
Listing All Maximal Cliques in Sparse Graphs in
Near-Optimal Time

Darren Strash

Joint work with David Eppstein and Maarten Löffler

Department of Computer Science
UC Irvine

What is a Maximal Clique?

A clique that cannot be extended by adding more vertices

What is a Maximal Clique?

A clique that cannot be extended by adding more vertices

Maximal
Maximal,
Maximum Not Maximal Not Clique

Goal: Design an algorithm to list all maximal cliques

Goal: Design an algorithm to list all maximal cliques

Motivation

Motivation

Features in ERGM

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Motivation

Features in ERGM

Detect structural motifs from similarities between proteins

Determine the docking regions between biomolecules

Document clustering for information retrieval

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

There may be many maximal cliques.

3 ∗ 3 ∗ 3 ∗ 3

There may be many maximal cliques.

3n/3 maximal cliques

There may be many maximal cliques.

3n/3 maximal cliques

(Moon–Moser bound)

Maximal Clique Listing Algorithms

Author Year Running Time
Bron and Kerbosch 1973 ???

Tsukiyama et al. 1977 O(nmµ)
Chiba and Nishizeki 1985 O(αmµ)

Makino and Uno 2004 O(∆4µ)

n = number of vertices
m = number of edges
µ = number of maximal cliques

∆ = maximum degree of the graph
α = arboricity

Tomita et al. (2006)

Tomita et al. (2006)

Worst-case optimal running time O(3n/3)

Tomita et al. (2006)

Worst-case optimal running time O(3n/3)

Computational experiments:

Tomita et al. (2006)

Worst-case optimal running time O(3n/3)

Computational experiments:

fast!slow

The Bron–Kerbosch Algorithm

Its variations work well in practice.

Easy to implement

Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)

There are many heuristics, which make it faster

Easy to understand

One variation is worst-case optimal (O(3n/3) time)
Tomita et al. (2006)

The Bron–Kerbosch Algorithm

Its variations work well in practice.

Easy to implement

Confirmed through computational experiments
Johnston (1976), Koch (2001), Baum (2003)

There are many heuristics, which make it faster

Easy to understand

One variation is worst-case optimal (O(3n/3) time)
Tomita et al. (2006)

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

Finding one maximal clique

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to minimize |P \ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

The Bron–Kerbosch Algorithm with Pivoting

T (n) ≤ max
k
{kT (n− k)}+O(n2)

The Bron–Kerbosch Algorithm with Pivoting

T (n) ≤ max
k
{kT (n− k)}+O(n2)

T (n) = O(3n/3)

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

The Bron–Kerbosch Algorithm

All cliques in planar graphs may be listed in time O(n)
Chiba and Nishizeki (1985), Chrobak and Eppstein (1991)

The Bron–Kerbosch Algorithm

Want to characterize the running time with a parameter.

Let p be our parameter of choice.

An algorithm is fixed-parameter tractable with
parameter p if it has running time

f(p)nO(1)

The key is to avoid things like np.

Parameterize on Sparsity

Parameterize on Sparsity

degeneracy:

Parameterize on Sparsity

degeneracy:

The minimum integer d such that every subgraph of
G has a vertex of degree d or less.

Degeneracy

Degeneracy

d = 1

degeneracy:

The minimum integer d such that there is an
ordering of the vertices where each vertex has at
most d neighbors later in the ordering.

Degeneracy

h

h

h

d = 1

Planar graphs have degeneracy at most 5

Degeneracy is easy to compute

d-degenerate graphs...

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

> d later neighbors.

d-degenerate graphs...

cannot contain cliques with more than d+ 1 vertices

> d later neighbors.

d-degenerate graphs...

d-degenerate graphs...

have fewer than dn edges.

d-degenerate graphs...

have fewer than dn edges.

≤ d later neighbors.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other
popular sparsity measures.

A few more facts about degeneracy...

Degeneracy is within a constant factor of other
popular sparsity measures.

Graphs generated by the preferential attachment
mechanism of Barabási and Albert have low
degeneracy.

proc BronKerboschDegeneracy(V , E)

1: for each vertex vi in a degeneracy ordering v0, v1, v2, . . . of (V,E)
do

2: P ← vi’s later neighbors
3: X ← vi’s earlier neighbors
4: BronKerboschPivot(P , {vi}, X)
5: end for

|P |≤ dX

Computing the pivot

X P

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

X P

Computing the pivot

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

X P

O(|P |(|X|+ |P |))

Computing the pivot

Pick u ∈ X ∪ P that maximizes |P ∩ Γ(u)|.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

X P

Find subgraph induced by v’s neighbors.

X P
v

Find subgraph induced by v’s neighbors.

X P
v

Find subgraph induced by v’s neighbors.

X ∩ Γ(v) P ∩Γ(v)

Find subgraph induced by v’s neighbors.

X ∩ Γ(v) P ∩Γ(v)

O(|P |(|X|+ |P |))

Find subgraph induced by v’s neighbors.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

X P
v

Remove v from P and add it to X.

X P
v

Remove v from P and add it to X.

X P

v

Remove v from P and add it to X.

X P

v
O(|P |(|X|+ |P |))

Remove v from P and add it to X.

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

proc BronKerboschPivot(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: choose a pivot u ∈ P ∪X to maximize |P ∩ Γ(u)|
5: for each vertex v ∈ P \ Γ(u) do
6: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
7: P ← P \ {v}
8: X ← X ∪ {v}
9: end for

O(|P |2(|X|+ |P |))

T (n) ≤ max
k
{kT (n− k)}+O(n2)

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]
= O((d+ x)3p/3)

= O(3n/3)

T (n) ≤ max
k
{kT (n− k)}+O(n2)

D(p, x) ≤ max
k
{kD(p− k, x)}+O(p2(p+ x))

≤ (d+ x)
[
maxk

{
kD(p−k,x)

d+x

}
+O(p2)

]
≤ (d+ x)

[
maxk{kT (p− k)}+O(p2)

]
= O((d+ x)3p/3)

= O(3n/3)

= O((d+ x)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

= O(dn3d/3)

∑
v∈V

O(d+ |Xv|)3d/3)

= O((dn+m)3d/3)

= O(dn3d/3)

where f(d) = d3d/3= O(f(d)n)

Our running time: O(dn3d/3)

Our running time: O(dn3d/3)

Worst-case output size: O(d(n− d)3d/3)

Our running time: O(dn3d/3)

Worst-case output size: O(d(n− d)3d/3)

When n− d = Ω(n), our algorithm is worst-case optimal.

≤ d later neighbors.

An upper bound

≤ d later neighbors.

An upper bound

≤ d later neighbors.

An upper bound

≤ d later neighbors.

at most O(3d/3) maximal cliques

An upper bound

≤ d later neighbors.

at most O(3d/3) maximal cliques

An upper bound

n− d− 3 vertices d+ 3 vertices

An upper bound

n− d− 3 vertices d+ 3 vertices

(n− d− 3)3d/3 3
d+3
3

An upper bound

n− d− 3 vertices d+ 3 vertices

(n− d− 3)3d/3 3
d+3
3

at most (n− d)3d/3 maximal cliques

An upper bound

Kn−d,3,3,3,...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

(n− d)3d/3

maximal cliques

A lower bound

Kn−d,3,3,3,...

n− d

d

d

d

...

(n− d)3d/3

maximal cliques

has degeneracy d
when (n− d) ≥ 3

A lower bound

at most (n− d)3d/3 maximal cliques

each clique is of size at most d+ 1

O(d(n− d)3d/3) worst-case output size.

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P (in degeneracy order) do
5: BronKerbosch(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

The Bron–Kerbosch Algorithm

proc BronKerbosch(P , R, X)

1: if P ∪X = ∅ then
2: report R as a maximal clique
3: end if
4: for each vertex v ∈ P (in degeneracy order) do
5: BronKerboschPivot(P ∩ Γ(v), R ∪ {v}, X ∩ Γ(v))
6: P ← P \ {v}
7: X ← X ∪ {v}
8: end for

Experiments

Linux Workstation: 3.00Ghz Pentium 4, 1GB RAM

Experimental results for UCI data sets

graph d BK BK-pivot BK-hybrid BK-degen Uno
karate 4 < 1sec < 1sec < 1sec < 1sec <1sec∗

dolphins 4 < 1sec < 1sec < 1sec < 1sec < 1sec
power 5 < 1sec < 1sec < 1sec < 1sec < 1sec

polbooks 6 < 1sec < 1sec < 1sec < 1sec < 1sec
adjnoun 6 < 1sec < 1sec < 1sec < 1sec < 1sec
football 8 < 1sec < 1sec < 1sec < 1sec < 1sec
lesmis 9 < 1sec < 1sec < 1sec < 1sec < 1sec

celegens 9 < 1sec < 1sec < 1sec < 1sec seg. fault∗

netscience 19 2.8sec < 1sec < 1sec < 1sec < 1sec
internet 25 19.4sec 10.3sec < 1sec < 1 sec <1sec∗

condmat 29 > 3min 65sec 1.6sec 2.61sec < 1sec
polblogs 36 > 3min 2sec 1.5sec 1.2sec 1.8sec

astro 56 > 3min 12.3sec 1.4sec 3.14sec < 1sec

Experimental results for BIOGRID data sets (PPI Networks)

graph d BK BK-pivot BK-hybrid BK-degen Uno
mouse 6 < 1sec < 1sec < 1sec < 1sec < 1sec
worm 10 < 1sec < 1sec < 1sec < 1sec < 1sec
plant 12 < 1sec < 1sec < 1sec < 1sec < 1sec

fruitfly 12 < 1sec 2.2sec < 1sec < 1sec < 1sec
human 12 1.4sec 3.3sec < 1sec < 1sec < 1sec

fission-yeast 34 2.8sec 1.1sec < 1sec < 1sec < 1sec
yeast 64 > 3min 81sec 44.3sec 20.5sec 121.1sec∗

Experimental results for Pajek data sets

graph d BK BK-pivot BK-hybrid BK-degen Uno
foldoc 12 4.2sec 9sec < 1sec 1sec < 1sec

patents 24 > 5min > 5min 4.3sec 5.3sec 2.2sec
eatRS 34 19.8sec 53sec 12.3sec 9.12sec 14.9sec
hep-th 37 > 5min 69.6sec 22.6sec 17.2sec 41.5sec∗

days-all 73 > 5min 379.1sec 206.5sec 51.4sec 10min 25sec
ND-www 155 > 5min > 5min 27.8sec 41.11sec 9.7sec∗

Thank you!

