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1. INTRODUCTION

With the advent of the Web and specialized digital text collections, automated
extraction of useful information from text has become an increasingly important
research area in information retrieval, statistical natural language processing, and
machine learning. Applications include document annotation, database organiza-
tion, query answering, and automated summarization of text collections. Statistical
approaches based upon generative models have proven effective in addressing these
problems, providing efficient methods for extracting structured representations from
large document collections.

In this paper we describe a generative model for document collections, the author-
topic (AT) model, that simultaneously models the content of documents and the
interests of authors. This generative model represents each document as a mixture
of probabilistic topics, in a manner similar to Latent Dirichlet Allocation [Blei et al.
2003]. It extends previous work using probabilistic topics to author modeling by
allowing the mixture weights for different topics to be determined by the authors of
the document. By learning the parameters of the model, we obtain the set of topics
that appear in a corpus and their relevance to different documents, and identify
which topics are used by which authors. Figure 1 shows an example of several such
topics (with associated authors and words) as obtained from a single sample of the
Gibbs sampler trained on a collection of papers from the annual Neural Information
Processing Systems (NIPS) conferences (these will be discussed in more detail later
in the paper). Both the words and the authors associated with each topic are
quite focused and reflect a variety of different and quite specific research areas
associated with the NIPS conference. The model used in Figure 1 also produces a
topic distribution for each author—Figure 2 shows the likely topics for a set of well-
known NIPS authors from this model. By modeling the interests of authors, we can
answer a range of queries about the content of document collections, including (for
example) which subjects an author writes about, which authors are likely to have
written documents similar to an observed document, and which authors produce
similar work.

The generative model at the heart of our approach is based upon the idea that a
document can be represented as a mixture of topics. This idea has motivated several
different approaches in machine learning and statistical natural language processing
[Hofmann 1999; Blei et al. 2003; Minka and Lafferty 2002; Griffiths and Steyvers
2004; Buntine and Jakulin 2004]. Topic models have three major advantages over
other approaches to document modeling: the topics are extracted in a completely
unsupervised fashion, requiring no document labels and no special initialization;
each topic is individually interpretable, providing a representation that can be
understood by the user; and each document can express multiple topics, capturing
the topic combinations that arise in text documents.

Supervised learning techniques for automated categorization of documents into
known classes or topics have received considerable attention in recent years (e.g.,
Yang [1999]). However, unsupervised methods are often necessary for address-
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WORD PROB. WORD PROB. WORD PROB. WORD PROB.
LIGHT .0306 RECOGNITION .0500 KERNEL .0547 SOURCE .0389

RESPONSE .0282 CHARACTER .0334 VECTOR .0293 INDEPENDENT .0376
INTENSITY .0252 TANGENT .0246 SUPPORT .0293 SOURCES .0344

RETINA .0241 CHARACTERS .0232 MARGIN .0239 SEPARATION .0322
OPTICAL .0233 DISTANCE .0197 SVM .0196 INFORMATION .0319

KOCH .0190 HANDWRITTEN .0166 DATA .0165 ICA .0276
BACKGROUND .0162 DIGITS .0154 SPACE .0161 BLIND .0227

CONTRAST .0145 SEGMENTATION .0142 KERNELS .0160 COMPONENT .0226
CENTER .0124 DIGIT .0124 SET .0146 SEJNOWSKI .0224

FEEDBACK .0118 IMAGE .0111 MACHINES .0132 NATURAL .0183

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Koch_C .0903 Simard_P .0602 Scholkopf_B .0774 Sejnowski_T .0627

Boahen_K .0320 Martin_G .0340 Smola_A .0685 Bell_A .0378
Skrzypek_J .0283 LeCun_Y .0339 Vapnik_V .0487 Yang_H .0349

Liu_S .0250 Henderson_D .0289 Burges_C .0411 Lee_T .0348
Delbruck_T .0232 Denker_J .0245 Ratsch_G .0296 Attias_H .0290

Etienne-C._R .0210 Revow_M .0206 Mason_L .0232 Parra_L .0271
Bair_W .0178 Rashid_M .0205 Platt_J .0225 Cichocki_A .0262

Bialek_W .0133 Rumelhart_D .0185 Cristianini_N .0179 Hyvarinen_A .0242
Yasui_S .0106 Sackinger_E .0181 Laskov_P .0160 Amari_S .0160
Hsu_K .0103 Flann_N .0142 Chapelle_O .0152 Oja_E .0143

WORD PROB. WORD PROB. WORD PROB. WORD PROB.
BAYESIAN .0437 STATE .0715 METHOD .0497 HINTON .0243

POSTERIOR .0377 POLICY .0367 METHODS .0349 SET .0131
PRIOR .0333 ACTION .0301 RESULTS .0314 WEIGHTS .0126

PARAMETERS .0228 REINFORCEMENT .0283 APPROACH .0270 COST .0118
GAUSSIAN .0183 STATES .0244 BASED .0239 SPACE .0106

DATA .0183 FUNCTION .0190 TECHNIQUES .0182 UNSUPERVISED .0102
EVIDENCE .0144 ACTIONS .0179 APPLIED .0167 PROCEDURE .0100

LIKELIHOOD .0142 OPTIMAL .0155 SINGLE .0158 SINGLE .0097
MACKAY .0127 REWARD .0154 NUMBER .0149 ENERGY .0092

COVARIANCE .0126 AGENT .0129 PROBLEMS .0135 VISIBLE .0088

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Williams_C .0854 Singh_S .1293 Sejnowski_T .0121 Hinton_G .1959
Bishop_C .0504 Barto_A .0554 Baluja_S .0101 Mozer_M .0915
Barber_D .0370 Sutton_R .0482 Thrun_S .0097 Zemel_R .0771

Rasmussen_C .0351 Parr_R .0385 Moody_J .0095 Becker_S .0285
MacKay_D .0281 Hansen_E .0300 Hinton_G .0084 Dayan_P .0200
Tipping_M .0225 Dayan_P .0249 Moore_A .0081 Seung_H .0169
Opper_M .0191 Thrun_S .0223 Barto_A .0079 Sejnowski_T .0127
Sollich_P .0160 Tsitsiklis_J .0222 Bengio_Y .0079 Ghahramani_Z .0113

Sykacek_P .0153 Dietterich_T .0206 Singh_S .0078 Nowlan_S .0102
Wolpert_D .0141 Loch_J .0163 Dietterich_T .0068 Schraudolph_N .0098

TOPIC 16TOPIC 62TOPIC 82 TOPIC 7

TOPIC 4 TOPIC 13 TOPIC 28 TOPIC 9

Fig. 1. 8 examples of topics (out of 100 topics in total) from a model fit to NIPS papers from
1987 to 1999—shown are the 10 most likely words and 10 most likely authors per topic.
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PROB. TOPIC WORDS

.1389 37 MIXTURE, EM, LIKELIHOOD, EXPERTS, MIXTURES, EXPERT, GATING, PARAMETERS, LOG, JORDAN

.1221 60 BELIEF, FIELD, STATE, APPROXIMATION, MODELS, VARIABLES, FACTOR, JORDAN, NETWORKS, PARAMETERS

.0598 52 ALGORITHM, ALGORITHMS, PROBLEM, STEP, PROBLEMS, LINEAR, UPDATE, FIND, LINE, ITERATIONS

.0449 77 MOTOR, TRAJECTORY, ARM, INVERSE, HAND, CONTROL, MOVEMENT, JOINT, DYNAMICS, FORWARD

PROB. TOPIC WORDS

.2518 4 LIGHT, RESPONSE, INTENSITY, RETINA, OPTICAL, KOCH, BACKGROUND, CONTRAST, CENTER, FEEDBACK

.0992 45 VISUAL, STIMULUS, CORTEX, SPATIAL, ORIENTATION, RESPONSE, CORTICAL, RECEPTIVE, TUNING, STIMULI

.0882 84 SPIKE, FIRING, SYNAPTIC, SYNAPSES, MEMBRANE, POTENTIAL, CURRENT, SPIKES, RATE, SYNAPSE

.0504 64 CIRCUIT, CURRENT, VOLTAGE, ANALOG, CHIP, VLSI, CIRCUITS, SILICON, PULSE, MEAD

PROB. TOPIC WORDS

.2298 13 RECOGNITION, CHARACTER, TANGENT, CHARACTERS, DISTANCE, HANDWRITTEN, DIGITS, SEGMENTATION, DIGIT, IMAGE

.0930 53 GRADIENT, FUNCTION, DESCENT, ERROR, VECTOR, DERIVATIVE, DERIVATIVES, OPTIMIZATION, PARAMETERS, LOCAL

.0930 69 LAYER, WEIGHTS, PROPAGATION, BACK, OUTPUT, LAYERS, INPUT, NUMBER, WEIGHT, FORWARD

.0762 36 INPUT, OUTPUT, INPUTS, OUTPUTS, VALUES, ARCHITECTURE, SUM, ADAPTIVE, PREVIOUS, PROCESSING

PROB. TOPIC WORDS

.0927 9 SOURCE, INDEPENDENT, SOURCES, SEPARATION, INFORMATION, ICA, BLIND, COMPONENT, SEJNOWSKI, NATURAL

.0852 45 VISUAL, STIMULUS, CORTEX, SPATIAL, ORIENTATION, RESPONSE, CORTICAL, RECEPTIVE, TUNING, STIMULI

.0495 36 INPUT, OUTPUT, INPUTS, OUTPUTS, VALUES, ARCHITECTURE, SUM, ADAPTIVE, PREVIOUS, PROCESSING

.0439 74 MOTION, FIELD, DIRECTION, RECEPTIVE, FIELDS, VELOCITY, MOVING, FLOW, DIRECTIONS, ORDER

PROB. TOPIC WORDS

.3374 28 KERNEL, VECTOR, SUPPORT, MARGIN, SVM, DATA, SPACE, KERNELS, SET, MACHINES

.1243 44 LOSS, ESTIMATION, METHOD, ESTIMATE, PARAMETER, INFORMATION, ENTROPY, BASED, LOG, NEURAL

.0943 72 BOUND, BOUNDS, THEOREM, EXAMPLES, DIMENSION, FUNCTIONS, CLASS, PROBABILITY, NUMBER, RESULTS

.0669 92 ERROR, TRAINING, GENERALIZATION, EXAMPLES, SET, ENSEMBLE, TEST, FUNCTION, LINEAR, ERRORS

AUTHOR = Vapnik_V

AUTHOR = Jordan_M

AUTHOR = Koch_C

AUTHOR = LeCun_Y

AUTHOR = Sejnowski_T

Fig. 2. Selected authors from the NIPS corpus, and four high-probability topics for each author
from the author-topic model. Topics unrelated to technical content (such as topics containing
words such as results, methods, experiments, etc.) were excluded.

ing the challenges of modeling large document collections. For many document
collections, neither predefined topics nor labeled documents may be available. Fur-
thermore, there is considerable motivation to uncover hidden topic structure in
large corpora, particularly in rapidly changing fields such as computer science and
biology, where predefined topic categories may not reflect dynamically evolving
content.

Topic models provide an unsupervised method for extracting an interpretable
representation from a collection of documents. Prior work on automatic extraction
of representations from text has used a number of different approaches. One general
approach, in the context of the general “bag of words” framework, is to represent
high-dimensional term vectors in a lower-dimensional space. Local regions in the
lower-dimensional space can then be associated with specific topics. For example,
the WEBSOM system [Lagus et al. 1999] uses non-linear dimensionality reduction
via self-organizing maps to represent term vectors in a two-dimensional layout.
Linear projection techniques, such as latent semantic indexing (LSI), are also widely
used (e.g., Berry et al. [1994]). Deerwester et al. [1990], while not using the term
“topics” per se, state:
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In various problems, we have approximated the original term-document
matrix using 50-100 orthogonal factors or derived dimensions. Roughly
speaking, these factors may be thought of as artificial concepts; they rep-
resent extracted common meaning components of many different words
and documents.

A well-known drawback of the LSI approach is that the resulting representation is
often hard to interpret. The derived dimensions indicate axes of a space, but there
is no guarantee that such dimensions will make sense to the user of the method.
Another limitation of LSI is that it implicitly assumes a Gaussian (squared-error)
noise model for the word-count data, which can lead to implausible results such as
predictions of negative counts.

A different approach to unsupervised topic extraction relies on clustering docu-
ments into groups containing (presumably) similar semantic content. A variety of
well-known document clustering techniques have been used for this purpose (e.g.,
Cutting et al. [1992]; McCallum et al. [2000]; Popescul et al. [2000]; Dhillon
and Modha [2001]). Each cluster of documents can then be associated with a la-
tent topic as represented (for example) by the mean term vector for documents in
the cluster. While clustering can provide useful broad information about topics,
clusters are inherently limited by the fact that each document is (typically) only
associated with one cluster. This is often at odds with the multi-topic nature of
text documents in many contexts—combinations of diverse topics within a single
document are difficult to represent. For example, the present paper contains at
least two significantly different topics: document modeling and Bayesian estima-
tion. For this reason, other representations that allow documents to be composed
of multiple topics generally provide better models for sets of documents (e.g., better
out of sample predictions, Blei et al. [2003]).

There are several generative models for document collections that model indi-
vidual documents as mixtures of topics. Hofmann [1999] introduced the aspect
model (also referred to as probabilistic LSI, or pLSI) as a probabilistic alternative
to projection and clustering methods. In pLSI, topics are modeled as multinomial
probability distributions over words, and documents are assumed to be generated
by the activation of multiple topics. While the pLSI model produced impressive
results on a number of text document problems such as information retrieval, the
parameterization of the model was susceptible to overfitting and did not provide a
straightforward way to make inferences about documents not seen in the training
data. Blei et al. [2003] addressed these limitations by proposing a more general
Bayesian probabilistic topic model called latent Dirichlet allocation (LDA). The
parameters of the LDA model (the topic-word and document-topic distributions)
are estimated using an approximate inference technique known as variational EM,
since standard estimation methods are intractable. Griffiths and Steyvers [2004]
further showed how Gibbs sampling, a Markov chain Monte Carlo technique, could
be applied to the problem of parameter estimation for this model with relatively
large data sets.

More recent research on topic models in information retrieval has focused on
including additional sources of information to constrain the learned topics. For ex-
ample, Cohn and Hofmann [2001] proposed an extension of pLSI to model both the
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document content as well as citations or hyperlinks between documents. Similarly,
Erosheva et al. [2004] extended the LDA model to model both text and citations
and applied their model to scientific papers from the Proceedings of the National
Academy of Sciences. Other recent work on topic models focused on incorporat-
ing correlations among topics [Blei and Lafferty 2006a; Li and McCallum 2006],
incorporating time dependent topics [Blei and Lafferty 2006b], and incorporating
context [Mei and Zhai 2006].

Our aim in this paper is to extend probabilistic topic models to include authorship
information. Joint author-topic modeling has received little or no attention as far
as we are aware. The areas of stylometry, authorship attribution, and forensic
linguistics focus on the related but different problem of identifying which author
(among a set of possible authors) wrote a particular piece of text [Holmes 1998]. For
example, Mosteller and Wallace [1964] used Bayesian techniques to infer whether
Hamilton or Madison was the more likely author of disputed Federalist papers.
More recent work of a similar nature includes authorship analysis of a purported
poem by Shakespeare [Thisted and Efron 1987], identifying authors of software
programs [Gray et al. 1997], and the use of techniques such as neural networks [Kjell
1994] and support vector machines [Diederich et al. 2003] for author identification.

These author identification methods emphasize the use of distinctive stylistic
features (such as sentence length) that characterize a specific author. In contrast,
the models we present here focus on extracting the general semantic content of a
document, rather than the stylistic details of how it was written. For example, in
our model we omit common “stop” words since they are generally irrelevant to the
topic of the document—however, the distributions of stop words can be quite useful
in stylometry. While topic information could be usefully combined with stylistic
features for author classification we do not pursue this idea in this particular paper.

Graph-based and network-based models are also frequently used as a basis for
representation and analysis of relations among scientific authors. For example,
McCain [1990], Newman [2001], Mutschke [2003] and Erten et al. [2003] use a
variety of methods from bibliometrics, social networks, and graph theory to analyze
and visualize co-author and citation relations in the scientific literature. Kautz
et al. [1997] developed the interactive ReferralWeb system for exploring networks
of computer scientists working in artificial intelligence and information retrieval,
and White and Smyth [2003] used PageRank-style ranking algorithms to analyze
co-author graphs. In all of this work only the network connectivity information is
used—the text information from the underlying documents is not used in modeling.
Thus, while the grouping of authors via these network models can implicitly provide
indications of latent topics, there is no explicit representation of the topics in terms
of the content (the words) of the documents.

This paper is about a novel probabilistic model that represents both authors and
topics. It extends the previous work introduced by the authors in Steyvers et al.
[2004]; Rosen-Zvi et al. [2004] by providing a systematic comparison of the author-
topic model to other existing models, showing how the author-topic model can be
applied as an extension of the LDA model with the use of fictitious authors and
illustrating a number of applications of the model.

The outline of the paper is as follows: Section 2 describes the author-topic model
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and Section 3 outlines how the parameters of the model (the topic-word distribu-
tions and author-topic distributions) can be learned from training data consisting of
documents with known authors. Section 4 discusses the application of the model to
three different document collections: papers from the NIPS conferences, abstracts
from the CiteSeer collection, and emails from Enron. The section includes a general
discussion of convergence and stability in learning, and examples of specific topics
and specific author models that are learned by the algorithm. In Section 5 we
describe illustrative applications of the model, including detecting unusual papers
for selected authors and detecting which parts of a text were written by different
authors. Section 6 compares and contrasts the proposed author-topic model with a
number of related models, including the LDA model, a simple author model (with
no topics), and a model allowing “fictitious authors”, and includes experiments
quantifying test set perplexity and precision-recall, for different models. Section 7
contains a brief discussion and concluding comments.

2. THE AUTHOR-TOPIC (AT) MODEL

In this section we introduce the author-topic model. The author topic model be-
longs to a family of generative models for text where words are viewed as discrete
random variables, a document contains a fixed number of words, and each word
takes one value from a predefined vocabulary. We will use integers to denote the
entries in the vocabulary, with each word w taking a value from 1, . . . , W where
W is the number of unique words in the vocabulary. A document d is represented
as a vector of words, wd, with Nd entries. A corpus with D documents is repre-
sented as a concatenation of the document vectors, which we will denote w, having
N =

∑D
d=1 Nd entries. In addition to these words, we have information about the

authors of each document. We define ad to be the set of authors of document d.
ad consists of elements that are integers from 1, . . . , A, where A is the number of
authors who generated the documents in the corpus. Ad will be used to denote the
number of authors of document d.

To illustrate this notation, consider a simple example. Say we have D = 3
documents in the corpus, written by A = 2 authors that use a vocabulary with
W = 1000 unique words. The first author (author 1) wrote paper 1, author 2
wrote paper 2, and they co-authored paper 3. According to our notation, a1 = (1),
a2 = (2) and a3 = (1, 2), and A1 = 1, A2 = 1, and A3 = 2. Say the first document
contains a single line, “Language Modeling” has an abundance of interesting research

problems. We can remove stop words such as has, an, and of, to leave a document
with 6 words. If language is the 8th entry in the vocabulary, modeling is the 12th,
and abundance is the 115th, then w11 = 8, w12 = 12, w13 = 115, and so on.

The author-topic model is a hierarchical generative model in which each word w
in a document is associated with two latent variables: an author, x and a topic, z.
These latent variables augment the N -dimensional vector w (indicating the values
of all words in the corpus) with two additional N -dimensional vectors z and x,
indicating topic and author assignments for the N words.

For the purposes of estimation, we assume that the set of authors of each docu-
ment is observed. This leaves unresolved the issue of having unobserved authors,
and avoids the need to define a prior on authors, which is outside of the scope of
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Table I. Symbols associated with the author-topic model, as used in this paper.

Authors of the corpus A Set

Authors of the dth document ad Ad-dimensional vector

Number of authors of the dth document Ad Scalar

Number of words assigned to author and topic CTA T × A matrix

Number of words assigned to topic and word CWT W × T matrix

Set of authors and words in the training data Dtrain Set

Number of authors A Scalar

Number of documents D Scalar

Number of words in the dth document Nd Scalar

Number of words in the corpus N Scalar

Number of topics T Scalar

Vocabulary Size W Scalar

Words in the dth document wd Nd-dimensional vector

Words in the corpus w N-dimensional vector

ith word in the dth document wdi ith component of wd

Author assignments x N-dimensional vector

Author assignment for word wdi xdi ith component of xd

Topic assignments z N-dimensional vector

Topic assignment for word wdi zdi ith component of zd

Dirichlet prior α Scalar

Dirichlet prior β Scalar

Probabilities of words given topics Φ W × T matrix

Probabilities of words given topic t φt W -dimensional vector

Probabilities of topics given authors Θ T × A matrix

Probabilities of topics given author a θa T -dimensional vector

this paper. Each author is associated with a multinomial distribution over topics.
Conditioned on the set of authors and their distributions over topics, the process
by which a document is generated can be summarized as follows: first, an author
is chosen uniformly at random for each word that will appear in the document;
next, a topic is sampled for each word from the distribution over topics associated
with the author of that word; finally, the words themselves are sampled from the
distribution over words associated with each topic.

This generative process can be expressed more formally by defining some of the
other variables in the model. Assume we have T topics. We can parameterize
the multinomial distribution over topics for each author using a matrix Θ of size
T × A, with elements θta that stand for the probability of assigning topic t to a
word generated by author a. Thus

∑T
t=1 θta = 1, and for simplicity of notation we

will drop the index t when convenient and use θa to stand for the ath column of the
matrix. The multinomial distributions over words associated with each topic are
parameterized by a matrix Φ of size W × T , with elements φwt that stand for the
probability of generating word w from topic t. Again,

∑W
w=1 φwt = 1, and φt stands

for the tth column of the matrix. These multinomial distributions are assumed
to be generated from symmetric Dirichlet priors with hyperparameters α and β
respectively. In the results in this paper we assume that these hyperparameters are
fixed. Table I summarizes this notation.

The sequential procedure of first picking an author followed by picking a topic
then generating a word according to the probability distributions above leads to

ACM Transactions on Information Systems, Vol. V, No. N, March 2009.
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x

z

w
D

φβ

α θ
A

T

da

Nd

Fig. 3. Graphical model for the author-topic model.

the following generative process:

1. For each author a = 1, ..., A choose θa ∼ Dirichlet(α)
For each topic t = 1, ..., T choose φt ∼ Dirichlet(β)

2. For each document d = 1, ..., D
Given the vector of authors ad

For each word i = 1, ..., Nd

Conditioned on ad choose an author xdi ∼ Uniform(ad)
Conditioned on xdi choose a topic zdi ∼ Discrete(θxdi

)
Conditioned on zdi choose a word wdi ∼ Discrete(φzdi

)

The graphical model corresponding to this process is shown in Figure 3. Note that
by defining the model we fix the number of possible topics to T . In circumstances
where the number of topics is not determined by the application, methods such as
comparison of Bayes factors (e.g., Griffiths and Steyvers [2004]) or non-parametric
Bayesian statistics (e.g., Teh et al. [2005]) can be used to infer T from a data set.
In this paper, we will deal with the case where T is fixed.

Under this generative process, each topic is drawn independently when condi-
tioned on Θ, and each word is drawn independently when conditioned on Φ and z.
The probability of the corpus w, conditioned on Θ and Φ (and implicitly on a fixed
number of topics T ), is

P (w|Θ, Φ,A) =

D
∏

d=1

P (wd|Θ, Φ, ad). (1)

We can obtain the probability of the words in each document, wd by summing over

ACM Transactions on Information Systems, Vol. V, No. N, March 2009.
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the latent variables x and z, to give

P (wd|Θ, Φ,A) =

Nd
∏

i=1

P (wdi|Θ, Φ, ad)

=

Nd
∏

i=1

A
∑

a=1

T
∑

t=1

P (wdi, zdi = t, xdi = a|Θ, Φ, ad))

=

Nd
∏

i=1

A
∑

a=1

T
∑

t=1

P (wdi|zdi = t, Φ)P (zdi = t|xdi = a, Θ)P (xdi = a|ad)

=

Nd
∏

i=1

1

Ad

∑

a∈ad

T
∑

t=1

φwditθta, (2)

where the factorization in the third line makes use of the conditional independence
assumptions of the model. The last line in the equations above expresses the prob-
ability of the words w in terms the entries of the parameter matrices Φ and Θ intro-
duced earlier. The probability distribution over author assignments, P (xdi = a|ad),
is assumed to be uniform over the elements of ad, and deterministic if Ad = 1. The
probability distribution over topic assignments, P (zdi = t|xdi = a, Θ) is the multi-
nomial distribution θa in Θ that corresponds to author a, and the probability of a
word given a topic assignment, P (wdi|zdi = t, Φ) is the multinomial distribution φt

in Φ that corresponds to topic t.
Equations 1 and 2 can be used to compute the probability of a corpus w con-

ditioned on Θ and Φ, i.e., the likelihood of a corpus. If Θ and Φ are treated as
parameters of the model, this likelihood can be used in maximum-likelihood or
maximum-a-posteriori estimation. Another strategy is to treat Θ and Φ as random
variables, and compute the marginal probability of a corpus by integrating them
out. Under this strategy, the probability of w becomes

P (w|A, α, β) =

∫

Θ

∫

Φ

P (w|A, Θ, Φ)p(Θ, Φ|α, β)dΘdΦ

=

∫

Θ

∫

Φ

[

D
∏

d=1

Nd
∏

i=1

1

Ad

∑

a∈ad

T
∑

t=1

φwditθta

]

p(Θ, Φ|α, β)dΘdΦ,

where p(Θ, Φ|α, β) = p(Θ|α)p(Φ|β) are the Dirichlet priors on Θ and Φ defined
earlier.

3. LEARNING THE AUTHOR-TOPIC MODEL FROM DATA

The author-topic model contains two continuous random variables, Θ and Φ. Var-
ious approximate inference methods have recently been employed for estimating
the posterior distribution for continuous random variables in hierarchical Bayesian
models. These approximate inference algorithms range from variational inference
[Blei et al. 2003] and expectation propagation [Minka and Lafferty 2002] to MCMC
schemes [Pritchard et al. 2000; Griffiths and Steyvers 2004; Buntine and Jakulin
2004]. The inference scheme used in this paper is based upon a Markov chain Monte
Carlo (MCMC) algorithm or more specifically, Gibbs sampling. While MCMC is
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not necessarily as computationally efficient as approximation schemes such as vari-
ational inference and expectation propagation, it is unbiased and has been success-
fully used in several recent large scale applications of topic models [Buntine and
Jakulin 2004; Griffiths and Steyvers 2004].

Our aim is to estimate the posterior distribution, p(Θ, Φ|Dtrain, α, β). Samples
from this distribution can be useful in many applications, as illustrated in Section
4.3. This is also the distribution used for evaluating the predictive power of the
model (e.g., see Section 6.4) and for deriving other quantities, such as the most
surprising paper for an author (Section 5).

Our inference scheme is based upon the observation that

p(Θ, Φ|Dtrain, α, β) =
∑

z,x

p(Θ, Φ|z,x,Dtrain, α, β)P (z,x|Dtrain, α, β).

We obtain an approximate posterior on Θ and Φ by using a Gibbs sampler to
compute the sum over z and x. This process involves two steps. First, we ob-

tain an empirical sample-based estimate of P (z,x|Dtrain, α, β) using Gibbs sam-
pling. Second, for any specific sample corresponding to a particular x and z,

p(Θ, Φ|z,x,Dtrain, α, β) can be computed directly by exploiting the fact that the
Dirichlet distribution is conjugate to the multinomial. In the next two sections we
will explain each of these two steps in turn.

3.1 Gibbs Sampling

Gibbs sampling is a form of Markov chain Monte Carlo, in which a Markov chain
is constructed to have a particular stationary distribution (e.g., Gilks et al. [1996]).
In our case, we wish to construct a Markov chain which converges to the posterior

distribution over x and z conditioned on Dtrain, α, and β. Using Gibbs sampling

we can generate a sample from the joint distribution P (z,x|Dtrain, α, β) by (a)
sampling an author assignment xdi and a topic assignment zdi for an individual
word wdi, conditioned on fixed assignments of authors and topics for all other
words in the corpus, and (b) repeating this process for each word. A single Gibbs
sampling iteration consists of sequentially performing this sampling of author and
topic assignments for each individual word in the corpus.

In Appendix A we show how to derive the following basic equation needed for
the Gibbs sampler:

P (xdi = a, zdi = t|wdi = w, z−di,x−di,w−di,A, α, β) ∝

CWT
wt,−di + β

∑

w′ CWT
w′t,−di + Wβ

CTA
ta,−di + α

∑

t′ CTA
t′a,−di + Tα

(3)

for a ∈ ad. Here CTA represents the topic-author count matrix, where CTA
ta,−di is

the number of words assigned to topic t for author a excluding the topic assignment
to word wdi. Similarly CWT is the word-topic count matrix, where CWT

wt,−di is the

number of words from the wth entry in the vocabulary assigned to topic t excluding
the topic assignment to word wdi. Finally, z−di,x−di,w−di stand for the vector
of topic assignments, vector of author assignment and vector of word observations
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in all corpus except for the ith word of the dth document, respectively. The other
symbols are summarized in Table I. This equation can be manipulated further
to obtain the conditional probability of the topic of the ith word given the rest,

P (zdi = t|z−di,x,Dtrain, α, β), and for the conditional probability of the author of

the ith word given the rest, P (xdi = a|z,x−di,D
train, α, β). In the results in this

paper we use a blocked sampler where we sample xdi and zdi jointly which improves
the mixing time of the sampler (e.g. Roberts and Sahu [1997])—empirically we
also found an improvement in overall run time compared to sampling xdi and zdi

separately.
The algorithm for Gibbs sampling works as follows. We initialize the author

and topic assignments, x and z, randomly. In each Gibbs sampling iteration we
sequentially draw the topic and author assignment of the dith word from the joint
conditional distribution in Equation 3 above. After a predefined number of itera-
tions (the so-called burn-in time of the Gibbs sampler) we begin recording samples
xs, zs. The burn-in is intended to allow the sampler to approach its stationary

distribution—the posterior distribution P (z,x|Dtrain, α, β). In the results in this
paper, for the purpose of displaying particular author-topic and topic-word distri-
butions we use the last sample in the chain. When we make predictions we average
over the last sample from each of S = 10 independent chains. We found that using
multiple samples from different chains provided better predictive performance than
using multiple samples from the same chain. In Section 4.1 we discuss these issues
in more detail.

The worst case time complexity of each iteration of the Gibbs sampler is O(NAmaxT )
where N is the total number of word tokens in the corpus and Amax is the max-
imum number of authors that can be associated with a single document. As the
complexity is linear in N , Gibbs sampling can be efficiently carried out on large
data sets.

3.2 The posterior on Θ and Φ

Given z, x, Dtrain, α, and β, computing posterior distributions on Θ and Φ is
straightforward. Using the fact that the Dirichlet is conjugate to the multinomial,
we have

φt|z,D
train, β ∼ Dirichlet(CWT

·t + β) (4)

θa|x, z,Dtrain, α ∼ Dirichlet(CTA
·a + α) (5)

where CWT
·t is the vector of counts of the number of times each word has been

assigned to topic t. Evaluating the posterior mean of Φ and Θ given x, z, Dtrain,
α, and β is straightforward. From Equations 4 and 5, it follows that

E[φwt|z
s,Dtrain, β] =

(CWT
wt )s + β

∑

w′(CWT
w′t )s + Wβ

(6)

E[θta|x
s, zs,Dtrain, α] =

(CTA
ta )s + α

∑

t′(C
TA
t′a )s + Tα

. (7)

where (CWT )s is the matrix of topic-word counts exhibited in zs, and s refers
to sample s from the Gibbs sampler. These posterior means also provide point
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estimates for Φ and Θ, and correspond to the posterior predictive distribution for
the next word from a topic and the next topic in a document respectively.

In many applications, we wish to evaluate the expectation of some function of

Φ and Θ, such as the likelihood of a document, P (wd|Θ, Φ, ad), given Dtrain, α,
and β. Denoting such a function f(Φ, Θ), we can use the results above to define a
general strategy for evaluating such expectations. We wish to compute

E[f(Φ, Θ)|Dtrain, α, β] = Ex,z

[

E[f(Φ, Θ)|x, z,Dtrain, α, β]
]

(8)

≈
1

S

S
∑

s=1

E[f(Φ, Θ)|xs, zs,Dtrain, α, β] (9)

where S is the number of samples obtained from the Gibbs sampler. In practice,

computing E[f(Φ, Θ)|xs, zs,Dtrain, α, β] may be difficult, as it requires integrating
the function over the posterior Dirichlet distributions. When this is the case, we
use the approximation E[f(Φ, Θ)] ≈ f(E[Φ], E[Θ]), where E[Φ] and E[Θ] refer to
the posterior means given in Equations 6 and 7. This is exact when f is linear, and
provides a lower bound when f is convex.

Finally, we note that this strategy will only be effective if f(Φ, Θ) is invariant
under permutations of the columns of Φ and Θ. Like any mixture model, the
author-topic model suffers from a lack of identifiability: the posterior probability of
Φ and Θ is unaffected by permuting their columns. Consequently, there need be no
correspondence between the values in a particular column across multiple samples
produced by the Gibbs sampler.

4. EXPERIMENTAL RESULTS

We trained the author-topic model on three large document data sets. The first
is a set of papers from 13 years (1987 to 1999) of the Neural Information Process-
ing (NIPS) Conference1. This data set contains D = 1, 740 papers, A = 2, 037
different authors, a total of N = 2, 301, 375 word tokens, and a vocabulary size
of W = 13, 649 unique words. The second corpus consists of a large collection of
extracted abstracts from the CiteSeer digital library [Lawrence et al. 1999], with
D = 150, 045 abstracts with A = 85, 465 authors and N = 10, 810, 003 word tokens
and a vocabulary of W = 30, 799 unique words. The third corpus is the Enron email
data set2, where we used a set of D = 121, 298 emails, with A = 11, 195 unique
authors, and N = 4, 699, 573 word tokens. We preprocessed each set of documents
by removing stop words from a standard list.

For each data set we ran 10 different Markov chains, where each was started
from a different set of random assignments of authors and topics. Each of the 10
Markov chains was run for a fixed number of 2000 iterations. For the NIPS data
set and a 100-topic solution, 2000 iterations of the Gibbs sampler took 12 hours of
wall-clock time on a standard 2.5 GHz PC workstation (22 seconds per iteration).
For a 300-topic solution, CiteSeer took on the order of 200 hours for 2000 iterations
(6 minutes per iteration), and for a 200-topic solution Enron took 23 hours for 2000

1Available on-line at http://www.cs.toronto.edu/˜roweis/data.html
2Available on-line at http://www-2.cs.cmu.edu/˜enron/
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iterations (42 seconds per iteration).
As mentioned earlier, in the experiments described in this paper we do not es-

timate the hyperparameters α and β—instead they are fixed at 50/T and 0.01
respectively in each of the experiments described below.

4.1 Analyzing the Gibbs Sampler using Perplexity

Assessing the convergence of the Markov chain used to sample a set of variables is a
common issue that arises in applying MCMC techniques. This issue can be divided
into two questions: the practical question of when the performance of a model
trained by sampling begins to level out, and the theoretical question of when the
Markov chain actually reaches the posterior distribution. In general, for real data
sets, there is no foolproof method for answering the latter question. In this paper
we will focus on the former, using the perplexity of the model on test documents
to evaluate when the performance of the model begins to stabilize.

The perplexity score of a new unobserved document d that contains words wd,
and is conditioned on the known authors of the document ad, is defined as

Perplexity(wd|ad,D
train) = exp

(

−
log p(wd|ad,D

train)

Nd

)

(10)

where p(wd|ad,D
train) is the probability assigned by the author-topic model (trained

on Dtrain) to the words wd in the test document, conditioned on the known au-
thors ad of the test document, and where Nd is the number of words in the test
document. To simplify notation here we dropped the explicit dependency on the
hyperparameters α, β. For multiple test documents, we report the average perplex-

ity over documents, i.e., 〈Perplexity〉 =
∑Dtest

d=1 Perplexity(wd|ad,Dtrain)/Dtest.

Here Dtest stands for the set of documents that were held out for testing and Dtest

is the number of the documents in this testing set. The lower the perplexity the
better the performance of the model.

We can obtain an approximate estimate of perplexity by averaging over multiple
samples, as in Equation 9:

p(wd|ad,D
train) ≈

1

S

S
∑

s=1

Nd
∏

i=1

[

1

Ad

∑

a∈ad,t

E[θtaφwdit|x
s, zs,Dtrain, α, β]

]

.

In order to ensure that the sampler output covers the entire space we run multiple
replications of the MCMC, i.e., the samples are generated from multiple chains,
each starting at a different state (e.g., [Brooks 1998]). Empirical results with both
the CiteSeer and NIPS data sets, using different values for S, indicated that S = 10
samples is a reasonable choice to get a good approximation of the perplexity.

Figure 4 shows perplexity as a function of the number of iterations of the Gibbs
sampler, for a model with 300 topics fit to the CiteSeer data. Samples xs, zs

obtained from the Gibbs sampler after s iterations (where s is the x-axis in the
graph) are used to produce a perplexity score on test documents. Each point

represents the averaged perplexity over Dtest = 7502 CiteSeer test documents.
The inset in Figure 4 shows the perplexity for two different cases. The upper
curves show the perplexity derived from a single sample S = 1 (upper curves), for
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Fig. 4. Perplexity as a function of iterations of the Gibbs sampler for a T = 300 model fit to
the CiteSeer dataset. The inset shows the perplexity values (upper curves) from 10 individual
chains during early iterations of the sampler, while the lower curve shows the perplexity obtained
by averaging these 10 chains. The full graph shows the perplexity from averaging again, but now
over a larger range of sampling iterations.

10 different such samples (10 different Gibbs sampler runs). The lower curve in the
inset shows the perplexity obtained from averaging over S = 10 samples. It is clear
from the figure that averaging helps, i.e., significantly better predictions (lower
perplexity) are obtained when using multiple samples from the Gibbs sampler than
just a single sample.

It also appears from Figure 4 that performance of models trained using the Gibbs
sampler appears to stabilize rather quickly (after about 100 iterations), at least in
terms of perplexity on test documents. While this is far from a formal diagnostic test
of convergence, it is nonetheless reassuring, and when combined with the results on
topic stability and topic interpretation in the next sections, lends some confidence
that the model finds a relatively stable topic-based representation of the corpus.
Qualitatively similar results were obtained for the NIPS corpus, i.e., averaging
provides a significant reduction in perplexity and the perplexity values “flatten
out” after a 100 or so iterations of the Gibbs sampler.

4.2 Topic Stability

While perplexity computations can and should be averaged over different Gibbs
sampler runs, other applications of the model rely on the interpretations of in-
dividual topics and are based on the analysis of individual samples. Because of
exchangeability of the topics, it is possible that quite different topic solutions are
found across samples. In practice, however, we have found that the topic solutions
are relatively stable across samples, with only a small subset of unique topics ap-
pearing in any sample. We assessed topic stability by a greedy alignment algorithm
that tries to find the best one-to-one topic correspondences across samples. The
algorithm calculates all pairwise symmetrized KL distances between the T topic dis-
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WORD PROB. WORD PROB. WORD PROB. WORD PROB.

MOTOR .0415 MOTOR .0405 ORDER .1748 FUNCTION .0913

TRAJECTORY .0311 ARM .0297 SCALE .0527 ORDER .0637

ARM .0267 TRAJECTORY .0296 HIGHER .0353 EQUATION .0482

HAND .0224 HAND .0244 MULTI .0281 TERMS .0273

MOVEMENT .0217 MOVEMENT .0227 NOTE .0276 TERM .0269

INVERSE .0190 INVERSE .0209 VOLUME .0188 THEORY .0138

DYNAMICS .0188 JOINT .0208 TERMS .0185 APPROXIMATION .0137

CONTROL .0181 DYNAMICS .0179 STRUCTURE .0170 FUNCTIONS .0137

JOINT .0176 CONTROL .0152 SCALES .0169 FORM .0136

POSITION .0166 POSITION .0152 INVARIANT .0117 OBTAINED .0126

BEST KL = 1.03 WORST KL = 9.49

sample 1 sample 2 sample 1 sample 2

topic 81 topic 41 topic 64 topic 22 
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Fig. 5. Topic stability across two different runs on the NIPS corpus: best and worst aligned topics
(top), and KL distance matrix between topics (bottom).

tributions over words from two different samples (in this analysis, we ignored the
accompanying distributions over authors). It starts by finding the topic pair with
lowest (symmetrized) KL distance and places those in correspondence, followed in
a greedy fashion with the next best topic pair.

Figure 5 illustrates the alignment results for two 100 topic samples for the NIPS
data set taken at 2000 iterations from different Gibbs sampler runs. The bottom
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panel shows the rearranged distance matrix that shows a strong diagonal structure.
Darker colors indicate lower KL distances. The top panel shows the best and worst
aligned pair of topics across two samples (corresponding to the top-left and bottom-
right pair of topics on the diagonal of the distance matrix). The best aligned topic
pair has an almost identical probability distribution over words whereas the worst
aligned topic pair shows no correspondence at all. Roughly 80 of 100 topics have
a reasonable degree of correspondence that would be associated with the same
subjective interpretation. We obtained similar results for the CiteSeer data set.

4.3 Interpreting Author-Topic Model Results

We can use point estimates of the author-topic parameters to look at specific author-
topic and topic-word distributions and related quantities that can be derived from
these parameters (such as the probability of an author given a randomly selected
word from a topic). In the results described below we take a specific sample xs, zs

after 2000 iterations from a single (arbitrarily selected) Gibbs run, and then gen-
erate point estimates of Φ and Θ using Equation 7. Equations for computing the
conditional probabilities in the different tables are provided in Appendix B.

Complete lists of tables for the 100-topic NIPS model and the 300-topic CiteSeer
model are available at http://www.datalab.uci.edu/author-topic.

4.3.1 Examples from a NIPS Author-Topic Model. The NIPS conference is char-
acterized by contributions from a number of different research communities within
both machine learning and neuroscience. Figure 1 illustrates examples of 8 topics
(out of 100) as learned by the model for the NIPS corpus. Each topic is illustrated
with (a) the top 10 words most likely to be generated conditioned on the topic,
and (b) the top 10 most likely authors to have generated a word conditioned on the
topic. The first 6 topics we selected for display (left to right across the top and the
first two on the left on the bottom) are quite specific representations of different
topics that have been popular at the NIPS conference over the time-period 1987–
99: visual modeling, handwritten character recognition, SVMs and kernel methods,
source separation methods, Bayesian estimation, and reinforcement learning. For
each topic, the top 10 most likely authors are well-known authors in terms of NIPS
papers written on these topics (e.g., Singh, Barto, and Sutton in reinforcement
learning). While most (order of 80 to 90%) of the 100 topics in the model are
similarly specific in terms of semantic content, the remaining 2 topics we display
illustrate some of the other types of “topics” discovered by the model. Topic 62
is somewhat generic, covering a broad set of terms typical to NIPS papers, with a
somewhat flatter distribution over authors compared to other topics. These types
of topics tend to be broadly spread over many documents in the corpus, and can be
viewed as syntactic in the context of NIPS papers. In contrast, the “semantic con-
tent topics” (such as the first 6 topics in Figure 1) are more narrowly concentrated
within a smaller set of documents. Topic 16 is somewhat oriented towards Geoff
Hinton’s group at the University of Toronto, containing the words that commonly
appeared in NIPS papers authored by members of that research group, with an
author list consisting largely of Hinton and his students and collaborators.

4.3.2 Examples from a CiteSeer Author-Topic Model. Results from a 300 topic
model for a set of 150,000 CiteSeer abstracts are shown in Figure 6, again in terms
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WORD PROB. WORD PROB. WORD PROB. WORD PROB. WORD PROB.
BAYESIAN .0743 DATA .1577 RETRIEVAL .1209 QUERY .1798 STARS .0165

MODEL .0505 MINING .0671 INFORMATION .0623 QUERIES .1262 OBSERVATIONS .0160
MODELS .0401 DISCOVERY .0425 TEXT .0539 DATABASE .0432 SOLAR .0153
PRIOR .0277 ASSOCIATION .0326 DOCUMENTS .0422 RELATIONAL .0396 RAY .0134
DATA .0271 ATTRIBUTES .0325 DOCUMENT .0329 DATABASES .0298 MAGNETIC .0130

MIXTURE .0254 LARGE .0288 QUERY .0243 DATA .0159 GALAXIES .0129
INFERENCE .0222 DATABASES .0234 CONTENT .0241 OPTIMIZATION .0147 MASS .0126

EM .0211 PATTERNS .0212 INDEXING .0238 RELATIONS .0127 EMISSION .0115
POSTERIOR .0200 KNOWLEDGE .0172 BASED .0195 ANSWER .0118 SUBJECT .0112
STATISTICAL .0197 ITEMS .0171 USER .0175 RESULT .0115 DENSITY .0111

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Ghahramani_Z .0098 Han_J .0165 Oard_D .0094 Suciu_D .0120 Falcke_H .0167

Koller_D .0083 Zaki_M .0088 Jones_K .0064 Libkin_L .0098 Linsky_J .0152
Friedman_N .0078 Cheung_D .0076 Croft_W .0060 Wong_L .0093 Butler_R .0090

Heckerman_D .0075 Liu_B .0067 Hawking_D .0058 Naughton_J .0076 Bjorkman_K .0068
Jordan_M .0066 Mannila_H .0053 Callan_J .0052 Levy_A .0066 Christen.-D_J .0067

Williams_C .0058 Rastogi_R .0050 Smeaton_A .0052 Abiteboul_S .0065 Mursula_K .0067
Jaakkola_T .0053 Hamilton_H .0050 Voorhees_E .0052 Lenzerini_M .0058 Knapp_G .0065
Hinton_G .0052 Shim_K .0047 Schauble_P .0047 Raschid_L .0055 Nagar_N .0059
Raftery_A .0050 Toivonen_H .0047 Singhal_A .0042 DeWitt_D .0055 Cranmer_S .0055
Tresp_V .0049 Ng_R .0047 Fuhr_N .0042 Ross_K .0051 Gregg_M .0055

TOPIC 82TOPIC 54 TOPIC 136 TOPIC 23 TOPIC 49

Fig. 6. Examples of topics and authors learned from the CiteSeer corpus.

WORD PROB. WORD PROB. WORD PROB. WORD PROB. WORD PROB.

TEXANS .0145 GOD .0357 ENVIRONMENTAL .0291 FERC .0554 POWER .0915

WIN .0143 LIFE .0272 AIR .0232 MARKET .0328 CALIFORNIA .0756

FOOTBALL .0137 MAN .0116 MTBE .0190 ISO .0226 ELECTRICITY .0331

FANTASY .0129 PEOPLE .0103 EMISSIONS .0170 COMMISSION .0215 UTILITIES .0253

SPORTSLINE .0129 CHRIST .0092 CLEAN .0143 ORDER .0212 PRICES .0249

PLAY .0123 FAITH .0083 EPA .0133 FILING .0149 MARKET .0244

TEAM .0114 LORD .0079 PENDING .0129 COMMENTS .0116 PRICE .0207

GAME .0112 JESUS .0075 SAFETY .0104 PRICE .0116 UTILITY .0140

SPORTS .0110 SPIRITUAL .0066 WATER .0092 CALIFORNIA .0110 CUSTOMERS .0134

GAMES .0109 VISIT .0065 GASOLINE .0086 FILED .0110 ELECTRIC .0120

topic 18topic 182 topic 113 topic 23 topic 54

Fig. 7. Examples of topics learned from the Enron email corpus.

of top 10 most likely words and top 10 most likely authors per topic. The first four
topics describe specific areas within computer science, covering Bayesian learning,
data mining, information retrieval, and database querying. The authors associated
with each topic are quite specific to the words in that topic. For example, the most
likely authors for the Bayesian learning topic are well-known authors who frequently
write on this topic at conferences such as UAI and NIPS. Similarly, for the data
mining topic, all of the 10 most likely authors are frequent contributors of papers
at the annual ACM SIGKDD conference on data mining. The full set of 300 topics
discovered by the model for CiteSeer provide a broad coverage of modern computer
science and can be explored online using the aforementioned browser tool.

Not all documents in CiteSeer relate to computer science. Topic 82, on the right
side of Figure 6, is associated with astronomy. This is due to the fact that CiteSeer
does not crawl the Web looking for computer science papers per se, but instead
searches for documents that are similar in some sense to a general template format
for research papers.
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PROB. TOPIC WORDS

.9420 39 ENRON, EMPLOYEES, DAY, CARD, BUILDING, CALL, PLANTS, MEMBERSHIP, TRANSFER, CENTER

.0314 200 DECEMBER, JANUARY, MARCH, NOVEMBER, FEBRUARY, WEEK, FRIDAY, SEPTEMBER, WEDNESDAY, TUESDAY

.0028 147 MAIL, CUSTOMER, SERVICE, LIST, SEND, ADDRESS, CONTACT, RECEIVE, BUSINESS, REPLY

.0026 125 MEETING, CALL, MONDAY, CONFERENCE, FRIDAY, TIME, THURSDAY, OFFICE, MORNING, TUESDAY

PROB. TOPIC WORDS

.9910 82 OUTLOOK, MIGRATION, NOTES, OWA, INFORMATION, EMAIL, BUTTON, SEND, MAILBOX, ACCESS

.0016 91 ENRON, CORP, SERVICES, BROADBAND, EBS, ADDITION, BUILDING, INCLUDES, ATTACHMENT, COMPETITION

.0005 77 EMAIL, ADDRESS, INTERNET, SEND, ECT, MESSAGING, BUSINESS, ADMINISTRATION, QUESTIONS, SUPPORT

.0004 83 ISSUE, GENERAL, ISSUES, CASE, DUE, INVOLVED, DISCUSSION, MENTIONED, PLACE, POINT

PROB. TOPIC WORDS

.3593 17 ANALYST, SERVICES, INDUSTRY, TELECOM, ENERGY, MARKETS, FOOL, BANDWIDTH, ESOURCE, TRAINING

.0773 177 ACCOUNT, ONLINE, OFFER, TRADE, TIME, INVESTMENT, ACCOUNTS, FREE, INFORMATION, ACCESS

.0713 169 HTTP, WWW, GIF, IMAGES, ASP, SPACER, EMAIL, CGI, HTML, CLICK

.0660 200 DECEMBER, JANUARY, MARCH, NOVEMBER, FEBRUARY, WEEK, FRIDAY, SEPTEMBER, WEDNESDAY, TUESDAY

PROB. TOPIC WORDS

.1855 105 CUSTOMERS, RATE, PG, CPUC, SCE, UTILITY, ACCESS, CUSTOMER, DECISION, DIRECT

.1289 54 FERC, MARKET, ISO, COMMISSION, ORDER, FILING, COMMENTS, PRICE, CALIFORNIA, FILED

.0920 44 MILLION, BILLION, YEAR, NEWS, CORP, CONTRACTS, GAS, COMPANY, COMPANIES, WATER

.0719 124 STATE, PUBLIC, DAVIS, SAN, GOVERNOR, COMMISSION, GOV, SUMMER, COSTS, HOUR

PROB. TOPIC WORDS

.2590 178 CAPACITY, GAS, EL, PASO, PIPELINE, MMBTU, CALIFORNIA, SHIPPERS, MMCF, RATE

.0902 74 GAS, CONTRACT, DAY, VOLUMES, CHANGE, DAILY, DAN, MONTH, KIM, CONTRACTS

.0645 70 GOOD, TIME, WORK, TALK, DON, BACK, WEEK, DIDN, THOUGHT, SEND

.0599 116 SYSTEM, FACILITIES, TIME, EXISTING, SERVICES, BASED, ADDITIONAL, CURRENT, END, AREA

PROB. TOPIC WORDS

.1268 42 MEXICO, ARGENTINA, ANDREA, BRAZIL, TAX, OFFICE, LOCAL, RICHARD, COPY, STAFF

.1045 189 AGREEMENT, ENA, LANGUAGE, CONTRACT, TRANSACTION, DEAL, FORWARD, REVIEW, TERMS, QUESTIONS

.0815 176 MARK, TRADING, LEGAL, LONDON, DERIVATIVES, ENRONONLINE, TRADE, ENTITY, COUNTERPARTY, HOUSTON

.0784 135 SUBJECT, REQUIRED, INCLUDING, BASIS, POLICY, BASED, APPROVAL, APPROVED, RIGHTS, DAYS

AUTHOR = Individual C  (159 emails)

AUTHOR = Individual B  (193 emails)

AUTHOR = Enron General Announcements (509 emails)

AUTHOR = Outlook Migration Team (132 emails)

AUTHOR = The Motley Fool (145 emails)

AUTHOR = Individual A (411 emails)

Fig. 8. Selected “authors” from the Enron data set, and the four highest probability topics for
each author from the author-topic model.

4.4 Examples from an Enron Author-Topic Model

Figure 7 shows a set of topics from a model trained on a set of 120,000 publicly
available Enron emails. We automatically removed all text from the emails that
was not necessarily written by the sender, such as attachments or text that could be
clearly identified as being from an earlier email (e.g., in reply quotes). The topics
learned by the model span both topics that one might expect to see discussed
in emails within a company that deals with energy (topics 23 and 54) as well as
“topical” topics such as topic 18 that directly relate to the California energy crisis
in 2001–2002. Two of the topics are not directly related to official Enron business,
but instead describe employees’ personal interests such as Texas sports (182) and
Christianity (113).

Figure 8 shows a table with the most likely topics for 6 of the 11,195 possi-
ble authors (email accounts). The first three are institutional accounts: Enron
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General Announcements, Outlook Migration Team (presumably an internal email
account at Enron for announcements related to the Outlook email program), and
The Motley Fool (a company that provides financial education and advice). The
topics associated with these authors are quite intuitive. The most likely topic
(p = 0.942) for Enron General Announcements is a topic with words that might
typically be associated with general corporate information for Enron employees.
The topic distribution for the Outlook Migration Team is skewed towards a single
topic (p = 0.991) containing words that are quite specific to the Outlook email pro-
gram. Likely topics for the Motley Fool include both finance and investing topics, as
well as topics with HTML-related words and a topic for dates. The other 3 authors
shown in Figure 8 correspond to email accounts for specific individuals in Enron—
although the original data identifies individual names for these accounts we do not
show them here to respect the privacy of these individuals. Author A’s topics are
typical of what we might expect of a senior employee in Enron, with topics related
to rates and customers, to the FERC (Federal Energy Regulatory Commission),
and to the California energy crisis (including mention of the California governor at
the time, Gray Davis). Author B’s topics are focused more on day-to-day Enron
operations (pipelines, contracts, and facilities) with an additional topic for more
personal matters (“good, time”, etc). Finally, Author C appears to be involved in
legal aspects of Enron’s international activities, particularly in Central and South
America. The diversity of the topic distributions for different authors in this ex-
ample demonstrates clearly how the author-topic model can learn about the roles
and interests of different individuals from text that they have written.

5. ILLUSTRATIVE APPLICATIONS OF THE AUTHOR-TOPIC MODEL

In this section we provide some illustrative examples of how the author-topic model
can be used to answer different types of questions and prediction problems concern-
ing authors and documents.

5.1 Automated Detection of Unusual Papers by Authors

We illustrate in this section how our model could be useful for detecting papers
that were written by different people with the same name. In digital libraries such
as CiteSeer and Google Scholar, this type of name disambiguation is an important
and difficult problem. Our goal in this section is not to propose a solution to the
author disambiguation problem, but instead to illustrate that author-topic models
lead to useful predictions in this context.

Perplexity can be used to estimate the likelihood of a particular document con-

ditioned on a particular author. We first train a model on Dtrain. For a specific
author name a∗ of interest, we then score each document by that author as follows.

We calculate a perplexity score for each document in Dtrain as if a∗ was the only
author, i.e., even for a document with other authors, we condition on only a∗.

We use the same equation for perplexity as defined in Section 4.2 except that

now wd is a document that is in the training data Dtrain. Thus, the words in a
document are not conditionally independent, given the distribution over the model
parameters Θ and Φ, as inferred from the training documents. We use as a tractable

approximation P (wd|a
∗,Dtrain) ≈ 1

S

∑

s

∏

i

∑

t E[θ̂a∗tφ̂twdi
|xs, zs,Dtrain, α, β].
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For our CiteSeer corpus, author names are provided with a first initial and second
name, e.g., A Einstein. This means of course that for some very common names
(e.g., J Wang or J Smith) there will be multiple actual individuals represented by
a single name in the model. This “noise” in the data provides an opportunity to
investigate whether perplexity scores are able to help in separating documents from
different authors who have the same first initial and last name.

We focused on names of four well-known researchers in the area of artificial
intelligence, Michael Jordan (M Jordan), Daphne Koller (D Koller), Tom Mitchell
(T Mitchell) and Stuart Russell (S Russell), and derived perplexity scores in the
manner described above using S = 10 samples. In Table II, for each author, we
list the two CiteSeer abstracts with the highest perplexity scores (most surprising
relative to this author’s model), the median perplexity, and the two abstracts with
the lowest perplexity scores (least surprising).

In these examples, the most perplexing papers (from the model’s viewpoint) for
each author are papers that were written by a different person than the person
we are primarily interested in. In each case (for example for M Jordan) most of
the papers in the data set for this author were written by the machine learning
researcher of interest (in this case, Michael Jordan of UC Berkeley). Thus, the
model is primarily “tuned” to the interests of that author and assigns relatively
high perplexity scores to the small number of papers in the set that were written
by a different author with the same name. For M Jordan, the most perplexing
paper is on programming languages and was in fact written by Mick Jordan of Sun
Microsystems. In fact, of the 6 most perplexing papers for M Jordan, 4 are on
software management and the JAVA programming language, all written by Mick
Jordan. The other two papers were in fact co-authored by Michael Jordan of UC
Berkeley, but in the area of link analysis, which is an unusual topic relative to the
many of machine learning-oriented topics that he has typically written about in the
past.

The highest perplexity paper for T Mitchell is in fact authored by Toby Mitchell
and is on the topic of estimating radiation doses (quite different from the machine
learning work of Tom Mitchell). The paper with the second highest perplexity for
Tom Mitchell is about an application of the EM algorithm. This EM paper is not
nearly so much of an outlier as the compared to the paper on estimating radiation
doses since it is relatively close to the median perplexity. It is reasonable that
it has the highest perplexity of any papers that Tom Mitchell actually authored,
given that most of his other work (prior to 2000 in particular, which is the period
for which most of our CiteSeer papers are from) was focused on knowledge-based
learning (such as the the two papers in the set with the lowest perplexity).

The two most perplexing papers for D Koller are also not authored by Daphne
Koller of Stanford, but by two different researchers, Daniel Koller and David Koller.
Moreover, the two most typical (lowest perplexity) papers of D Koller are prototyp-
ical representatives of the research of Daphne Koller, with words such as learning,
Bayesian and probabilistic network appearing in the titles of these two papers. For
S Russell the two most unlikely papers are about the Mungi operating system and
have Stephen Russell as an author. These papers are relative outliers in terms of
their perplexity scores since most of the papers for S Russell are about reasoning
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Table II. Papers ranked by perplexity for different authors

Paper Titles for M Jordan, from 57 documents Perplexity

An Orthogonally Persistent Java 16021

Defining and Handling Transient Fields in PJama 14555

MEDIAN SCORE 2567

Learning From Incomplete Data 702

Factorial Hidden Markov Models 687

Paper Titles for D Koller, from 74 documents Perplexity

A Group and Session Management System for Distributed

Multimedia Applications 9057

An Integrated Global GIS and Visual Simulation System 7879

MEDIAN SCORE 1854

Active Learning for Parameter Estimation in Bayesian Networks 756

Adaptive Probabilistic Networks with Hidden Variables 755

Paper Titles for T Mitchell, from 13 documents Perplexity

A method for estimating occupational radiation dose 8814

to individuals, using weekly dosimetry data

Text classification from labeled and unlabeled documents using EM 3802

MEDIAN SCORE 2837

Learning to Extract Symbolic Knowledge from the World Wide Web 1196

Explanation based learning for mobile robot perception 1093

Paper Titles for S Russell, from 36 documents Perplexity

Protection Domain Extensions in Mungi 10483

The Mungi Single-Address-Space Operating System 5203

MEDIAN SCORE 2837

Approximating Optimal Policies for Partially 981

Observable Stochastic Domains

Adaptive Probabilistic Networks with Hidden Variables 799

and learning and were written by Stuart Russell from UC Berkeley.

5.2 Topics and Authors for New Documents

In many applications, we would like to quickly assess the topic and author as-
signments for new documents not contained in a text collection. Figure 9 shows an
example of this type of inference. CiteSeer abstracts from two authors, B Scholkopf
and A Darwiche were combined together into a single “pseudo-abstract” and the
document was treated as if they had both written it. These two authors work in rel-
atively different but not entirely unrelated sub-areas of computer science: Scholkopf
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[AUTH1=Scholkopf_B ( 69%, 31%)] 
[AUTH2=Darwiche_A ( 72%, 28%)] 

A method1 is described which like the kernel1 trick1 in support1 vector1 machines1 SVMs1 lets us generalize distance1 
based2 algorithms to operate in feature1 spaces usually nonlinearly related to the input1 space This is done by 
identifying a class of kernels1 which can be represented as norm1 based2 distances1 in Hilbert spaces It turns1 out that 
common kernel1 algorithms such as SVMs1 and kernel1 PCA1 are actually really distance1 based2 algorithms and can be 
run2 with that class of kernels1 too As well as providing1 a useful new insight1 into how these algorithms work the 
present2 work can form the basis1 for conceiving new algorithms  

This paper presents2 a comprehensive approach for model2 based2 diagnosis2 which includes proposals for 
characterizing and computing2 preferred2 diagnoses2 assuming that the system2 description2 is augmented with a 
system2 structure2 a directed2 graph2 explicating the interconnections between system2 components2 Specifically we 
first introduce the notion of a consequence2 which is a syntactically2 unconstrained propositional2 sentence2 that 
characterizes all consistency2 based2 diagnoses2 and show2 that standard2 characterizations of diagnoses2 such as 
minimal conflicts1 correspond to syntactic2 variations1 on a consequence2 Second we propose a new syntactic2 variation 
on the consequence2 known as negation2 normal form NNF and discuss its merits compared to standard variations 
Third we introduce a basic algorithm2 for computing consequences in NNF given a structured system2 description We 
show that if the system2 structure2 does not contain cycles2 then there is always a linear size2 consequence2 in NNF 
which can be computed in linear time2 For arbitrary1 system2 structures2 we show a precise connection between the 
complexity2 of computing2 consequences and the topology of the underlying system2 structure2 Finally we present2 an 
algorithm2 that enumerates2 the preferred2 diagnoses2 characterized by a consequence2 The algorithm2 is shown1 to take 
linear time2 in the size2 of the consequence2 if the preference criterion1 satisfies some general conditions  

 Fig. 9. Automated labeling of a pseudo-abstract from two authors by the model.

in machine learning and Darwiche in probabilistic reasoning. The document is then
parsed by the model. i.e., words are assigned to these authors. We would hope that
the author-topic model, conditioned now on these two authors, can separate the
combined abstract into its component parts.

Instead of rerunning the algorithm for every new document added to a text col-
lection, our strategy instead is to apply an efficient Monte Carlo algorithm that
runs only on the word tokens in the new document, leading quickly to likely assign-
ments of words to authors and topics. We start by assigning words randomly to
co-authors and topics. We then sample new assignments of words to topics and au-
thors by applying the Gibbs sampler only to the word tokens in the new document
each time temporarily updating the count matrices CWT and CAT . The resulting
assignments of words to authors and topics can be saved after a few iterations (10
iterations in our simulations).

Figure 9 shows the results after the model has classified each word according to
the most likely author. Note that the model only sees a bag of words and is not
aware of the word order that we see in the figure. For readers viewing this in color,
the more red a word is then the more likely it is to have been generated (according
to the model) by Scholkopf (and blue for Darwiche). Non-colored words are words
that are not in the vocabulary of the model. For readers viewing the figure in black
and white, the superscript 1 indicates words classified by the model for Scholkopf,
and superscript 2 for Darwiche (a superscript was added whenever the probability
of one author or the other was above 0.75).

The results show that all of the significant content words (such as kernel, support,
vector, diagnoses, directed, graph) are classified correctly. As we might expect most
of the “errors” are words (such as “based” or “criterion”) that are not specific to
either authors’ area of research. Were we to use word order in the classification,
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and classify (for example) whole sentences, the accuracy would increase further. As
it is, the model correctly classifies 69% of Scholkopf’s words and 72% of Darwiche’s.

6. COMPARING DIFFERENT GENERATIVE MODELS

In this section we describe several alternative generative models that model authors
and words and discuss similarities and differences between these models with our
proposed author-topic model. Many of these models are special cases of the author-
topic model. Appendix C presents a characterization of several of these models in
terms of methods of matrix factorization, which reveals some of these relationships.
In this section, we also compare the predictive power of the author-topic model (in
terms of perplexity on out-of-sample documents) with a number of these alternative
models.

6.1 A Standard Topic (LDA) Model

As mentioned earlier in the paper, there have been a number of other earlier ap-
proaches to modeling document content are based on the idea that the probability
distribution over words in a document can be expressed as a mixture of topics,
where each topic is a probability distribution over words [Blei et al. 2003; Hofmann
1999; Ueda and Saito 2003; Iyer and Ostendorf 1999]. Here we will focus on one
such model—Latent Dirichlet Allocation (LDA; Blei et al. [2003]).3 In LDA, the
generation of a corpus is a three step process. First, for each document, a distribu-
tion over topics is sampled from a Dirichlet distribution. Second, for each word in
the document, a single topic is chosen according to this distribution. Finally, each
word is sampled from a multinomial distribution over words specific to the sampled
topic.

The parameters of this model are similar to those of the author topic model: Φ
represents a distribution over words for each topic, and Θ represents a distribution
over topics for each document. Using this notation, the generative process can be
written as:

1. For each document d = 1, ..., D choose θd ∼ Dirichlet(α)
For each topic t = 1, ..., T choose φt ∼ Dirichlet(β)

2. For each document d = 1, ..., D
For each word wdi, indexed by i = 1, ..Nd

Conditioned on d choose a topic zdi ∼ Discrete(θd)
Conditioned on zdi choose a word wdi ∼ Discrete(φzdi

)

A graphical model corresponding to this process is shown in Figure 10(a).
Latent Dirichlet Allocation is a special case of the author-topic model, corre-

sponding to the situation in which each document has a unique author. Estimating
Φ and Θ provides information about the topics that participate in a corpus and the
weights of those topics in each document respectively. However, this topic model

3The model we describe is actually the smoothed LDA model with symmetric Dirichlet priors [Blei
et al. 2003] as this is closest to the author-topic model.
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Fig. 10. Different generative models for documents.

provides no explicit information about the interests of authors: while it is infor-
mative about the content of documents, authors may produce several documents—
often with co-authors—and it is consequently unclear how the topics used in these
documents might be used to describe the interests of the authors.

6.2 A Simple Author Model

Topic models illustrate how documents can be modeled as mixtures of probability
distributions. This suggests a simple method for modeling the interests of authors,
namely where words in documents are modeled directly by author-word distribu-
tions without any hidden latent topic variable, as originally proposed by McCallum
[1999]. Assume that a group of authors, ad, decide to write the document d. For
each word in the document an author is chosen uniformly at random, and a word
is chosen from a probability distribution over words that is specific to that author.

In this model, Φ denotes the probability distribution over words associated with
each author. The generative process is as follows:

1. For each author a = 1, ..., A choose φa ∼ Dirichlet(α)
2. For each document d = 1, ..., D

Given the set of authors ad

For each word wdi, indexed by i = 1, ..Nd

Conditioned on ad choose an author xdi ∼ Uniform(ad)
Conditioned on xdi choose a word wdi ∼ Discrete(φxdi

)

A graphical model corresponding to this generative process is shown in Figure 10(b).
This model is also a special case of the author-topic model, corresponding to

a situation in which there is a unique topic for each author. When there is a
single author per document, it is equivalent to a naive Bayes model. Estimating
Φ provides information about the interests of authors, and can be used to answer
queries about author similarity and authors who write on subjects similar to an
observed document. However, this author model does not provide any information
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about document content that goes beyond the words that appear in the document
and the identities of authors of the document.

6.3 An Author-Topic Model with Fictitious Authors

A potential weakness of the author-topic model is that it does not allow for any
idiosyncratic aspects of a document. The document is assumed to be generated by
a mixture of the authors’ topic distributions and nothing else. The LDA model is
in a sense at the other end of this spectrum—it allows each document to have its
own document-specific topic mixture. In this context it is natural to explore models
that lie between these two extremes. One such model can be obtained by adding an
additional unique “fictitious” author to each document. This fictitious author can
account for topics and words that appear to be document-specific and not accounted
for by the authors. The fictitious author mechanism in effect provides the advantage
of an LDA element to the author-topic model. In terms of the algorithm, the only
difference between the standard author-topic algorithm and the one that contains
fictitious authors is that the number of authors is increased from A to A + D, and
the number of authors per document Ad is increased by 1—the time complexity of
the algorithm increases accordingly. One also has the option of putting a uniform
distribution over authors (including the fictitious author) or allowing a non-uniform
distribution over both true authors and the fictitious author.

6.4 Comparing Perplexity for Different Models

We compare the predictive power (using perplexity) of the models discussed in
this section on the NIPS document set. We divided the D = 1, 740 NIPS papers
into a training set of 1,557 papers and a test set of 183 papers of which 102 are
single-authored papers. We chose the test data documents such that each author
of a test set document also appears in the training set as an author. For each
model, we generated S = 10 chains from the Gibbs sampler, each starting from
a different initial conditions. We kept the 2000th sample from each chain and
estimated the average perplexity using Equation 10. For all models we fixed the

number of topics at T = 100 and used the same training set Dtrain and test set.
The hyperparameter values were set in the same manner as in earlier experiments,
i.e, in the LDA model and the author-topic model α = 50/T = 0.5 and β = 0.01.
The single hyperparameter of the author model was set to 0.01.

In Figure 11 we present the average perplexity as a function of the number of
observed words from the test documents. All models were trained on the training
data and then a number of randomly selected words from the test documents (in-
dicated on the x-axis) were used for further training and perplexity calculated on
the remaining words. In order to reduce the time complexity of the algorithm we
approximated the posterior distributions by making use of the same Monte-Carlo
chains for all derivations where for each point in the graph the chain is trained
further only on the observed test words. In the graph we present results for the
author-topic model, the topic (LDA) model, and the author-topic (AT) model with
fictitious authors. The insert shows the author model and the author-topic model.

The author model (insert) has by far the worst performance—including latent
topics significantly improves the predictive log-likelihood of such a model (lower
curve in the insert). In the main plot, for relatively small numbers of observed
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Fig. 11. Averaged perplexity as a function of observed words in the test documents. The main
plot shows results for the topic (LDA) model, the author-topic (AT) model, and the author-topic
model with fictitious authors. The insert shows results for the author model and author-topic
model.

words (up to 16), the author-topic models (with and without fictitious authors)
have lower perplexity than the LDA model. The LDA model learns a topic mixture
for each document in the training data. Thus, on a new document with zero or even
just a few observed words, it is difficult for the LDA model to provide predictions
that are tuned to that document. In contrast, the author-topic model performs
better than LDA with few (or even zero) words observed from a document, by
making use of available the side-information about the authors of the document.

Once enough words from a specific document have been observed the predictive
performance of the LDA model improves since it can learn a more accurate predic-
tive model for that specific document. Above 16 observed words, on average, the
author-topic model is not as accurate as the LDA model since it does not have a
document-specific topic mixture that can be tuned to the specific word distribution
of the test document. Adding one (unique) fictitious author per document results
in a curve that is systematically better than the author topic model (without a
fictitious author). The fictitious author model is not quite as accurate as the LDA
(topic) model after 64 words or so (on average). This is intuitively to be expected:
the presence of a fictitious author gives this model more modeling flexibility com-
pared to the author-topic model, but it is still more constrained than the LDA
model for a specific document.
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6.5 Comparing Information Retrieval Measures of the Author-Topic and Standard
Topic Models

In this section, we describe an illustrative experiment to retrieve full text documents
using document titles and author names. We compare the performance of the
author-topic model with a standard topic (LDA) model (from Section 6.1) and a
state-of-the-art TFIDF approach. Finding documents similar to a query document
is a well-known problem in information retrieval. While there are a variety of
approaches to finding similar documents when the full text of a query document is
available, the problem is more challenging when only partial information about the
query document is available (e.g. the title of the document or the list of authors).
For example, there are many documents listed in the CiteSeer data base for which
only the titles and authors are available. Similarly, many older conferences only
have titles and authors online, not full papers.

On this problem, we use the extended NIPS conference corpus (years 1987-2003)4.
This data set contains D = 2,483 documents, A = 2,865 authors, and W = 16,901
unique words. For each document, we include its set of authors as additional
words so that LDA and TFIDF have the same information as the author-topic
model. Class labels are available for documents from 2001 to 2003 and there are 593
such documents in the corpus. There are 13 classes in this corpus corresponding
to NIPS paper categories such as AA (Algorithms and Architectures) and NS
(Neuroscience). Each labeled document is associated with one of these classes.
We obtained the titles of these documents from the NIPS Conference Proceedings
website5. We divided this data set into query and retrieval sets with 200 and
2,283 documents respectively. The query set was created by randomly selecting
documents from the set of documents with class labels such that for each query
document at least one of its authors is present in the retrieval set. A query consists
of words from the title of a document and its associated authors. Documents from
the retrieval set with the same class label as the query document are judged to
be relevant to the query document. We ran S=10 different Markov chains for the
author-topic model and the LDA model (each with T=100) on the retrieval set,
using the same parameters as described in Section 4.

For TFIDF, we use the Okapi BM25 method [Sparck Jones et al. 2000] where,
given a query q, the score of a document d is given by

BM25-Score(d,q) =
∑

w∈q

IDF (w)
X(w,d)(k1 + 1)

X(w,d) + k1

(

1 − b + b Nd

µN

)

where

IDF (w) = log
D − Dw + 0.5

Dw + 0.5
,

X(w,d) is the frequency of the query-word w in document d, Nd is the number of
words in document d, µN is the mean value of Nd across documents in the corpus,
D is the total number of documents in the corpus, Dw is the number of documents

4Available on-line at http://ai.stanford.edu/˜gal/data.html
5http://books.nips.cc/
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Fig. 12. Precision-recall curves for the NIPS corpus with two different query types: top where
queries are document titles+authors, and bottom where queries are full text of documents+authors
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in the corpus containing the word w, and k1 and b are free parameters. We set k1 =
2 and b = 0.75 which is a popular setting for Okapi BM25 [Robertson et al. 1995].

In the language modeling approach to information retrieval (e.g., Ponte and Croft
[1998]), queries can be matched to documents using the query likelihood model,
where the similarity of a query q to a document d is measured by the probability
of the words in the query q conditioned on the document d, P(q|d). For the
author-topic model, we have

P (q|d) =
∏

w∈q

[

1

Ad

∑

a∈ad

T
∑

t=1

P (w|t) P (t|a)

]

≈
1

S

S
∑

s=1

∏

w∈q

[

1

Ad

∑

a∈ad

T
∑

t=1

E[φwt|z
s,D, β] E[θta|x

s, zs,D, α]

]

(11)

where the expected values of φwt and θta are estimated using Equations 6 and 7
respectively. Similarly, for LDA we have

P (q|d) =
∏

w∈q

[

T
∑

t=1

P (w|t) P (t|d)

]

which can be computed approximately using the LDA model parameters learned
from Gibbs sampling (analogous to the approximation in Equation 11). Note that
the AT model (Equation 11) is conditioning on the set of authors ad of the can-
didate retrieval document d, whereas LDA and TFIDF treat authors as just addi-
tional words. This allows the AT model to have a relatively wider distribution of
probability mass in the topic distribution for a document (as it can borrow topical
information from multiple documents via the authors). In other words, a document
has a more peaked topic distribution in LDA than in the AT model. So, when there
is less information in a query (as in this experiment where a query is restricted to
the words in the title and the set of authors), the AT model should have a better
chance of matching to the query-word topics.

Figure 12 (top) indicates that given just the titles and authors of query docu-
ments, the AT model is more accurate at retrieving documents than both the LDA
model and TFIDF. When the full-text of query documents is available (Figure 12,
bottom) all the approaches improve in their accuracy and the performance of LDA
is now marginally better than that of the AT model and TFIDF. This is consistent
with what we know about the LDA and AT models: the LDA model has more
flexibility in modeling a document once it sees enough words (after the crossover
point of 16 to 32 words in Figure 11). In these experiments TFIDF is used as
a simple baseline. In a practical setting one can likely get better precision-recall
characteristics than any of the approaches shown here by combining a word-level re-
trieval approach (like TFIDF or a multinomial-based document model) with latent
semantic matching approaches (like LSA, LDA, and AT models) [Wei and Croft
2006; Chemudugunta et al. 2007].

7. CONCLUSIONS

The author-topic model proposed in this paper provides a relatively simple proba-
bilistic model for exploring the relationships between authors, documents, topics,
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and words. This model provides significantly improved predictive power in terms
of perplexity compared to a more impoverished author model, where the interests
of authors are directly modeled with probability distributions over words. When
compared to the LDA topic model, the author-topic model was shown to have more
focused priors when relatively little is known about a new document, but the LDA
model can better adapt its distribution over topics to the content of individual
documents as more words are observed. The primary benefit of the author-topic
model is that it allows us to explicitly include authors in document models, provid-
ing a general framework for answering queries and making predictions at the level
of authors as well as the level of documents.

We presented results of applying the author-topic model to large text corpora,
including NIPS proceedings papers, CiteSeer abstracts, and Enron emails. Poten-
tial applications include automatic reviewer recommender systems where potential
reviewers or reviewer panels are matched to papers based on the words expressed
in a paper as well the names of the authors. The author topic model could be
incorporated in author identification systems to infer the identity of an author of
a document not only on the basis of stylistic features, but also using the topics
expressed in a document.

The underlying probabilistic model of the author-topic model is quite simple and
ignores several aspects of real-word document generation that could be explored
with more advanced generative models. For example, as with many statistical
models of language, the generative process does not make any assumption about
the order of words as they appear in documents. Recent work, e.g., Griffiths et al.
[2005] and Gruber et al. [2007] present extensions of the LDA model by relaxing
the bag-of-words assumption and modeling the word sequence by hidden Markov
models. In Griffiths et al. [2005] an extension of the LDA model is presented
in which words are factorized into function words, handled by a hidden Markov
model (HMM) and content words handled by a topic model. Because these models
automatically parse documents into content and non-content words, there is no
need for a preprocessing stage where non-content words are filtered out using a
predefined stop-word list. In Gruber et al. [2007] the natural flow of topics is
learned by modeling Markov dependencies between the hidden topics. These HMM
extensions could also be incorporated into the author-topic model to highlight parts
of documents where content is expressed by particular authors.

Beyond the authors of a document, there are several other sources of informa-
tion that can provide opportunities to learn about the set of topics expressed in
a document. For example, for email documents McCallum et al. [2005] propose
an extension of the author topic model where topics are conditioned on both the
sender as well as the receiver. For scientific documents we have explored simple
extensions within the author-topic modeling framework to generalize the notion of
an author to include any information source that might constrain the set of topics.
For example, one can redefine ad to include not only the set of authors for a docu-
ment but also the set of citations. In this manner, words and topics expressed in a
document can be associated with either an author or a citation. These extensions
are attractive because they do not require changes to the generative model. The
set of topics could also be conditioned on other information about the documents
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(beyond authors and citations), such as the journal source, the publication year,
and the institutional affiliation of the authors. An interesting direction for future
work is to develop efficient generative models where the distribution over topics is
conditioned jointly on all such sources of information.

Appendix A: Deriving the Sampling Equations for the Author-Topic Model

In this section, we describe the derivation of the sampling equation, Equation 3,
used to generate samples for the author-topic model. In the author-topic model,
the joint distribution of the set of word tokens in the corpus w, the set of topic
assignments z, the set of author assignments x, the set of author mixtures Θ, and
the set of topic mixtures Φ, given the Dirichlet hyperparameters α and β, and the
author set A, can be simplified as follows:

P (w, z,x, Φ, Θ|α, β,A) = P (w, z,x|Φ, Θ,A)P (Φ, Θ|β, α)

= P (w|z, Φ)P (z|x, Θ)P (x|A)P (Φ|β)P (Θ|α)

=

[

N
∏

i=1

P (wdi|φzdi
)

] [

N
∏

i=1

P (zdi|θxdi
)

] [

D
∏

d=1

Nd
∏

i=1

P (xdi|ad)

]

P (Φ|β)P (Θ|α)

=

[

N
∏

i=1

φwdizdi

][

N
∏

i=1

θzdixdi

][

D
∏

d=1

Nd
∏

i=1

1

Ad

]

P (Φ|β)P (Θ|α)

=

[

T
∏

t=1

W
∏

w=1

φ
CW T

wt

wt

] [

A
∏

a=1

T
∏

t=1

θ
CT A

ta

ta

][

D
∏

d=1

(

1

Ad

)Nd

]

[

T
∏

t=1

(

Γ(Wβ)

Γ(β)W

W
∏

w=1

φβ−1
wt

)][

A
∏

a=1

(

Γ(Tα)

Γ(α)T

T
∏

t=1

θα−1
ta

)]

=

[

Γ(Wβ)

Γ(β)W

]T [
Γ(Tα)

Γ(α)T

]A
[

D
∏

d=1

1

Ad
Nd

]

[

T
∏

t=1

W
∏

w=1

φ
CW T

wt +β−1
wt

][

A
∏

a=1

T
∏

t=1

θ
CTA

ta +α−1
ta

]

= Const

[

T
∏

t=1

W
∏

w=1

φ
CW T

wt +β−1
wt

] [

A
∏

a=1

T
∏

t=1

θ
CT A

ta +α−1
ta

]

(12)

where Const =
[

Γ(Wβ)
Γ(β)W

]T [
Γ(Tα)
Γ(α)T

]A [
∏D

d=1
1

Ad
Nd

]

, CWT
wt is the number of times the

wth word in the vocabulary is assigned to topic t, CTA
ta is the number of times

topic t is assigned to author a, Nd is the number of words in document d and N is
the number of words in the corpus. As a first step in deriving the Gibbs sampling
equation for the author-topic model, we integrate out the random variables Θ and
Φ from Equation 12, making use of the fact that the Dirichlet distribution is a
conjugate prior of multinomial distribution. In this manner we can interpret the
terms involving Θ and Φ in Equation 12 as Dirichlet distributions, as they have
the same functional form. The resulting Dirichlet integrals are well-known (e.g.,
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see Box and Tiao [1973]), and are of the form
∫
∏M

m=1[x
km−1
m dxm] =

Q

M
m=1

Γ(km)
P

M
m=1

km
,

with the integral over a simplex. Applying this to Equation 12, we have

P (w, z,x|α, β,A) = Const

∫

Θ

∫

Φ

[

T
∏

t=1

W
∏

w=1

φ
CW T

wt +β−1
wt

][

A
∏

a=1

T
∏

t=1

θ
CT A

ta +α−1
ta

]

dΦdΘ

= Const

[

A
∏

a=1

∫

θ:a

T
∏

t=1

θ
CT A

ta +α−1
ta dθ:a

][

T
∏

t=1

∫

φ:t

W
∏

w=1

φ
CW T

wt +β−1
wt dφ:t

]

= Const

[

A
∏

a=1

∏T
t=1 Γ(CTA

ta + α)

Γ(
∑

t′ CTA
t′a + Tα)

][

T
∏

t=1

∏W
w=1 Γ(CWT

wt + β)

Γ(
∑

w′ CWT
w′t + Wβ)

]

(13)

To obtain the Gibbs sampling equation, we need to obtain an expression for
P (xdi = a, zdi = t|wdi = w, z−di,x−di,w−di, A, α, β). From Bayes theorem, we have

P (xdi = a, zdi = t|wdi = w, z−di,x−di,w−di,A, α, β) ∝
P (w, z,x|α, β,A)

P (w−di, z−di,x−di|α, β,A)
(14)

where yi stands for all components of the vector y excluding the ith component.
Setting w, z, x to w−di, z−di, x−di respectively in Equation 12, we get

P (w−di, z−di,x−di, Φ, Θ|α, β,A) =

AdConst

[

T
∏

t=1

W
∏

w=1

φ
CW T

wt,−di+β−1

wt

] [

A
∏

a=1

T
∏

t=1

θ
CT A

ta,−di+α−1

ta

]

where Ad is the number of authors of the document d. Integrating over Θ and Φ
in the above equation, in a manner analogous to that for Equation 13, we get

P (w−di, z−di,x−di|α, β,A) = AdConst

[

T
∏

t=1

∏W
w=1 Γ(CWT

wt,−di + β)

Γ(
∑

w′ CWT
w′t,−di + Wβ)

]

[

A
∏

a=1

∏T
t=1 Γ(CTA

ta,−di + α)

Γ(
∑

t′ CTA
t′a,−di + Tα)

]

(15)

Using the results from Equations 14, 13, and 15; and the identity Γ(k + 1) = kΓ(k);
we obtain the following Gibbs sampling equation for the author-topic model (Equa-
tion 3):

P (xdi = a, zdi = t|wdi = w, z−di,x−di,w−di,A, α, β) ∝

CWT
wt,−di + β

∑

w′ CWT
w′t,−di + Wβ

CTA
ta,−di + α

∑

t′ CTA
t′a,−di + Tα

Appendix B: Computing probabilities from a single sample

In Figures 1, 2, 6, and 7 we presented examples of topics, with predictive distribu-
tions for words and authors given a particular topic assignment. In this appendix we
provide the details on how to compute these predictive distributions for a particular
sample.
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The probability that a new word, in a particular sample s, would be wN+1 = w,
given that it is generated from topic zN+1 = t, is given by

P (wN+1 = w|zN+1 = t) =
(CWT

wt )s + β
∑

w′(CWT
w′t )s + Wβ

Similarly, the probability that a novel word generated by the author xN+1 = a
would be assigned to topic zN+1 = t is obtained by

P (zN+1 = t|xN+1 = a) =
(CTA

ta )s + α
∑

t′(C
TA
t′a )s + Tα

(For simplicity of notation we omitted terms that are implicitly conditioned on

in the probabilities in this section, such as xs, zs, Dtrain, α β and T ). We can
also compute the probability that a novel word is authored by author xN+1 = a
given that it is assigned to topic zN+1 = t, and given a sample from the posterior
distribution, xs ,zs. The novel word is part of a new unobserved document that
contains a single word and is authored by all authors in the corpus. One can
first calculate the joint probability of the author assignment as well as the topic
assignment,

P (zN+1 = t, xN+1 = a) = P (zN+1 = t|xN+1 = a) P (xN+1 = a) =

1

A

(CTA
ta )s + α

∑

t′(C
TA
t′a )s + Tα

,

and using Bayes rule one obtains

P (xN+1 = a|zN+1 = t) =

(CT A
ta )s+α

P

t′
(CTA

t′a
)s+Tα

∑

a′

(CT A
ta′

)s+α
P

t′
(CT A

t′a′
)s+Tα

Appendix C: Interpreting models as matrix factorization

The relationships among the models discussed in Section 6 can be illustrated by
interpreting each model as a form of matrix factorization (c.f. Lee and Seung [1999;
Canny [2004]). Each model specifies a different scheme for obtaining a probability
distribution over words for each document in a corpus. These distributions can
be assembled into a W × D matrix P, where pwd is the probability of word w in
document d. In all three models, P is a product of matrices. As shown in Figure
13, the models differ only in which matrices are used.

In the author-topic model, P is the product of three matrices: the W ×T matrix
of distributions over words Φ, the T ×A matrix of distributions over topics Θ, and
an A×D matrix A, as shown in Figure 13 (a). The matrix A expresses the uniform
distribution over authors for each document, with aad taking value 1

Ad
if a ∈ ad

and zero otherwise. The other models each collapse together one pair of matrices
in this product. In the topic model, Θ and A are collapsed together into a single
T × D matrix Θ, as shown in Figure 13 (b). In the author model, Φ and Θ are
collapsed together into a single W × A matrix Φ, as shown in Figure 13 (c).

Under this view of the different models, parameter estimation can be construed as
matrix factorization. As Hofmann [1999] pointed out for the topic model, finding
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Fig. 13. Matrix factorization interpretation of different models. (a) The author-topic model (b)
A standard topic model. (c) A simple author model.

the maximum-likelihood estimates for Θ and Φ is equivalent to minimizing the
Kullback-Leibler divergence between P and the empirical distribution over words
in each document. The three different models thus correspond to three different
schemes for constructing an approximate factorization of the matrix of empirical
probabilities, differing only in the elements into which that matrix is decomposed.
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