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SUMMARY

A Markov modulated Poisson Process (MMPP) is a Poisson process whose rate varies according to a
Markov process. The nonhomogeneous MMPP developed in this article is a natural model for point
processes whose events combine irregular bursts of activity with predictable (e.g. daily and hourly) pat-
terns. We show how the MMPP may be viewed as a superposition of unobserved Poisson processes that
are activated and deactivated by an unobserved Markov process. The MMPP is a continuous time model
which may also be viewed as a discretely indexed nonstationary hidden Markov model by viewing inter-
vals between events as a sequence of dependent random variables. The HMM representation allows one
to probabilistically reconstruct the latent Markov and Poisson processes using a set of forward-backward
recursions. The recursions allow MMPP parameters to be estimated either by an EM algorithm or by a
rapidly mixing Markov chain Monte Carlo algorithm which uses the recursions for data augmentation.
The Markov-Poisson cascade (MPC) is an MMPP whose underlying Markov process obeys certain re-
strictions which uniquely order the event rates for the observed process. The ordering avoids a possible
label switching issue without slowing down the rapidly mixing algorithms we use to implement the
model. We apply the MPC to a data set containing click rate data for individual computer users browsing
through the World Wide Web. Because the complete data posterior distribution for the MPC is a product
of exponential family distributions we are able to incorporate data from multiple users into a hierarchical
model using existing methods from hierarchical Poisson regression.

Keywords: HIDDEN MARKOV MODEL; POINT PROCESS; BURST; FORWARD-BACKWARD RECURSIONS;

CONTINUOUS TIME; NONHOMOGENEOUS POISSON PROCESS.

1. INTRODUCTION
The Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson process (Cox
1955; Gutíerrez-Peña and Nieto-Barajas 2003) whose rate varies according to a Markov process.
This article decomposes the MMPP into a superposition of latent Poisson processes which are
activated and deactivated by a latent Markov process. The result is a natural model for point
process data where events combine predictable patterns with irregular bursts of activity. The
MMPP is most frequently seen in queuing theory (Du 1995; Olivier and Walrand 1994) but it
has other interesting applications. Davison and Ramesh (1996) applied a discretized MMPP
to a binary time series of precipitation data by numerically optimizing the discretized MMPP
likelihood. Scott (1998) used the MMPP to model criminal intrusions on a telephone network.
Other uses of the MMPP exist in environmental, medical, industrial, and sociological research.
Inference for MMPP parameters has received little attention because most applications of the
MMPP assume known model parameters. Turin (1996) proposed an EM algorithm for finding
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maximum likelihood estimates of MMPP parameters. Scott(1999) provided a Bayesian method
for inferring the parameters of a stationary two state MMPP. This article extends Scott (1999)
to the nonstationary case with an arbitrary number of states. To our knowledge this is the
first treatment of inference for the nonhomogeneous MMPP. We show how the MMPP can
be viewed as a superposition of latent Poisson processes, which in turn may be expressed as
a nonhomogeneous, discretely indexed hidden Markov model (HMM) by partitioning time
into intervals between observed events. Expressing the MMPP as an HMM allows one to
probabilistically reconstruct the latent Markov and Poisson processes using a set of forward-
backward recursions. The recursions allow MMPP parameters to be estimated through familiar
latent variable methods such as the EM algorithm or MCMC data augmentation. The Markov-
Poisson cascade (MPC) is a special case of MMPP that enforces an ordering of the state space
of the underlying Markov process. The MPC maintains the ordering in a natural way, so that
a potential label switching issue is avoided without slowing down our rapidly mixing MCMC
algorithms or modifying the specification of model parameters as in Robert and Titterington
(1998).
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Figure 1. Mouse click events for the first 20 computers in our data set. Time is measured in seconds
from midnight.

Our motivating example is a data set containing click rate (page request) data produced by
1025 computer users as they navigated through the World Wide Web over a 24 hour period.
Figure 1 plots page request times for the first twenty users in our data set. The data are a
convenience sample from a much larger data set collected by a software tool that automatically
logs all page requests within each user’s Web browser (with the user’s permission). The data
are unusual because they were collected on the “client side” at the individuals’ computers. It is
much easier, and thus more common, for Web traffic studies to be conducted using data obtained
from Web servers configured to record the request time, the requested page, and the IP address
of the requesting computer (“server side data”). Collecting data on individual users’ computers
eliminates several technical issues associated with server side data (Cooley et al. 1999). Among
the difficulties are that an IP address does not uniquely identify a particular individual, the Web
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server can only see a user’s behavior at one particular site, and some requested pages may not
be recorded at the server side because they are provided by the user’s memory cache instead of
by the Web server.

Computer scientists are interested in page request click rates for academic and commercial
reasons. Academically, it is hoped that a better understanding of how individuals use the Web
will lead to improved design of Web sites, Web interfaces, and internet traffic management
schemes. Commercially, online merchants are interested in click rates because they contain
information about an individual’s interest in the content of a Web page. Very rapid click rates
suggest that an individual is searching for something which he has not found on the current
page. Moderate click rates suggest the individual is absorbing content (e.g. reading or listening
to music). When a user’s click rate falls to zero his session has ended, so resources devoted to
him should be directed elsewhere. Click rates can be combined with other information about
the content which is being browsed in order to make inference about a user’s state of mind.
The hidden Markov model representation developed in Section 2 provides a straightforward
method of incorporating additional page characteristics into the MMPP, leading to a more
elaborate biometric model. For a more detailed discussion of client side Web traffic modeling
consult Catledge and Pitkow (1995), Cunha, et al. (1995), Tauscher and Greenberg (1997), and
Cockburn and McKenzie (2001).

The remainder of the article proceeds as follows. Section 2 presents a theory of inference
for the MMPP and the MPC. Section 3 applies the model to the mouse click data. Section 4
provides a concluding discussion.

2. MODEL

2.1. Decomposing the MMPP into Latent Poisson Processes

Let N(t) be a point process formed by the superposition of unobserved components N0(t), . . . ,
NM−1(t), each of which may sometimes be inactive. Each Nm(t) is a Poisson process whose
rate is λm(t) when Nm(t) is active and 0 when Nm(t) is inactive. We assume that λm(t) is a
parametric or slowly varying nonparametric function supplied by the modeler. An unobserved
continuous-time Markov process A(t) determines which component processes are active at time
t. Active component processes are independent of one another, and depend onA(t) only through
activation/deactivation. Because a variety of models could be used for A(t), depending on
physical considerations, we defer discussion of our preferred model until Section 2.4, following
material which is independent of the choice of A. For now we assume only that if A(t) �= A(t′)
then different subsets of N0, . . . , NM−1 are active at t and t′.

Heuristically, one imagines thatA(t) governs the beginnings and endings of “activity bursts”
with intensity

∑
m λm(t)Im

A (t), where Im
A (t) = 1 if A(t) indicates process m is active and

Im
A (t) = 0 otherwise. Define an activity burst of level m to be an interval (t0, t1) such that

Nm(t) is active for t0 < t < t1, Nm(t) is inactive just before t0 and just after t1, and events are
generated at t0 and t1. By defining an activity burst as beginning and ending with its first and
last events, we force A(t) to remain constant between events, which eliminates the possibility of
pathological “bursts” containing no events. Forcing activity bursts to begin and end with events
is mathematically equivalent to assuming that each A(t) transition produces an event. One
may think of events produced by A(t) as coming from Poisson processes Bm(t) and Dm(t),
which produce the events corresponding to the birth and death of Nm. The current state of A(t)
determines whether Bm(t) or Dm(t) are inactive at time t. In particular, Nm cannot be born
if it is already alive, and it cannot die if it is already dead. For most applications interest will
focus on the case where Bm(t) and Dm(t) have rate functions, denoted βm(t) and δm(t), which
are much smaller than λm(t). The rates βm(t) and δm(t) derive from the “infinitesimal rates”
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Figure 2. DAG for the MMPP. Closed and open circles represent observed and unobserved quantities,
respectively.

of the generator matrix for A(t). The MMPP is N =
∑

m(Bm + Nm + Dm). Conditional on
A(t) = A, N(t) is a Poisson process with rate

θA(t) =
M−1∑
m=0

Im
A (t)λm(t) + Im

B (t)βm(t) + Im
D (t)δm(t) (1)

where Im
B (t) and Im

D (t) indicate whether Bm(t) and Dm(t) are active at time t.

2.2. Expressing the MMPP as a Hidden Markov Model

The MMPP may be expressed as a nonstationary hidden Markov model where the observed
data are the event times τ = (τ1 < · · · < τn) produced by N , and the hidden Markov chain is
the sequence {Aj = A(τj)}. Expressing the MMPP as an HMM allows recursive procedures
for HMM’s to be used for calculating likelihood, calculating the marginal posterior distribution
of each Aj given τ , and estimating model parameters using latent variable methods.

One intuitively understands the MMPP as an HMM because {Aj} is a discretization of
a continuous-time Markov process, and each τj is produced by a Poisson process whose rate
is known over the interval (τj−1, τj) given (Aj−1, Aj). The formal proof that the MMPP
is an HMM follows immediately from a well known fact about Poisson processes presented
below as Theorem 1. Note that dependence on model parameters is notationally suppressed for
probability calculations in this section.

Theorem 1. Let N0, . . . , NM be independent Poisson processes with rate functions λ0(t),
. . . , λM (t). Let Λ(t0)

m (t) =
∫ t
t0

λm(u) du. Let T represent the time of the first event
generated by any of N0, . . . , NM after time t0, and let Y denote the index of the first
process to produce an event. Then

Pr(T > t, Y = m) =
∫ ∞
t

λm(u) exp

(
−

M∑
r=0

Λ(t0)
r (u)

)
du.

Write τk
j for (τj, . . . , τk) and similarly for other vectors. Theorem 1 implies that p(τj, Aj |

τ j−1
1 , Aj−1

1 ) depends only on (τj−1, Aj−1), a relationship illustrated in Figure 2. Figure 2 is not
the traditional DAG associated with a hidden Markov model, but it is sufficiently close that the
standard HMM recursions need only be slightly modified. The most important recursive pro-
cedure for HMM’s is the forward-backward recursion, which calculates the marginal posterior
distribution of each (Aj−1, Aj) transition conditional on τ . The forward recursion calculates
pjrs = p(Aj−1 = r,Aj = s | τ j

1 ). The backward recursion updates these distributions so that
they condition on all τ . Theorem 1 implies the forward recursion for the MMPP is

pjrs ∝ p(τj, Aj−1 = r,Aj = s | τ j−1
1 ) = θ∗rs(τj) exp

[
−Θ

(τj−1)
r (τj)

]
πj−1(r). (2)
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The proportionality in (2) is reconciled by
∑

r

∑
s pjrs = 1. One recursively computes

πj−1(r) = p(Aj−1 = r | τ j−1
1 ) as πj(s) =

∑
r pjrs. The symbol Θ

(τj−1)
r (τj) =

∫ τj
τj−1 θr(t) dt

is the expected number of events in (τj−1, τj) given A(τj−1) = r. If the (r, s) transition implies
the birth or death of process m then θ∗rs(τj) = βm(τj) or δm(τj), respectively. If no births
or deaths took place then θ∗rs(τj) =

∑
m Im

A (τj−1)λm(τj), which is the sum of all λm’s from
processes which were active during (τj−1, τj).

The standard HMM backward recursion applies to the MMPP because the dependence
among the Aj’s in Figure 2, given τ , is first order Markov. Let p′jrs = p(Aj−1 = r,Aj = s | τ )
and π′j(s) = p(Aj = s | τ ) denote the updated probabilities. The backward recursion begins
with πn(s) = π′n(s). Then p′jrs = pjrsπ

′
j(s)/πj(s) where π′j(s) is computed from p′j+1rs in

the previous step of the recursion.

2.3 Parameter Estimation and Posterior Sampling

The traditional role of the forward-backward recursion is to implement the E-step of an EM
algorithm (Baum et al. 1970, Dempster et al. 1977). The complete data likelihood for the
MMPP is

Lcom =
n∏

j=1

M−1∏
m=0

λm(τj)
yjmβm(τj)

bjmδm(τj)
djm exp

(
−

∫ τj

τj−1
θA(t) dt

)
(3)

where yjm, bjm anddjm are 0/1 indicators revealing which ofNm, Bm, orDm produced the event
at τj . Equation (3) is log-linear in the missing indicators (yjm, bjm, djm, Im

A (τj−1), Im
B (τj−1),

Im
D (τj−1)) so the E-step of EM simply replaces each indicator with its conditional probability

given τ . All required probabilities are available from the forward backward-recursions. The
only probability which requires any calculation to extract is p(yjm = 1 | τ ) ∝ ∑

r p(Aj−1 =
r,Aj = r | τ)Im

Aj=r(τj)λm(τj).
The forward-backward recursions may also be used to sample the missing data directly

from its conditional distribution given τ in a single Gibbs step (Scott 2002, Chib 1996). First
draw An from πn(s). Then draw each Aj given Aj+1 = s from the distribution proportional to
either pjrs or p′jrs. If Aj−1 �= Aj then event j is either a birth or a death. If Aj−1 = Aj then
draw (yj0, . . . , yjM−1) from the distribution proportional to Im

Aj
(τj)λm(τj).

Equation (3) says that if λm(t), βm(t) and δm(t) have distinct parameters, then those
parameters are independent in the complete data likelihood. Thus, the parameter estimation or
simulation step for an EM or data augmentation algorithm simply involves repeated inference
for the parameters of an ordinary Poisson process.

2.4. Identifiability and The Markov Poisson Cascade

Depending on physical considerations, there are several state spaces and transition probabilities
one could use for A(t). We propose the following model as a default, as it seems to balance
physical, computational, and identifiability considerations.

LetS = {0, . . . ,M−1} be the state space, where A(t) = m implies N0, . . . , Nm are active
and Nm+1, . . . , NM−1 are inactive. If A(t) = m then all possible death processes D1, . . . , Dm

are active, but Bm+1 is the only active birth process. We call an MMPP with this A(t) a
Markov-Poisson cascade (MPC) because the death of a process which is low in the hierarchy
immediately deactivates all processes above it. Processes which are terminated by the death of
a “lower” process do not generate events. If A(t) = s then equation (1) for the MPC becomes
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θs(t) = βs+1(t) +
s∑

m=0

(λm(t) + δm(t)) .

When paired with a prior distribution enforcing λm(t) > βm(t) (which simply means that
events inside a burst occur more frequently than the bursts themselves) the MPC avoids three
identifiability issues associated with the MMPP: label switching, state collapsing, and role
reversal. Label switching is an intrinsic feature of all finite mixture models. It occurs because
the complete data likelihood is invariant to a permuation of the state labels. The MPC prevents
label switching by enforcing θs(t) < θs+1(t), provided βs+1(t) + λs(t) + δs(t) > βs(t). This
is a very mild restriction which obtains with high posterior probability even under a weak prior.
Note that one need not order the individual λm’s, βm’s or δm’s. The ordering is automatically
enforced on θm.

State collapsing and role reversal occur when M is too large to be supported by the data.
State collapsing occurs when the model eliminates a redundant state by setting λm ≈ 0, which
allows Nm to be active without producing any events. Parameters are more interpretable if
unnecessary states are left unused. By preventing Nm+1 from activating unless Nm is active,
but allowing lower states to die, the MPC diminishes the prior activation probability of states at
the top of the hierarchy. This causes unneccessary states to filter to the top where they remain
unused.

Role reversal is a consequence of the symmetry between λm(t) and (βm(t), δm(t)) in (3).
Role reversal occurs because a long sequence of events produced by Nm has essentially the
same likelihood as an alternating sequence of Nm births and deaths. Scott (1999) observed that
a prior forcing βm < λm prevents role reversal.

3. APPLICATION

We assume user i in the click rate dataset follows an MPC with parametersφi = {λim(t), βim(t),
δim(t) : m = 0, . . . ,M − 1}. For convenience we set M = 3, where the three states indicate
respectively the absence of a Web session, a session with a slow click rate, and rapid clicking. In
a serious application we would allow M to depend on i using any of several Bayesian methods
for model selection or model averaging. We force β0(t) = δ0(t) = 0 so that N0 remains active
as a baseline to catch isolated events. Each user’s click stream almost certainly contains strong
daily and hourly patterns, but these patterns are inestimable because only a single day has been
observed. Therefore we assume all rates are constant, e.g. λim(t) = λim. Had a much longer
time window been observed we could incorporate daily and hourly patterns into the click rates
using the timing model proposed by Lambert et al. (2001), for example.

The familiar exponential family distributions underlying the MPC make it easy to embed
MPC parameters in a hierarchical model. We assume the prior distribution

p(φi, . . . , φn) =
∏
i

∏
m

Ga(λim | aλm, bλm)Ga(βim | aβm, bβm)Ga(δim | aδm, bδm), (4)

where Ga(· | a, b) is the gamma distribution with mean a/b and variance a/b2. The hyperpa-
rameters in (4) are interpretable as prior event counts and observation times. For example aβm

is a prior number of births for Nm, and bβm is a prior amount of time spent waiting for Nm

to be born. Following Christiansen and Morris (1997), we assume an improper uniform prior
on each a/b and assume each p(a) = z0/(z0 + a)2, which is a proper normalized distribution
with no moments. Christiansen and Morris show this prior has good frequency properties in the
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context of Poisson regression. The only “tuning parameter” is z0, which we set to the relatively
uninformative value of 0.10.

Let zi denote the missing indicators required to compute Lcom for user i and let α denote
the set of (a.., b..) pairs in (4). We used an MCMC algorithm which cycles between sampling
from p(zi |φi), p(φi |zi,α) for each i, and from p(α|φ1, . . . , φn) with n = 1025. We ran
the algorithm for 5000 iterations and removed the first 1000 as burn-in. Figure 3 shows the
remaining 4000 draws of φi for a sample account. The time series plots and autocorrelation
functions in Figure 3 indicate rapid mixing attributable to the forward-backward recursions used
in the data augmentation step.
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Figure 3. (a) Time series plots and (b) autocorrelations of 4000 MCMC draws from the posterior
distribution of MPC parameters for a sample user.

Figure 4 plots the data for the sample account, along with the posterior probability that N1
and N2 are active each event time. This account was selected because it showed several stray
events in addition to the more typical bursts corresponding to Web sessions. We were concerned
that the stray events might be interpreted as low intensity Web sessions. Instead, the posterior
distribution of A(t) in Figure 4 behaves as hoped. Stray events are attributed to N0, while N1
bursts persist across moderate gaps. Level 2 bursts switch more rapidly. The smallest definitive
gap between level 2 bursts for this account is the four minute interval containing time 15500.
The probabilities in Figure 4 are Bayesian in the sense that they average over the posterior
distribution of φi. A corresponding plot created by running the forward-backward recursions
conditional on a point estimate of φi is not shown because it is nearly identical. This suggests
that an online merchant who lacks the time to implement an MCMC algorithm may safely base
predictions on quicker empirical Bayes calculations.

The hierarchical model specification allows us to coherently estimate aggregate summaries
of Web sessions by examining the posterior distributions of hyperparameters. Figure 5 shows
MCMC sample paths for the prior parameters of {(aλm, bλm) : m = 0, 1, 2}. All three (a, b)
pairs have moved from their initial values of (1,1000), suggesting that there is information
about rate parameters across several accounts. The only parameters that had trouble mixing
were (aλ0, bλ0), because of the considerable probability mass close to λ0 = 0. The posterior
medians for aλ0 and bλ0 are 148.5 and 6,660,925, or about 2 clicks per day over 78 days. This
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Figure 4. Data and estimated hidden Markov process for the account in Figure 3. The top row is
jittered event times. The middle and bottom rows plot the respective probabilities that N1 and N2 are
active at time t. Panel (a) plots the full observation window. Panel (b) is a close-up of panel (a).
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Figure 5. (a) Sample paths for aλm and bλm. (b) Posterior distribution of overall expected waiting time
until births or deaths of sessions of different levels. Note the different time scales.

means the “borrowed information” for λ0 is 78 times the information in an individual account.
Posterior shrinkage for λ1 and λ2 is much less, with prior exposure times of about 80 and 50
seconds, respectively.

Figure 5 also shows the posterior distribution of bβm/aβm and bδm/aδm for m = 1, 2,
which are the prior expected waiting times until the birth or death of process m. The top row
of Figure 5(b) indicates that the average time between Web sessions is slightly over five hours,
while the average duration of a session is about fifteen minutes. The bottom row suggests that
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within a Web session, a burst of rapid clicking can be expected about every six minutes, and
the burst is expected to last about a minute and a half. The inferences about the average session
duration are interesting becasue little seems to be known about distributions of session lengths
from past studies (e.g., Catledge and Pitkow 1995; Cockburn and MacKenzie 2001). These
inferences are apparently the first to come from a model based method of determining Web
session boundaries.

4. DISCUSSION

The MPC is a flexible model for point processes subject to irregular bursts of activity. This
article has shown how to estimate MPC parameters using either a rapidly mixing MCMC sampler
or an EM algorithm. The key to either approach is a set of forward-backward recursions for
probabilistically restoring the latent Markov process. The same recursions allow for the filtering
of future observations once MPC parameters have been estimated. The computational speed
offered by the forward-backward recursions means that the MPC can be a viable model even
in applications where MCMC is not feasible due to time constraints. The MPC is a well
defined model, free of label switching issues. Finally, because the full conditional distributions
underlying the MPC are all familiar models from the exponential family, it is straightforward
to incorporate MPC parameters into a hierarchical model for a collection of users.
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