under incremental motion.

@ Proved bounds on the competitive ratio of our algorithm, relative to
the optimal algorithm.

@ Demonstrated that net trees can be applied to block dynamics in
LSE computations. )
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Background: BD-tree

Box Decomposition tree (BD-tree)

A geometric data structure based on a hierarchical decompostion of
space into d-dimensional axis-aligned rectangles.

@ Each node is associated with a region of space, cell. |J:
@ Each cell has an outer box and optional inner box. box
@ Partition operations: split and shrink. =
@ Internal nodes: split nodes and shrink nodes. cell
9 A leaf has a single point or a single inner box. .

leaves
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BD-tree: Partitioning Operations

S plit Subdivision: Tree:

A split partitions a cell by an L R

axis-orthogonal hyperplane that o i E(GDW:'

bisects the cell's longest side.

~
=

Split

0 Q
A shrink partitions a cell by a NS
shrinking box, which lies within the B I:TII I O
cell.

Shrink
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Pseudo-nodes

Shrink-split property

The inner child of each shrink node shrink-split rseudo-node

is a split node. Qe g I\\
A A I YN

Pseudo-node left right outer

Merged shrink-split pair into a single
node

................. > \
- =*
vRl [y Bz

Examples of transformation to pseudo-nodes
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Promotion: Rotation on pseudo-nodes

@ BD-trees can be rebalanced through rotation, called promotion.
@ Promotion does not alter subdivision, just the tree structure.

@ Developed a randomized balanced quad tree structure, quadtreap.

@ Supports efficient insertion, deletion, approximate proximity queries.

@ We are developing a self-adjusting variant of this structure,
generalizing the 1-dimensional splay tree.
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Future/Further Work

We have significantly advanced the state of the art of dynamic geometric
data structures, but many questions remain:

@ Intrinsic (net-tree like) variants of the quadtreap and self-adjusting
quadtree?

@ Establishing variational-sensitivity for incremental dynamics?

o Efficient MCMC updates for networks of moderate density.

@ Continued prototyping of algorithms, analysis, and subsequent

dissemination of software.

Closing the circle: Apply the tools and algorithms we have developed for
the analysis of actual networks.
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Some Work Supported by this Grant

@ Storing and Retrieving Information from Dynamic Data Sets:
@ Maintaining Nets and Net Trees under Incremental Motion

(with M. Cho and E. Park), ISAAC’'09.
@ A Dynamic Data Structure for Approximate Range Searching

(with E. Park), SoCG 2010.

@ Efficient Algorithms and Data Structures for Geometric Retrieval:
¢ Space-Time Tradeoffs for Approximate Nearest Neighbor Searching

(with S. Arya and T. Malamatos), JACM'09.
¢ Tight Lower Bounds for Halfspace Range Searching

(with S. Arya and J. Xia), SoCG 2010 (invited to a special issue of DCG).
@ A Unifying Framework for Approximate Proximity Searching

(with S. Arya and G. Fonseca), ESA 2010.
@ Approximate Polytope Membership Queries

(with S. Arya and G. Fonseca), (submitted to STOC 2011).

@ Compression and Retrieval of Kinetic Data:
@ Compressing Kinetic Data From Sensor Networks

(with S. Friedler), AlgoSensors’'09.
@ Spatio-Temporal Range Searching Over Compressed Sensor Data

(with S. Friedler), ESA 2010.



Thank you!



Looking Forward
oooe

Bibliography

@ [CKO95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential fields.
J. Assoc. Comput. Mach., 42:67-90, 1995.

@ [HRHO02] P. D. Hoff, A. E. Raftery, and M. S Handcock. Latent space approaches
to social network analysis. J. American Statistical Assoc., 97:1090-1098, 2002.

@ [HRTO7] M. S. Handcock and A. E. Raftery and J. M. Tantrum. Model-based
clustering for social networks. J. R. Statist. Soc. A, 170, Part 2, 301-354, 2007.



	Latent Space Embeddings
	

	LSE Computations
	

	Computational Tools
	

	Looking Forward
	


