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Abstract

We propose a new unsupervised learning technique for extracting information about authors
and topics from large text collections. We model documents as if they were generated by
a two-stage stochastic process. An author is represented by a probability distribution over
topics, and each topic is represented as a probability distribution over words. The probability
distribution over topics in a multi-author paper is a mixture of the distributions associated
with the authors. The topic-word and author-topic distributions are learned from data in an
unsupervised manner using a Markov chain Monte Carlo algorithm. We apply the methodology
to three large text corpora: 150,000 abstracts from the CiteSeer digital library, 1,740 papers
from the Neural Information Processing Systems Conference (NIPS), and 121,000 emails from a
large corporation. We discuss in detail the interpretation of the results discovered by the system
including specific topic and author models, ranking of authors by topic and topics by author,
parsing of abstracts by topics and authors, and detection of unusual papers by specific authors.
Experiments based on perplexity scores for test documents are used to illustrate systematic
differences between the proposed author topic model and a number of alternatives. Extensions
to the model, allowing (for example) generalizations of the notion of an author, are also briefly
discussed.

Keywords: topic models, Gibbs sampling, unsupervised learning, author models, perplexity.

1 Introduction

With the advent of the Web and specialized digital text collections, automated extraction of useful
information from text has become an increasingly important research area in information retrieval,

∗The material in this paper was presented in part at the 2004 Uncertainty in AI Conference and the 2004 ACM
SIGKDD Conference.
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statistical natural language processing, and machine learning. Applications include document an-
notation, database organization, query answering, and automated summarization of text collec-
tions. Statistical approaches based upon generative models have proven effective in addressing
these problems, providing efficient methods for extracting structured representations from large
document collections.

In this paper we describe a generative model for document collections, the author topic (AT)
model, that simultaneously models the content of documents and the interests of authors. This
generative model represents each document as a mixture of probabilistic topics, in a manner similar
to Latent Dirichlet Allocation [Blei et al., 2003]. It extends previous work using probabilistic topics
to author modeling by allowing the mixture weights for different topics to be determined by the
authors of the document. By learning the parameters of the model, we obtain the set of topics
that appear in a corpus and their relevance to different documents, and identify which topics are
used by which authors. Figure 1 shows an example of several such topics (with associated authors
and words) learned by the algorithm from a collection of papers from the NIPS conference (these
will be discussed in more detail later in the paper). Both the words and the authors associated
with each topic are quite focused and reflect a variety of different and quite specific research areas
associated with the NIPS conference. The model used in Figure 1 also produces a topic distribution
for each author—Figure 2 shows the likely topics for a set of well-known NIPS authors from this
model. By modeling the interests of authors, we can answer a range of important queries about the
content of document collections, including (for example) which subjects an author writes about,
which authors are likely to have written documents similar to an observed document, and which
authors produce similar work.

The generative model at the heart of our approach is based upon the idea that a document
can be represented as a mixture of topics. This idea has motivated several different approaches
in machine learning and statistical natural language processing [Hofmann, 1999, Blei et al., 2003,
Minka and Lafferty, 2002, Griffiths and Steyvers, 2004, Buntine and Jakulin, 2004]. Topic models
have three major advantages over other approaches to document modeling: the topics are extracted
in a completely unsupervised fashion, requiring no document labels and no special initialization;
each topic is individually interpretable, providing a representation that can be understood by the
user; and each document can express multiple topics, capturing the topic combinations that arise
in text documents.

Supervised learning techniques for automated categorization of documents into known classes or
topics have received considerable attention in recent years [e.g., Yang, 1999]. However, unsupervised
methods are often necessary for addressing the challenges of modeling large document collections.
For many document collections, neither predefined topics nor labeled documents may be available.
Furthermore, there is considerable motivation to uncover hidden topic structure in large corpora,
particularly in rapidly changing fields such as computer science and biology, where predefined topic
categories may not reflect dynamically evolving content.

Topic models provide an unsupervised method for extracting an interpretable representation
from a collection of documents. Prior work on automatic extraction of representations from text
has used a number of different approaches. One general approach, in the context of the general
“bag of words” framework, is to represent high-dimensional term vectors in a lower-dimensional
space. Local regions in the lower-dimensional space can then be associated with specific topics.
For example, the WEBSOM system [Lagus et al., 1999] uses non-linear dimensionality reduction
via self-organizing maps to represent term vectors in a two-dimensional layout. Linear projection
techniques, such as latent semantic indexing (LSI), are also widely used (e.g., Berry et al. [1994]).
Deerwester et al. [1990], while not using the term “topics” per se, state:
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WORD PROB. WORD PROB. WORD PROB. WORD PROB.
LIGHT .0306 RECOGNITION .0500 KERNEL .0547 SOURCE .0389

RESPONSE .0282 CHARACTER .0334 VECTOR .0293 INDEPENDENT .0376
INTENSITY .0252 TANGENT .0246 SUPPORT .0293 SOURCES .0344

RETINA .0241 CHARACTERS .0232 MARGIN .0239 SEPARATION .0322
OPTICAL .0233 DISTANCE .0197 SVM .0196 INFORMATION .0319

KOCH .0190 HANDWRITTEN .0166 DATA .0165 ICA .0276
BACKGROUND .0162 DIGITS .0154 SPACE .0161 BLIND .0227

CONTRAST .0145 SEGMENTATION .0142 KERNELS .0160 COMPONENT .0226
CENTER .0124 DIGIT .0124 SET .0146 SEJNOWSKI .0224

FEEDBACK .0118 IMAGE .0111 MACHINES .0132 NATURAL .0183

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Koch_C .0903 Simard_P .0602 Scholkopf_B .0774 Sejnowski_T .0627

Boahen_K .0320 Martin_G .0340 Smola_A .0685 Bell_A .0378
Skrzypek_J .0283 LeCun_Y .0339 Vapnik_V .0487 Yang_H .0349

Liu_S .0250 Henderson_D .0289 Burges_C .0411 Lee_T .0348
Delbruck_T .0232 Denker_J .0245 Ratsch_G .0296 Attias_H .0290

Etienne-C._R .0210 Revow_M .0206 Mason_L .0232 Parra_L .0271
Bair_W .0178 Rashid_M .0205 Platt_J .0225 Cichocki_A .0262

Bialek_W .0133 Rumelhart_D .0185 Cristianini_N .0179 Hyvarinen_A .0242
Yasui_S .0106 Sackinger_E .0181 Laskov_P .0160 Amari_S .0160
Hsu_K .0103 Flann_N .0142 Chapelle_O .0152 Oja_E .0143

WORD PROB. WORD PROB. WORD PROB. WORD PROB.
BAYESIAN .0437 STATE .0715 METHOD .0497 HINTON .0243

POSTERIOR .0377 POLICY .0367 METHODS .0349 SET .0131
PRIOR .0333 ACTION .0301 RESULTS .0314 WEIGHTS .0126

PARAMETERS .0228 REINFORCEMENT .0283 APPROACH .0270 COST .0118
GAUSSIAN .0183 STATES .0244 BASED .0239 SPACE .0106

DATA .0183 FUNCTION .0190 TECHNIQUES .0182 UNSUPERVISED .0102
EVIDENCE .0144 ACTIONS .0179 APPLIED .0167 PROCEDURE .0100

LIKELIHOOD .0142 OPTIMAL .0155 SINGLE .0158 SINGLE .0097
MACKAY .0127 REWARD .0154 NUMBER .0149 ENERGY .0092

COVARIANCE .0126 AGENT .0129 PROBLEMS .0135 VISIBLE .0088

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Williams_C .0854 Singh_S .1293 Sejnowski_T .0121 Hinton_G .1959
Bishop_C .0504 Barto_A .0554 Baluja_S .0101 Mozer_M .0915
Barber_D .0370 Sutton_R .0482 Thrun_S .0097 Zemel_R .0771

Rasmussen_C .0351 Parr_R .0385 Moody_J .0095 Becker_S .0285
MacKay_D .0281 Hansen_E .0300 Hinton_G .0084 Dayan_P .0200
Tipping_M .0225 Dayan_P .0249 Moore_A .0081 Seung_H .0169
Opper_M .0191 Thrun_S .0223 Barto_A .0079 Sejnowski_T .0127
Sollich_P .0160 Tsitsiklis_J .0222 Bengio_Y .0079 Ghahramani_Z .0113

Sykacek_P .0153 Dietterich_T .0206 Singh_S .0078 Nowlan_S .0102
Wolpert_D .0141 Loch_J .0163 Dietterich_T .0068 Schraudolph_N .0098

TOPIC 16TOPIC 62TOPIC 82 TOPIC 7

TOPIC 4 TOPIC 13 TOPIC 28 TOPIC 9

Figure 1: 8 examples of topics (out of 100 topics in total) from a model fit to NIPS papers from
1987 to 1999—shown are the 10 most likely words and 10 most likely authors per topic.

3



PROB. TOPIC WORDS

.1389 37 MIXTURE, EM, LIKELIHOOD, EXPERTS, MIXTURES, EXPERT, GATING, PARAMETERS, LOG, JORDAN

.1221 60 BELIEF, FIELD, STATE, APPROXIMATION, MODELS, VARIABLES, FACTOR, JORDAN, NETWORKS, PARAMETERS

.0598 52 ALGORITHM, ALGORITHMS, PROBLEM, STEP, PROBLEMS, LINEAR, UPDATE, FIND, LINE, ITERATIONS

.0449 77 MOTOR, TRAJECTORY, ARM, INVERSE, HAND, CONTROL, MOVEMENT, JOINT, DYNAMICS, FORWARD

PROB. TOPIC WORDS

.2518 4 LIGHT, RESPONSE, INTENSITY, RETINA, OPTICAL, KOCH, BACKGROUND, CONTRAST, CENTER, FEEDBACK

.0992 45 VISUAL, STIMULUS, CORTEX, SPATIAL, ORIENTATION, RESPONSE, CORTICAL, RECEPTIVE, TUNING, STIMULI

.0882 84 SPIKE, FIRING, SYNAPTIC, SYNAPSES, MEMBRANE, POTENTIAL, CURRENT, SPIKES, RATE, SYNAPSE

.0504 64 CIRCUIT, CURRENT, VOLTAGE, ANALOG, CHIP, VLSI, CIRCUITS, SILICON, PULSE, MEAD

PROB. TOPIC WORDS

.2298 13 RECOGNITION, CHARACTER, TANGENT, CHARACTERS, DISTANCE, HANDWRITTEN, DIGITS, SEGMENTATION, DIGIT, IMAGE

.0930 53 GRADIENT, FUNCTION, DESCENT, ERROR, VECTOR, DERIVATIVE, DERIVATIVES, OPTIMIZATION, PARAMETERS, LOCAL

.0930 69 LAYER, WEIGHTS, PROPAGATION, BACK, OUTPUT, LAYERS, INPUT, NUMBER, WEIGHT, FORWARD

.0762 36 INPUT, OUTPUT, INPUTS, OUTPUTS, VALUES, ARCHITECTURE, SUM, ADAPTIVE, PREVIOUS, PROCESSING

PROB. TOPIC WORDS

.0927 9 SOURCE, INDEPENDENT, SOURCES, SEPARATION, INFORMATION, ICA, BLIND, COMPONENT, SEJNOWSKI, NATURAL

.0852 45 VISUAL, STIMULUS, CORTEX, SPATIAL, ORIENTATION, RESPONSE, CORTICAL, RECEPTIVE, TUNING, STIMULI

.0495 36 INPUT, OUTPUT, INPUTS, OUTPUTS, VALUES, ARCHITECTURE, SUM, ADAPTIVE, PREVIOUS, PROCESSING

.0439 74 MOTION, FIELD, DIRECTION, RECEPTIVE, FIELDS, VELOCITY, MOVING, FLOW, DIRECTIONS, ORDER

PROB. TOPIC WORDS

.3374 28 KERNEL, VECTOR, SUPPORT, MARGIN, SVM, DATA, SPACE, KERNELS, SET, MACHINES

.1243 44 LOSS, ESTIMATION, METHOD, ESTIMATE, PARAMETER, INFORMATION, ENTROPY, BASED, LOG, NEURAL

.0943 72 BOUND, BOUNDS, THEOREM, EXAMPLES, DIMENSION, FUNCTIONS, CLASS, PROBABILITY, NUMBER, RESULTS

.0669 92 ERROR, TRAINING, GENERALIZATION, EXAMPLES, SET, ENSEMBLE, TEST, FUNCTION, LINEAR, ERRORS

AUTHOR = Vapnik_V

AUTHOR = Jordan_M

AUTHOR = Koch_C

AUTHOR = LeCun_Y

AUTHOR = Sejnowski_T

Figure 2: Selected authors from the NIPS corpus, and four high-probability topics for each author
from the author topic model. Topics unrelated to technical content (such as topics containing words
such as results, methods, experiments, etc.) were excluded.
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In various problems, we have approximated the original term-document matrix using 50-
100 orthogonal factors or derived dimensions. Roughly speaking, these factors may be
thought of as artificial concepts; they represent extracted common meaning components
of many different words and documents.

A well-known drawback of the LSI approach is that the resulting representation is often hard
to interpret. The derived dimensions indicate axes of a space, but there is no guarantee that
such dimensions will make sense to the user of the method. Another limitation of LSI is that
it implicitly assumes a Gaussian (squared-error) noise model for the word-count data, which can
lead to implausible results such as predictions of negative counts, although more recent work has
generalized these LSI approaches by projecting word counts to a continuous latent space [Globerson
and Tishby, 2003, Welling et al., 2005].

A different approach to unsupervised topic extraction relies on clustering documents into groups
containing (presumably) similar semantic content. A variety of well-known document clustering
techniques have been used for this purpose [e.g., Cutting et al., 1992, McCallum et al., 2000,
Popescul et al., 2000, Dhillon and Modha, 2001]. Each cluster of documents can then be associated
with a latent topic as represented (for example) by the mean term vector for documents in the
cluster. While clustering can provide useful broad information about topics, clusters are inherently
limited by the fact that each document is (typically) only associated with one cluster. This is often
at odds with the multi-topic nature of text documents in many contexts—combinations of diverse
topics within a single document are difficult to represent. For example, the present paper contains
at least two significantly different topics: document modeling and Bayesian estimation. For this
reason, other representations that allow documents to be composed of multiple topics generally
provide better models for sets of documents [e.g., better out of sample predictions, Blei et al.,
2003].

There are several generative models for document collections that model individual documents
as mixtures of topics. Hofmann [1999] introduced the aspect model (also referred to as probabilistic
LSI, or pLSI) as a probabilistic alternative to projection and clustering methods. In pLSI, topics
are modeled as multinomial probability distributions over words, and documents are assumed to be
generated by the activation of multiple topics. While the pLSI model produced impressive results
on a number of text document problems such as information retrieval, the parameterization of the
model was susceptible to overfitting and did not provide a straightforward way to make inferences
about documents not seen in the training data. Blei et al. [2003] addressed these limitations
by proposing a more general Bayesian probabilistic topic model called latent Dirichlet allocation
(LDA). The parameters of the LDA model (the topic-word and document-topic distributions) are
estimated using an approximation technique known as variational EM, since standard estimation
methods are intractable. Griffiths and Steyvers [2004] further showed how Gibbs sampling, a
Markov chain Monte Carlo technique, could be applied to the problem of parameter estimation
for this model with relatively large data sets. Other approximate inference methods have been
explored by Minka and Lafferty [2002] and Buntine and Jakulin [2004] in document modeling and
Pritchard et al. [2000] in genetics.

More recent research on topic models in information retrieval has focused on including additional
sources of information to constrain the learned topics. For example, Cohn and Hofmann [2001]
proposed an extension of pLSI to model both the document content as well as citations or hyperlinks
between documents. Similarly, Erosheva et al. [2004] extended the LDA model to model both text
and citations and applied their model to scientific papers from the Proceedings of the National
Academy of Sciences.

Our aim here is to extend the probabilistic topic models to include authorship information.
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Joint author-topic modeling has received little or no attention as far as we are aware. The areas
of stylometry, authorship attribution, and forensic linguistics focus on the related but different
problem of identifying which author (among a set of possible authors) wrote a particular piece of
text [Holmes, 1998]. For example, Mosteller and Wallace [1964] used Bayesian techniques to infer
whether Hamilton or Madison was the more likely author of disputed Federalist papers. More
recent work of a similar nature includes authorship analysis of a purported poem by Shakespeare
[Thisted and Efron, 1987], identifying authors of software programs [Gray et al., 1997], and the use
of techniques such as neural networks [Kjell, 1994] and support vector machines [Diederich et al.,
2003] for author identification.

These author identification methods emphasize the use of distinctive stylistic features (such as
sentence length) that characterize a specific author. In contrast, the models we present here focus
on extracting the general semantic content of a document, rather than the stylistic details of how
it was written. For example, in our model we omit common “stop” words since they are generally
irrelevant to the topic of the document—however, the distributions of stop words can be quite
useful in stylometry. While topic information could be usefully combined with stylistic features for
author classification we do not pursue this idea in this particular paper.

Graph-based and network-based models are also frequently used as a basis for representation
and analysis of relations among scientific authors. For example, McCain [1990], Newman [2001],
Mutschke [2003] and Erten et al. [2003] use a variety of methods from bibliometrics, social networks,
and graph theory to analyze and visualize co-author and citation relations in the scientific literature.
Kautz et al. [1997] developed the interactive ReferralWeb system for exploring networks of computer
scientists working in artificial intelligence and information retrieval, and White and Smyth [2003]
used PageRank-style ranking algorithms to analyze co-author graphs. In all of this work only the
network connectivity information is used—the text information from the underlying documents is
not used in modeling. Thus, while the grouping of authors via these network models can implicitly
provide indications of latent topics, there is no explicit representation of the topics in terms of the
content (the words) of the documents.

The novelty of the work described in this paper lies in the proposal of a probabilistic model
that represents both authors and topics. This approach goes beyond existing work on topic models
by using a set of topics to simultaneously model both authors and documents, and goes beyond
existing approaches to author modeling by making it possible to capture the semantic content of
the contributions associated with a given author. As we will show later in the paper, the model
provides a general framework for exploration, discovery, and query-answering in the context of the
relationships of author and topics for large document collections.

The outline of the paper is as follows: Section 2 describes the author topic model and Section
3 outlines how the parameters of the model (the topic-word distributions and author-topic distri-
butions) can be learned from training data consisting of documents with known authors. Section
4 discusses the application of the model to three different document collections: papers from the
NIPS conference, abstracts from the CiteSeer collection, and emails from Enron. The section in-
cludes a general discussion of convergence and stability in learning, and examples of specific topics
and specific author models that are learned by the algorithm. In Section 5 we describe illustrative
applications of the model, including detecting unusual papers for selected authors and detecting
which parts of a text were written by different authors. Section 6 compares and contrasts the
proposed author topic model with a number of related models, including the LDA model, a simple
author model (with no topics), and a model allowing “fictitious authors.” Section 7 contains a brief
discussion and concluding comments.
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2 The Author Topic (AT) Model

In this section we introduce the author topic model. The author topic model belongs to a family
of generative models for text where words are viewed as discrete random variables, a document
contains a fixed number of words, and each word takes one value from a predefined vocabulary.
We will use integers to denote the entries in the vocabulary, with each word w taking a value
from 1, . . . ,W where W is the number of unique words in the vocabulary. A document d is
represented as a vector of words, wd, with Nd entries. A corpus with D documents is represented
as a concatenation of the document vectors, which we will denote w, having N =

∑D
d=1 Nd entries.

In addition to these words, we have information about the authors of each document. We define
ad to be the set of authors of document d. ad consists of elements that are integers from 1, . . . , A,
where A is the number of authors who generated the documents in the corpus. Ad will be used to
denote the number of authors of document d.

To illustrate this notation, consider a simple example. Say we have D = 3 documents in the
corpus, written by A = 2 authors that use a vocabulary with W = 1000 unique words. The first
author (author 1) wrote paper 1, author 2 wrote paper 2, and they co-authored paper 3. According
to our notation, a1 = (1), a2 = (2) and a3 = (1, 2), and A1 = 1, A2 = 1, and A3 = 2. Say the
first document contains a single line, Machine learning has an abundance of interesting research
problems. We can remove stop words such as has, an, and of, to leave a document with 6 words. If
machine is the 8th entry in the vocabulary, learning is the 12th, and abundance is the 115th, then
w1 = 8, w2 = 12, w3 = 115, and so on.

The author topic model is a hierarchical generative model in which each word w in a document
is associated with two latent variables: an author, x and a topic, z. These latent variables augment
the N -dimensional vector w (indicating the values of all words in the corpus) with two additional
N -dimensional vectors z and x, indicating topic and author assignments for the N words.

For the purposes of estimation, we assume that the set of authors of each document is observed.
This leaves unresolved the issue of having unobserved authors, and avoids the need to define a
prior on authors, which is outside of the scope of this paper. Each author is associated with a
multinomial distribution over topics. Conditioned on the set of authors and their distributions
over topics, the process by which a document is generated can be summarized as follows: first,
an author is chosen uniformly at random for each word that will appear in the document; next, a
topic is sampled for each word from the distribution over topics associated with the author of that
word; finally, the words themselves are sampled from the distribution over words associated with
each topic.

This generative process can be expressed more formally by defining some of the other variables
in the model. Assume we have T topics. We can parameterize the multinomial distribution over
topics for each author using a matrix Θ of size T×A, with elements θta that stand for the probability
of assigning topic t to a word generated by author a. Thus

∑T
t=1 θta = 1, and for simplicity of

notation we will drop the index t when convenient and use θa to stand for the ath column of the
matrix. The multinomial distributions over words associated with each topic are parameterized by a
matrix Φ of size W ×T , with elements φwt that stand for the probability of generating word w from
topic t. Again,

∑W
w=1 φwt = 1, and φt stands for the tth column of the matrix. These multinomial

distributions are assumed to be generated from symmetric Dirichlet priors with hyperparameters
α and β respectively. In the results in this paper we assume that these hyperparameters are fixed.
Table 1 summarizes this notation.

The sequential procedure of first picking an author followed by picking a topic then generating
a word according to the probability distributions above leads to the following generative process:

7



Table 1: Symbols associated with the author topic model, as used in this paper.

Authors of the corpus A Set

Authors of the dth document ad Ad-dimensional vector

Number of authors of the dth document Ad Scalar

Number of words assigned to author and topic CTA T × A matrix

Number of words assigned to topic and word CWT W × T matrix

Set of authors and words in the training data Dtrain Set

Number of authors A Scalar

Number of documents D Scalar

Number of words in the dth document Nd Scalar

Number of words in the corpus N Scalar

Number of topics T Scalar

Vocabulary Size W Scalar

Words in the dth document wd Nd-dimensional vector

Words in the corpus w N -dimensional vector

ith word in the corpus wi ith component

Author assignments x N Dimensional vector

Author assignment for the ith word xi ith Component

Topic assignments z N Dimensional vector

Topic assignment for the ith word zi ith Component

Dirichlet prior α Scalar

Dirichlet prior β Scalar

Probabilities of words given topics Φ W × T matrix

Probabilities of words given topic t φt W -dimensional vector

Probabilities of topics given authors Θ T × A matrix

Probabilities of topics given author a θa T -dimensional vector

1. For each author a = 1, ..., A choose θa ∼ Dirichlet(α)
For each topic t = 1, ..., T choose φt ∼ Dirichlet(β)

2. For each document d = 1, ..., D
Given the vector of authors ad

For each word wi, indexed by i = 1, ..Nd

Conditioned on ad choose an author xi ∼ Uniform(ad)
Conditioned on xi choose a topic zi ∼ Discrete(θxi

)
Conditioned on zi choose a word wi ∼ Discrete(φzi

)

The graphical model corresponding to this process is shown in Figure 3. Note that by defining
the model we fix the number of possible topics to T . In circumstances where the number of topics
is not determined by the application, methods such as comparison of Bayes factors (e.g., Griffiths
and Steyvers [2004]) or non-parametric Bayesian statistics (e.g., Teh et al. [2005]) can be used to
infer T from a dataset. In this paper, we will deal with the case where T is fixed.
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x

z

w
D

φβ

α θ
A

T

da

Nd

Figure 3: Graphical model for the author topic model.

Under this generative process, each topic is drawn independently when conditioned on Θ, and
each word is drawn independently when conditioned on Φ and z. The probability of the corpus w,
conditioned on Θ and Φ (and implicitly on a fixed number of topics T ), is

P (w|Θ,Φ,A) =

D
∏

d=1

P (wd|Θ,Φ,ad). (1)

We can obtain the probability of the words in each document, wd by summing over the latent
variables x and z, to give

P (wd|Θ,Φ,A) =

Nd
∏

i=1

P (wi|Θ,Φ,ad)

=

Nd
∏

i=1

A
∑

a=1

T
∑

t=1

P (wi, zi = t, xi = a|Θ,Φ,ad))

=

Nd
∏

i=1

A
∑

a=1

T
∑

t=1

P (wi|zi = t, φt)P (zi = t|xi = a, θa)P (xi = a|ad)

=

Nd
∏

i=1

1

Ad

∑

a∈ad

T
∑

t=1

φwitθta, (2)

where the factorization in the third line makes use of the independence assumptions of the model.
The last line in the equations above expresses the probability of the words w in terms the entries
of the parameter matrices Φ and Θ introduced earlier. The probability distribution over author
assignments, P (xi = a|ad), is assumed to be uniform over the elements of ad, and deterministic if
Ad = 1. The probability distribution over topic assignments, P (zi = t|xi = a,Θ) is the multinomial
distribution θa in Θ that corresponds to author a, and the probability of word given a topic
assignment, P (wi|zi = t) is the multinomial distribution φt in Φ that corresponds to topic t.

Equations 1 and 2 can be used to compute the probability of a corpus w conditioned on Θ and
Φ, i.e., the likelihood of a corpus. If Θ and Φ are treated as parameters of the model, this likelihood
can be used in maximum-likelihood or maximum-a-posteriori estimation. Another strategy is to
treat Θ and Φ as random variables, and compute the marginal probability of a corpus by integrating
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them out. Under this strategy, the probability of w becomes

P (w|A, α, β) =

∫ ∫

P (w|A,Θ,Φ)p(Θ,Φ|α, β)dΘdΦ

=

∫ ∫

[

D
∏

d=1

Nd
∏

i=1

1

Ad

∑

a∈ad

T
∑

t=1

φwitθta

]

p(Θ,Φ|α, β)dΘdΦ, (3)

where p(Θ,Φ|α, β) = p(Θ|α)p(Φ|β) are the Dirichlet priors on Θ and Φ defined earlier.

3 Learning the Author Topic Model from Data

The author topic model contains two continuous random variables, Θ and Φ. Various approxi-
mate inference methods have recently been employed for estimating the posterior distribution for
continuous random variables in hierarchical Bayesian models. These approximate inference algo-
rithms range from variational inference [Blei et al., 2003] and expectation propagation [Minka and
Lafferty, 2002] to MCMC schemes [Pritchard et al., 2000, Griffiths and Steyvers, 2004, Buntine
and Jakulin, 2004]. Inference in these models is hard: if Θ is treated as a random variable, the
expectation step in an EM algorithm that learns the parameters, Φ, cannot be performed in a
closed form. The inference scheme used in this paper is based upon a Markov chain Monte Carlo
(MCMC) algorithm. While MCMC is not as computationally efficient as approximation schemes
such as variational inference and expectation propagation, it is unbiased and has been successfully
used in several recent large scale applications of topic models [Buntine and Jakulin, 2004, Griffiths
and Steyvers, 2004].

Our aim is to estimate the posterior distribution, p(Θ,Φ|Dtrain, α, β). Samples from this distri-
bution can be useful in many applications, as illustrated in Section 4.3. This is also the distribution
used for evaluating the predictive power of the model, (e.g., see Section 6.4) and for deriving other
quantities, such as the most surprising paper for an author (Section 5).

Our inference scheme is based upon the observation that

p(Θ,Φ|Dtrain, α, β) =
∑

z,x

p(Θ,Φ|z,x,Dtrain, α, β)P (z,x|Dtrain, α, β).

We obtain an approximate posterior on Θ and Φ by using a Gibbs sampler to compute the sum
over z and x. This process involves two steps. First, we obtain an empirical sample-based estimate
of P (z,x|Dtrain, α, β) using Gibbs sampling. Second, for any specific sample corresponding to a

particular x and z, p(Θ,Φ|z,x,Dtrain, α, β) can be computed directly by exploiting the fact that
the Dirichlet distribution is conjugate to the multinomial. In the next two sections we will explain
each of these two steps in turn.

3.1 Gibbs Sampling

Gibbs sampling is a form of Markov chain Monte Carlo, in which a Markov chain is constructed
to have a particular stationary distribution [e.g., Gilks et al., 1996]. In our case, we wish to
construct a Markov chain which converges to the posterior distribution over x and z conditioned
on Dtrain, α, and β. Using Gibbs sampling we can generate a sample from the joint distribution
P (z,x|Dtrain, α, β) by (a) sampling an author assignment xi and a topic assignment zi for an
individual word wi, conditioned on fixed assignments of authors and topics for all other words in
the corpus, and (b) repeating this process for each word. A single Gibbs sampling iteration consists
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of sequentially performing this sampling of author and topic assignments for each individual word
in the corpus.

In Appendix A we show how to derive the following basic equation needed for the Gibbs sampler:

P (xi = a, zi = t|wi = w, z−i,x−i,w−i,A, α, β) ∝
CWT

wt + β
∑

w′ CWT
w′t + Wβ

CTA
ta + α

∑

t′ C
TA
t′a + Tα

(4)

for a ∈ ad. CTA represents the topic-author count matrix, where CTA
ta is the number of words

assigned to topic t for author a. Similarly CWT is the word-topic count matrix, where CWT
wt is

the number of words from the wth entry in the vocabulary assigned to topic t. The other symbols
are summarized in Table 1. This equation can be manipulated further to obtain the conditional
probability of the topic of the ith word given the rest, P (zi = t|z−i,x,Dtrainα, β), and for the

conditional probability of the author of the ith word given the rest, P (xi = a|z,x−i,D
trainα, β).

In the results in this paper, however, we use a blocked sampler where we sample xi and zi jointly,
as this improves convergence of the Gibbs sampler when the variables are highly dependent.

The algorithms for Gibbs sampling works as follows. We initialize the author and topic as-
signments, x and z, randomly. In each Gibbs sampling iteration we sequentially draw the topic
and author assignment of the ith word from the joint conditional distribution in Equation 4 above.
After a predefined number of iterations (the so-called burn-in time of the Gibbs sampler) we begin
recording samples xs, zs. The burn-in is intended to allow the sampler to approach its stationary
distribution—the posterior distribution P (z,x|Dtrain, α, β). For these samples to be equivalent to
independent samples from the posterior we either have to use one chain and to have the number of
iterations between two different samples be on the order of the mixing time of the chain (a quantity
that is hard to evaluate), or accumulate samples from multiple chains, each starting with differ-
ent initial conditions. While the samples are generally not independent, expectations of functions
across these samples will converge to the same value as the expectation of those functions across
the true posterior. In Section 4.1 we discuss convergence issues in more detail.

3.2 The posterior on Θ and Φ

Given z, x, Dtrain, α, and β, computing posterior distributions on Θ and Φ is straightforward.
Using the fact that the Dirichlet is conjugate to the multinomial, we have

φt|z,D
train, β ∼ Dirichlet(CWT

·t + β) (5)

θa|x, z,Dtrain, α ∼ Dirichlet(CTA
·a + α) (6)

where CWT
·t is the vector of counts of the number of times each word has been assigned to topic t.

Evaluating the posterior mean of Φ and Θ given x, z, Dtrain, α, and β is straightforward. From
Equations 5 and 6, it follows that

E[φwt|z
s,Dtrain, β] =

(CWT
wt )s + β

∑

w′(CWT
w′t )s + Wβ

(7)

E[θta|x
s, zs,Dtrain, α] =

(CTA
ta )s + α

∑

t′(C
TA
t′a )s + Tα

. (8)

where (CWT )s is the matrix of topic-word counts exhibited in zs. These posterior means also
provide point estimates for Φ and Θ, and correspond to the posterior predictive distribution for
the next word from a topic and the next topic in a document respectively.
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In many applications, we wish to evaluate the expectation of some function of Φ and Θ, such
as the posterior probability of a document, P (wd|Θ,Φ,ad), given Dtrain, α, and β. Denoting such
a function f(Φ,Θ), we can use the results above to define a general strategy for evaluating such
expectations. We wish to compute

E[f(Φ,Θ)|Dtrain, α, β] = Ex,z

[

E[f(Φ,Θ)|x, z,Dtrain, α, β]
]

(9)

≈
1

S

S
∑

s=1

E[f(Φ,Θ)|xs, zs,Dtrain, α, β] (10)

where S is the number of samples obtained from the Gibbs sampler. In practice, computing
E[f(Φ,Θ)|xs, zs,Dtrain, α, β] may be difficult, as it requires integrating the function over the pos-
terior Dirichlet distributions. When this is the case, we use the approximation E[f(Φ,Θ)] ≈
f(E[Φ], E[Θ]), where E[Φ] and E[Θ] refer to the posterior means given in Equations 7 and 8. This
is exact when f is linear, and provides a lower bound when f is convex.

Finally, we note that this strategy will only be effective if f(Φ,Θ) is invariant under permutations
of the columns of Φ and Θ. Like any mixture model, the author topic model suffers from a lack
of identifiability: the posterior probability of Φ and Θ is unaffected by permuting their columns.
Consequently, there need be no correspondence between the values in a particular column across
multiple samples produced by the Gibbs sampler.

4 Experimental Results

We trained the author topic model on three large document data sets. The first is a set of papers
from 13 years (1987 to 1999) of the Neural Information Processing (NIPS) Conference1. This
data set contains D = 1, 740 papers, A = 2, 037 different authors, a total of N = 2, 301, 375
word tokens, and a vocabulary size of W = 13, 649 unique words. The second corpus consists of
a large collection of extracted abstracts from the CiteSeer digital library Lawrence et al. [1999],
with D = 150, 045 abstracts with A = 85, 465 authors and N = 10, 810, 003 word tokens and a
vocabulary of W = 30, 799 unique words. The third corpus is the recently released Enron email
data set2, where we used a set of D = 121, 298 emails, with A = 11, 195 unique authors, and
N = 4, 699, 573 word tokens. We preprocessed each set of documents by removing stop words from
a standard list.

For each data set we ran 10 different Markov chains, where each was started from a different
set of random assignments of authors and topics. Each of the 10 Markov chains was run for a fixed
number of 2000 iterations. For the NIPS data set and a 100-topic solution, 2000 iterations of the
Gibbs sampler took 12 hours of wall-clock time on a standard 2.5 Ghz PC workstation (22 seconds
per iteration). For a 300-topic solution, CiteSeer took on the order of 200 hours for 2000 iterations
(6 minutes per iteration), and for a 200-topic solution Enron took 23 hours for 2000 iterations (42
secs per iteration).

As mentioned earlier, in the experiments described in this paper we do not estimate the hyper-
parameters α and β—instead they are fixed at 50/T and 0.01 respectively in each of the experiments
described below.

1Available on-line at http://www.cs.toronto.edu/˜roweis/data.html
2Available on-line at http://www-2.cs.cmu.edu/˜enron/
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4.1 Analyzing the Gibbs Sampler using Perplexity

Assessing the convergence of the Markov chain used to sample a set of variables is a common
issue that arises in applying MCMC techniques. This issue can be divided into two questions: the
practical question of when the performance of a model trained by sampling begins to level out, and
the theoretical question of when the Markov chain actually reaches the posterior distribution. In
general, for real data sets, there is no foolproof method for answering the latter question. In this
paper we will focus on the former, using the perplexity of the model on test documents to evaluate
when the performance of the model begins to stabilize.

The perplexity score of a new unobserved document d that contains words wd, and is conditioned
on the known authors of the document ad, is defined as

Perplexity(wd|ad,D
train) = exp

(

−
log p(wd|ad,D

train)

Nd

)

(11)

where p(wd|ad,D
train) is the probability assigned by the author topic model (trained on Dtrain) to

the words wd in the test document, conditioned on the known authors ad of the test document, and
where Nd is the number of words in the test document. For multiple test documents, we report the

average perplexity over documents, i.e., 〈Perplexity〉 =
∑Dtest

d=1 Perplexity(wd|ad,D
train)/Dtest.

The lower the perplexity the better the performance of the model.
We can obtain an approximate estimate of perplexity by averaging over multiple samples, as in

Equation 10:

p(wd|ad,D
train) ≈

1

S

S
∑

s=1

Nd
∏

i=1





1

Ad

∑

a∈Ad,t

E[θatφtwi
|xs, zs,Dtrain, α, β]



 .

In order to ensure that the sampler output covers the entire space we run multiple replications of
the MCMC, i.e., the samples are generated from multiple chains, each starting at a different state
(e.g., [Brooks, 1998]). Empirical results with both the CiteSeer and NIPS data sets, using different
values for S, indicated that S = 10 samples is a reasonable choice to get a good approximation of
the perplexity.

Figure 4 shows perplexity as a function of the number of iterations of the Gibbs sampler, for
a model with 300 topics fit to the CiteSeer data. Samples xs, zs obtained from the Gibbs sampler
after s iterations (where s is the x-axis in the graph) are used to produce a perplexity score on
test documents. Each point represents the averaged perplexity over Dtest = 7502 CiteSeer test
documents. The inset in Figure 4 shows the perplexity for two different cases. The upper curves
show the perplexity derived from a single sample S = 1 (upper curves), for 10 different such samples
(10 different Gibbs sampler runs). The lower curve in the inset shows the perplexity obtained from
averaging over S = 10 samples. It is clear from the figure that averaging helps, i.e., significantly
better predictions (lower perplexity) are obtained when using multiple samples from the Gibbs
sampler than just a single sample.

It also appears from Figure 4 that performance of models trained using the Gibbs sampler
appears to stabilize rather quickly (after about 100 iterations), at least in terms of perplexity on
test documents. While this is far from a formal diagnostic test of convergence, it is nonetheless
reassuring, and when combined with the results on topic stability and topic interpretation in the
next sections, lends some confidence that the model finds a relatively stable topic-based representa-
tion of the corpus. Qualitatively similar results were obtained for the NIPS corpus, i.e., averaging
provides a significant reduction in perplexity and the perplexity values “flatten out” after a 100 or
so iterations of the Gibbs sampler.

13



iterations
0 20 40 60 80 100 120 140 160 180 200 2000

pe
rp

le
xi

ty

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

20 40 60 80
2500

2600

2700

2800

2900

3000
S = 10
S = 1

Figure 4: Perplexity as a function of iterations of the Gibbs sampler for a T = 300 model fit to
the CiteSeer dataset. The inset shows the perplexity values (upper curves) from 10 individual
chains during early iterations of the sampler, while the lower curve shows the perplexity obtained
by averaging these 10 chains. The full graph shows the perplexity from averaging again, but now
over a larger range of sampling iterations.

4.2 Topic Stability

While perplexity computations can and should be averaged over different Gibbs sampler runs,
other applications of the model rely on the interpretations of individual topics and are based on
the analysis of individual samples. Because of exchangeability of the topics, it is possible that
quite different topic solutions are found across samples. In practice, however, we have found that
the topic solutions are relatively stable across samples, with only a small subset of unique topics
appearing in any sample. We assessed topic stability by a greedy alignment algorithm that tries to
find the best one-to-one topic correspondences across samples. The algorithm calculates all pairwise
symmetrized KL distances between the T topic distributions over words from two different samples
(in this analysis, we ignored the accompanying distributions over authors). It starts by finding the
topic pair with lowest (symmetrized) KL distance and places those in correspondence, followed in
greedy fashion with the next best topic pair.

Figure 5 illustrates the alignment results for two 100 topic samples for the NIPS data set taken
at 2000 iterations from different Gibbs sampler runs. The bottom panel shows the rearranged
distance matrix that shows a strong diagonal structure. Darker colors indicate lower KL distances.
The top panel shows the best and worst aligned pair of topics across two samples (corresponding
to the top-left and bottom-right pair of topics on the diagonal of the distance matrix). The best
aligned topic pair has an almost identical probability distribution over words whereas the worst
aligned topic pair shows no correspondence at all. Roughly 80 of 100 topics have a reasonable
degree of correspondence that would be associated with the same subjective interpretation. We
obtained similar results for the CiteSeer data set.

4.3 Interpreting Author Topic Model Results

We can use point estimates of the author topic parameters to look at specific author-topic and
topic-word distributions and related quantities that can be derived from these parameters (such as
the probability of an author given a randomly selected word from a topic). In the results described
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WORD PROB. WORD PROB. WORD PROB. WORD PROB.

MOTOR .0415 MOTOR .0405 ORDER .1748 FUNCTION .0913

TRAJECTORY .0311 ARM .0297 SCALE .0527 ORDER .0637

ARM .0267 TRAJECTORY .0296 HIGHER .0353 EQUATION .0482

HAND .0224 HAND .0244 MULTI .0281 TERMS .0273

MOVEMENT .0217 MOVEMENT .0227 NOTE .0276 TERM .0269

INVERSE .0190 INVERSE .0209 VOLUME .0188 THEORY .0138

DYNAMICS .0188 JOINT .0208 TERMS .0185 APPROXIMATION .0137

CONTROL .0181 DYNAMICS .0179 STRUCTURE .0170 FUNCTIONS .0137

JOINT .0176 CONTROL .0152 SCALES .0169 FORM .0136

POSITION .0166 POSITION .0152 INVARIANT .0117 OBTAINED .0126

BEST KL = 1.03 WORST KL = 9.49

sample 1 sample 2 sample 1 sample 2

topic 81 topic 41 topic 64 topic 22 
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Figure 5: Topic stability across two different runs on the NIPS corpus: best and worst aligned
topics (top), and KL distance matrix between topics (bottom).
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below we take a specific sample xs, zs after 2000 iterations from a single (arbitrarily selected) Gibbs
run, and then generate point estimates of Φ and Θ using Equation 8. Equations for computing the
conditional probabilities in the different tables are provided in Appendix B.

Complete lists of tables for the 100-topic NIPS model, the 300-topic CiteSeer model, and the
200-topic Enron email model are available at http://www.datalab.uci.edu/author-topic. In
addition there is an online JAVA browser for interactively exploring authors, topics, and documents.

4.3.1 Examples from a NIPS Author Topic Model

The NIPS conference is characterized by contributions from a number of different research com-
munities within both machine learning and neuroscience. Figure 1 illustrates examples of 8 topics
(out of 100) as learned by the model for the NIPS corpus. Each topic is illustrated with (a) the
top 10 words most likely to be generated conditioned on the topic, and (b) the top 10 most likely
authors to have generated a word conditioned on the topic. The first 6 topics we selected for
display (left to right across the top and the first two on the left on the bottom) are quite specific
representations of different topics that have been popular at the NIPS conference over the time-
period 1987–99: visual modeling, handwritten character recognition, SVMs and kernel methods,
source separation methods, Bayesian estimation, and reinforcement learning. For each topic, the
top 10 most likely authors are well-known authors in terms of NIPS papers written on these topics
(e.g., Singh, Barto, and Sutton in reinforcement learning). While most (order of 80 to 90%) of
the 100 topics in the model are similarly specific in terms of semantic content, the remaining 2
topics we display illustrate some of the other types of “topics” discovered by the model. Topic
62 is somewhat generic, covering a broad set of terms typical to NIPS papers, with a somewhat
flatter distribution over authors compared to other topics. These types of topics tend to be broadly
spread over many documents in the corpus, and can be viewed as syntactic in the context of NIPS
papers. In contrast, the “semantic content topics” (such as the first 6 topics in Figure 1) are more
narrowly concentrated within a smaller set of documents. Topic 16 is somewhat oriented towards
Geoff Hinton’s group at the University of Toronto, containing the words that commonly appeared
in NIPS papers authored by members of that research group, with an author list consisting largely
of Hinton and his students and collaborators.

4.3.2 Examples from a CiteSeer Author Topic Model

Results from a 300 topic model for a set of 150,000 CiteSeer abstracts are shown in Figure 6, again
in terms of top 10 most likely words and top 10 most likely authors per topic. The first four
topics describe specific areas within computer science, covering Bayesian learning, data mining,
information retrieval, and database querying. The authors associated with each topic are quite
specific to the words in that topic. For example, the most likely authors for the Bayesian learning
topic are well-known authors who frequently write on this topic at conferences such as UAI and
NIPS. Similarly, for the data mining topic, all of the 10 most likely authors are frequent contributors
of papers at the annual ACM SIGKDD conference on data mining. The full set of 300 topics
discovered by the model for CiteSeer provide a broad coverage of modern computer science and
can be explored online using the aforementioned browser tool.

Not all documents in CiteSeer relate to computer science. Topic 82, on the right side of Figure
6, is associated with astronomy. This is due to the fact that CiteSeer does not crawl the Web
looking for computer science papers per se, but instead searches for documents that are similar in
some sense to a general template format for research papers.
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WORD PROB. WORD PROB. WORD PROB. WORD PROB. WORD PROB.
BAYESIAN .0743 DATA .1577 RETRIEVAL .1209 QUERY .1798 STARS .0165

MODEL .0505 MINING .0671 INFORMATION .0623 QUERIES .1262 OBSERVATIONS .0160
MODELS .0401 DISCOVERY .0425 TEXT .0539 DATABASE .0432 SOLAR .0153
PRIOR .0277 ASSOCIATION .0326 DOCUMENTS .0422 RELATIONAL .0396 RAY .0134
DATA .0271 ATTRIBUTES .0325 DOCUMENT .0329 DATABASES .0298 MAGNETIC .0130

MIXTURE .0254 LARGE .0288 QUERY .0243 DATA .0159 GALAXIES .0129
INFERENCE .0222 DATABASES .0234 CONTENT .0241 OPTIMIZATION .0147 MASS .0126

EM .0211 PATTERNS .0212 INDEXING .0238 RELATIONS .0127 EMISSION .0115
POSTERIOR .0200 KNOWLEDGE .0172 BASED .0195 ANSWER .0118 SUBJECT .0112
STATISTICAL .0197 ITEMS .0171 USER .0175 RESULT .0115 DENSITY .0111

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.
Ghahramani_Z .0098 Han_J .0165 Oard_D .0094 Suciu_D .0120 Falcke_H .0167

Koller_D .0083 Zaki_M .0088 Jones_K .0064 Libkin_L .0098 Linsky_J .0152
Friedman_N .0078 Cheung_D .0076 Croft_W .0060 Wong_L .0093 Butler_R .0090

Heckerman_D .0075 Liu_B .0067 Hawking_D .0058 Naughton_J .0076 Bjorkman_K .0068
Jordan_M .0066 Mannila_H .0053 Callan_J .0052 Levy_A .0066 Christen.-D_J .0067

Williams_C .0058 Rastogi_R .0050 Smeaton_A .0052 Abiteboul_S .0065 Mursula_K .0067
Jaakkola_T .0053 Hamilton_H .0050 Voorhees_E .0052 Lenzerini_M .0058 Knapp_G .0065
Hinton_G .0052 Shim_K .0047 Schauble_P .0047 Raschid_L .0055 Nagar_N .0059
Raftery_A .0050 Toivonen_H .0047 Singhal_A .0042 DeWitt_D .0055 Cranmer_S .0055
Tresp_V .0049 Ng_R .0047 Fuhr_N .0042 Ross_K .0051 Gregg_M .0055

TOPIC 82TOPIC 54 TOPIC 136 TOPIC 23 TOPIC 49

Figure 6: Examples of topics and authors learned from the CiteSeer corpus.

WORD PROB. WORD PROB. WORD PROB. WORD PROB. WORD PROB.

TEXANS .0145 GOD .0357 ENVIRONMENTAL .0291 FERC .0554 POWER .0915

WIN .0143 LIFE .0272 AIR .0232 MARKET .0328 CALIFORNIA .0756

FOOTBALL .0137 MAN .0116 MTBE .0190 ISO .0226 ELECTRICITY .0331

FANTASY .0129 PEOPLE .0103 EMISSIONS .0170 COMMISSION .0215 UTILITIES .0253

SPORTSLINE .0129 CHRIST .0092 CLEAN .0143 ORDER .0212 PRICES .0249

PLAY .0123 FAITH .0083 EPA .0133 FILING .0149 MARKET .0244

TEAM .0114 LORD .0079 PENDING .0129 COMMENTS .0116 PRICE .0207

GAME .0112 JESUS .0075 SAFETY .0104 PRICE .0116 UTILITY .0140

SPORTS .0110 SPIRITUAL .0066 WATER .0092 CALIFORNIA .0110 CUSTOMERS .0134

GAMES .0109 VISIT .0065 GASOLINE .0086 FILED .0110 ELECTRIC .0120

topic 18topic 182 topic 113 topic 23 topic 54

Figure 7: Examples of topics learned from the Enron email corpus.
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4.4 Examples from an Enron Author Topic Model

Figure 7 shows a set of topics from a model trained on a set of 120,000 publicly available Enron
emails. We automatically removed all text from the emails that was not necessarily written by the
sender, such as attachments or text that could be clearly identified as being from an earlier email
(e.g., in reply quotes). The topics learned by the model span both topics that one might expect
to see discussed in emails within a company that deals with energy (topics 23 and 54) as well as
“topical” topics such as topic 18 that directly relate to the California energy crisis in 2001–2002.
Two of the topics are not directly related to official Enron business, but instead describe employees’
personal interests such as Texas sports (182) and Christianity (113).

Figure 8 shows a table with the most likely topics for 6 of the 11,195 possible authors (email
accounts). The first three are institutional accounts: Enron General Announcements, Outlook
Migration Team (presumably an internal email account at Enron for announcements related to
the Outlook email program), and The Motley Fool (a company that provides financial education
and advice). The topics associated with these authors are quite intuitive. The most likely topic
(p = 0.942) for Enron General Announcements is a topic with words that might typically be
associated with general corporate information for Enron employees. The topic distribution for
the Outlook Migration Team is skewed towards a single topic (p = 0.991) containing words that
are quite specific to the Outlook email program. Likely topics for the Motley Fool include both
finance and investing topics, as well as topics with HTML-related words and a topic for dates. The
other 3 authors shown in Figure 8 correspond to email accounts for specific individuals in Enron—
although the original data identifies individual names for these accounts we do not show them
here to respect the privacy of these individuals. Author A’s topics are typical of what we might
expect of a senior employee in Enron, with topics related to rates and customers, to the FERC
(Federal Energy Regulatory Commission), and to the California energy crisis (including mention of
the California governor at the time, Gray Davis). Author B’s topics are focused more on day-to-day
Enron operations (pipelines, contracts, and facilities) with an additional topic for more personal
matters (“good, time”, etc). Finally, Author C appears to be involved in legal aspects of Enron’s
international activities, particularly in Central and South America. The diversity of the topic
distributions for different authors in this example demonstrates clearly how the author topic model
can learn about the roles and interests of different individuals from text that they have written.

5 Illustrative Applications of the Author Topic Model

In this section we provide some illustrative examples of how the author topic model can be used to
answer different types of questions and prediction problems about authors and documents.

5.1 Automated Detection of Unusual Papers by Authors

Perplexity can be used to estimate the likelihood of a particular document conditioned on a partic-
ular author. We first train the model on Dtrain. For a specific author name â of interest, we then
score each document by that author as follows. We calculate a perplexity score for each document
in Dtrain as if â was the only author, i.e., even for a document with other authors, we condition
on only â.

We use the same equation for perplexity as defined in Section 4.2 except that now wd is a doc-
ument that is in the training data Dtrain. Thus, the words in a document are not conditionally in-
dependent, given the distribution over the model parameters Θ and Φ, as inferred from the training
documents. We use as a tractable approximation P (wd|â,Dtrain) ≈ 1

S

∑

s

∏

i

∑

t E[θâtφtwi
|xs, zs,Dtrain, α, β].
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PROB. TOPIC WORDS

.9420 39 ENRON, EMPLOYEES, DAY, CARD, BUILDING, CALL, PLANTS, MEMBERSHIP, TRANSFER, CENTER

.0314 200 DECEMBER, JANUARY, MARCH, NOVEMBER, FEBRUARY, WEEK, FRIDAY, SEPTEMBER, WEDNESDAY, TUESDAY

.0028 147 MAIL, CUSTOMER, SERVICE, LIST, SEND, ADDRESS, CONTACT, RECEIVE, BUSINESS, REPLY

.0026 125 MEETING, CALL, MONDAY, CONFERENCE, FRIDAY, TIME, THURSDAY, OFFICE, MORNING, TUESDAY

PROB. TOPIC WORDS

.9910 82 OUTLOOK, MIGRATION, NOTES, OWA, INFORMATION, EMAIL, BUTTON, SEND, MAILBOX, ACCESS

.0016 91 ENRON, CORP, SERVICES, BROADBAND, EBS, ADDITION, BUILDING, INCLUDES, ATTACHMENT, COMPETITION

.0005 77 EMAIL, ADDRESS, INTERNET, SEND, ECT, MESSAGING, BUSINESS, ADMINISTRATION, QUESTIONS, SUPPORT

.0004 83 ISSUE, GENERAL, ISSUES, CASE, DUE, INVOLVED, DISCUSSION, MENTIONED, PLACE, POINT

PROB. TOPIC WORDS

.3593 17 ANALYST, SERVICES, INDUSTRY, TELECOM, ENERGY, MARKETS, FOOL, BANDWIDTH, ESOURCE, TRAINING

.0773 177 ACCOUNT, ONLINE, OFFER, TRADE, TIME, INVESTMENT, ACCOUNTS, FREE, INFORMATION, ACCESS

.0713 169 HTTP, WWW, GIF, IMAGES, ASP, SPACER, EMAIL, CGI, HTML, CLICK

.0660 200 DECEMBER, JANUARY, MARCH, NOVEMBER, FEBRUARY, WEEK, FRIDAY, SEPTEMBER, WEDNESDAY, TUESDAY

PROB. TOPIC WORDS

.1855 105 CUSTOMERS, RATE, PG, CPUC, SCE, UTILITY, ACCESS, CUSTOMER, DECISION, DIRECT

.1289 54 FERC, MARKET, ISO, COMMISSION, ORDER, FILING, COMMENTS, PRICE, CALIFORNIA, FILED

.0920 44 MILLION, BILLION, YEAR, NEWS, CORP, CONTRACTS, GAS, COMPANY, COMPANIES, WATER

.0719 124 STATE, PUBLIC, DAVIS, SAN, GOVERNOR, COMMISSION, GOV, SUMMER, COSTS, HOUR

PROB. TOPIC WORDS

.2590 178 CAPACITY, GAS, EL, PASO, PIPELINE, MMBTU, CALIFORNIA, SHIPPERS, MMCF, RATE

.0902 74 GAS, CONTRACT, DAY, VOLUMES, CHANGE, DAILY, DAN, MONTH, KIM, CONTRACTS

.0645 70 GOOD, TIME, WORK, TALK, DON, BACK, WEEK, DIDN, THOUGHT, SEND

.0599 116 SYSTEM, FACILITIES, TIME, EXISTING, SERVICES, BASED, ADDITIONAL, CURRENT, END, AREA

PROB. TOPIC WORDS

.1268 42 MEXICO, ARGENTINA, ANDREA, BRAZIL, TAX, OFFICE, LOCAL, RICHARD, COPY, STAFF

.1045 189 AGREEMENT, ENA, LANGUAGE, CONTRACT, TRANSACTION, DEAL, FORWARD, REVIEW, TERMS, QUESTIONS

.0815 176 MARK, TRADING, LEGAL, LONDON, DERIVATIVES, ENRONONLINE, TRADE, ENTITY, COUNTERPARTY, HOUSTON

.0784 135 SUBJECT, REQUIRED, INCLUDING, BASIS, POLICY, BASED, APPROVAL, APPROVED, RIGHTS, DAYS

AUTHOR = Individual C  (159 emails)

AUTHOR = Individual B  (193 emails)

AUTHOR = Enron General Announcements (509 emails)

AUTHOR = Outlook Migration Team (132 emails)

AUTHOR = The Motley Fool (145 emails)

AUTHOR = Individual A (411 emails)

Figure 8: Selected “authors” from the Enron data set, and the four highest probability topics for
each author from the author topic model.
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For our CiteSeer corpus, author names are provided with a first initial and second name, e.g.,
A Einstein. This means of course that for some very common names (e.g., J Wang or J Smith)
there will be multiple actual individuals represented by a single name in the model. This “noise”
in the data provides an opportunity to investigate whether perplexity scores are able to help in
separating documents from different authors who have the same first initial and last name.

We focused on names of four well-known researchers in machine learning, Michael Jordan
(M Jordan), Daphne Koller (D Koller), Tom Mitchell (T Mitchell) and Stuart Russell (S Russell),
and derived perplexity scores in the manner described above using S = 10 samples. In Table 2, for
each author, we list the two CiteSeer abstracts with the highest perplexity scores (most surpris-
ing relative to this author’s model), the median perplexity, and the two abstracts with the lowest
perplexity scores (least surprising). (Perplexity scores for all papers with these author names are
provided online at http://www.datalab.uci.edu/author-topic).

In these examples, the most perplexing papers (from the model’s viewpoint) for each author
are papers that were written by a different person than the person we are primarily interested in.
In each case (for example for M Jordan) most of the papers in the data set for this author were
written by the machine learning researcher of interest (in this case, Michael Jordan of UC Berkeley).
Thus, the model is primarily “tuned” to the interests of that author and assigns relatively high
perplexity scores to the small number of papers in the set that were written by a different author
with the same name. For M Jordan, the most perplexing paper is on programming languages
and was in fact written by Mick Jordan of Sun Microsystems. In fact, of the 6 most perplexing
papers for M Jordan, 4 are on software management and the JAVA programming language, all
written by Mick Jordan. The other two papers were in fact co-authored by Michael Jordan of UC
Berkeley, but in the area of link analysis, which is an unusual topic relative to the many of machine
learning-oriented topics that he has typically written about in the past. The highest perplexity
paper for T Mitchell is in fact authored by Toby Mitchell and is on the topic of estimating radiation
doses (quite different from the machine learning work of Tom Mitchell). The two most perplexing
papers for D Koller are also not authored by Daphne Koller of Stanford, but by two different
researchers, Daniel Koller and David Koller. Moreover, the two most typical (lowest perplexity)
papers of D Koller are prototypical representatives of the research of Daphne Koller, with words
such as learning, Bayesian and probabilistic network appearing in the titles of these two papers.
For S Russell the two most unlikely papers are about the Mungi operating system and have Stephen
Russell as an author. These papers are relative outliers in terms of their perplexity scores since
most of the papers for S Russell are about reasoning and learning and were written by Stuart
Russell from UC Berkeley.

5.2 Topics and Authors for New Documents

In many applications, we would like to quickly assess the topic and author assignments for new
documents not contained in a text collection. Figure 9 shows an example of this type of inference.
CiteSeer abstracts from two authors, B Scholkopf and A Darwiche were combined together into
a single “pseudo-abstract” and the document was treated as if they had both written it. These
two authors work in relatively different but not entirely unrelated sub-areas of computer science:
Scholkopf in machine learning and Darwiche in probabilistic reasoning. The document is then
parsed by the model. i.e., words are assigned to these authors. We would hope that the author
topic model, conditioned now on these two authors, can separate the combined abstract into its
component parts.

Instead of rerunning the algorithm for every new document added to a text collection, our
strategy instead is to apply an efficient Monte Carlo algorithm that runs only on the word tokens
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[AUTH1=Scholkopf_B ( 69%, 31%)] 
[AUTH2=Darwiche_A ( 72%, 28%)] 

A method1 is described which like the kernel1 trick1 in support1 vector1 machines1 SVMs1 lets us generalize distance1 
based2 algorithms to operate in feature1 spaces usually nonlinearly related to the input1 space This is done by 
identifying a class of kernels1 which can be represented as norm1 based2 distances1 in Hilbert spaces It turns1 out that 
common kernel1 algorithms such as SVMs1 and kernel1 PCA1 are actually really distance1 based2 algorithms and can be 
run2 with that class of kernels1 too As well as providing1 a useful new insight1 into how these algorithms work the 
present2 work can form the basis1 for conceiving new algorithms  

This paper presents2 a comprehensive approach for model2 based2 diagnosis2 which includes proposals for 
characterizing and computing2 preferred2 diagnoses2 assuming that the system2 description2 is augmented with a 
system2 structure2 a directed2 graph2 explicating the interconnections between system2 components2 Specifically we 
first introduce the notion of a consequence2 which is a syntactically2 unconstrained propositional2 sentence2 that 
characterizes all consistency2 based2 diagnoses2 and show2 that standard2 characterizations of diagnoses2 such as 
minimal conflicts1 correspond to syntactic2 variations1 on a consequence2 Second we propose a new syntactic2 variation 
on the consequence2 known as negation2 normal form NNF and discuss its merits compared to standard variations 
Third we introduce a basic algorithm2 for computing consequences in NNF given a structured system2 description We 
show that if the system2 structure2 does not contain cycles2 then there is always a linear size2 consequence2 in NNF 
which can be computed in linear time2 For arbitrary1 system2 structures2 we show a precise connection between the 
complexity2 of computing2 consequences and the topology of the underlying system2 structure2 Finally we present2 an 
algorithm2 that enumerates2 the preferred2 diagnoses2 characterized by a consequence2 The algorithm2 is shown1 to take 
linear time2 in the size2 of the consequence2 if the preference criterion1 satisfies some general conditions  

 Figure 9: Automated labeling of a pseudo-abstract from two authors by the model.

in the new document, leading quickly to likely assignments of words to authors and topics. We start
by assigning words randomly to co-authors and topics. We then sample new assignments of words
to topics and authors by applying the Gibbs sampler only to the word tokens in the new document
each time temporarily updating the count matrices CWT and CAT . The resulting assignments of
words to authors and topics can be saved after a few iterations (10 iterations in our simulations).

Figure 9 shows the results after the model has classified each word according to the most likely
author. Note that the model only sees a bag of words and is not aware of the word order that we
see in the figure. For readers viewing this in color, the more red a word is then the more likely
it is to have been generated (according to the model) by Scholkopf (and blue for Darwiche). For
readers viewing the figure in black and white, the superscript 1 indicates words classified by the
model for Scholkopf, and superscript 2 for Darwiche. The results show that all of the significant
content words (such as kernel, support, vector, diagnoses, directed, graph) are classified correctly.
As we might expect most of the “errors” are words (such as “based” or “criterion”) that are not
specific to either authors’ area of research. Were we to use word order in the classification, and
classify (for example) whole sentences, the accuracy would increase further. As it is, the model
correctly classifies 69% of Scholkopf’s words and 72% of Darwiche’s.

6 Comparing Different Generative Models

In this section we describe several alternative generative models that model authors and words and
discuss similarities and differences between these models with our proposed author topic model.
Many of these models are special cases of the author topic model. Appendix C presents a char-
acterization of several of these models in terms of methods of matrix factorization, which reveals
some of these relationships. In this section, we also compare the predictive power of the author
topic model (in terms of perplexity on out-of-sample documents) with a number of these alternative
models.
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Figure 10: Different generative models for documents.

6.1 A Simple Topic (LDA) Model

As mentioned earlier in the paper, there have been a number of other earlier approaches to modeling
document content are based on the idea that the probability distribution over words in a document
can be expressed as a mixture of topics, where each topic is a probability distribution over words
[Blei et al., 2003, Hofmann, 1999, Ueda and Saito, 2003, Iyer and Ostendorf, 1999]. Here we will
focus on one such model—Latent Dirichlet Allocation [LDA; Blei et al., 2003].3 In LDA, the
generation of a corpus is a three step process. First, for each document, a distribution over topics
is sampled from a Dirichlet distribution. Second, for each word in the document, a single topic is
chosen according to this distribution. Finally, each word is sampled from a multinomial distribution
over words specific to the sampled topic.

The parameters of this model are similar to those of the author topic model: Φ represents a
distribution over words for each topic, and Θ represents a distribution over topics for each document.
Using this notation, the generative process can be written as:

1. For each document d = 1, ..., D choose θd ∼ Dirichlet(α)
For each topic t = 1, ..., T choose φt ∼ Dirichlet(β)

2. For each document d = 1, ..., D
For each word wi, indexed by i = 1, ..Nd

Conditioned on d choose a topic zi ∼ Discrete(θd)
Conditioned on zi choose a word wi ∼ Discrete(φzi

)

A graphical model corresponding to this process is shown in Figure 10(a).
Latent Dirichlet Allocation is a special case of the author topic model, corresponding to the

situation in which each document has a unique author. Estimating Φ and Θ provides information
about the topics that participate in a corpus and the weights of those topics in each document
respectively. However, this topic model provides no explicit information about the interests of

3The model we describe is actually the smoothed LDA model with symmetric Dirichlet priors [Blei et al., 2003] as
this is closest to the author topic model.
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authors: while it is informative about the content of documents, authors may produce several
documents—often with co-authors—and it is consequently unclear how the topics used in these
documents might be used to describe the interests of the authors.

6.2 A Simple Author Model

Topic models illustrate how documents can be modeled as mixtures of probability distributions.
This suggests a simple method for modeling the interests of authors, namely where words in docu-
ments are modeled directly by author-word distributions without any hidden latent topic variable,
as originally proposed by McCallum [1999]. Assume that a group of authors, ad, decide to write
the document d. For each word in the document an author is chosen uniformly at random, and a
word is chosen from a probability distribution over words that is specific to that author.

In this model, Φ denotes the probability distribution over words associated with each author.
The generative process is as follows:

1. For each author a = 1, ..., A choose θa ∼ Dirichlet(α)
2. For each document d = 1, ..., D

Given the set of authors ad

For each word wi, indexed by i = 1, ..Nd

Conditioned on ad choose an author xi ∼ Uniform(ad)
Conditioned on xi choose a word wi ∼ Discrete(θxi

)

A graphical model corresponding to this generative process is shown in Figure 10(b).
This model is also a special case of the author topic model, corresponding to a situation in which

there is a unique topic for each author. When there is a single author per document, it is equivalent
to a naive Bayes model. Estimating Φ provides information about the interests of authors, and
can be used to answer queries about author similarity and authors who write on subjects similar
to an observed document. However, this author model does not provide any information about
document content that goes beyond the words that appear in the document and the identities of
authors of the document.

6.3 An Author Topic Model with Fictitious Authors

A potential weakness of the author topic model is that it does not allow for any idiosyncratic
aspects of a document. The document is assumed to be generated by a mixture of the authors’ topic
distributions and nothing else. The LDA model is in a sense at the other end of this spectrum—it
allows each document to have its own document-specific topic mixture. In this context it is natural
to explore models that lie between these two extremes. One such model can be obtained by adding
an additional unique “fictitious” author to each document. This fictitious author can account for
topics and words that appear to be document-specific and not accounted for by the authors. The
fictitious author mechanism in effect provides the advantage of an LDA element to the author topic
model. In terms of the algorithm, the only difference between the standard author topic algorithm
and the one that contains fictitious authors is that the number of authors is increased from A
to A + D, and the number of authors per document Ad is increased by 1—the time complexity
of the algorithm increases accordingly. One also has the option of putting a uniform distribution
over authors (including the fictitious author) or allowing a non-uniform distribution over both true
authors and the fictitious author.
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Figure 11: Averaged perplexity as a function of observed words in the test documents. The main
plot shows results for the topic (LDA) model, the author topic (AT) model, and the author topic
model with fictitious authors. The insert shows results for the author model and author topic
model.

6.4 Comparing Perplexity for Different Models

We compare the predictive power (using perplexity) of the models discussed in this section on the
NIPS document set. We divided the D = 1, 740 NIPS papers into a training set of 1,557 papers and
a test set of 183 papers of which 102 are single-authored papers. We chose the test data documents
such that each author of a test set document also appears in the training set as an author. For each
model, we generated S = 10 chains from the Gibbs sampler, each starting from a different initial
conditions. We kept the 2000th sample from each chain and estimated the average perplexity using
Equation 11. For all models we fixed the number of topics at T = 100 and used the same training
set Dtrain and test set. The hyperparameter values were set in the same manner as in earlier
experiments, i.e, in the LDA model and the author topic model α = 50/T = 0.5 and β = 0.01. The
single hyperparameter of the author model was set to 0.01.

In Figure 11 we present the average perplexity as a function of the number of observed words
from the test documents. All models were trained on the training data and then a number of
randomly selected words from the test documents (indicated on the x-axis) were used for further
training. In order to reduce the time complexity of the algorithm we approximated the posterior
distributions by making use of the same Monte-Carlo chains for all derivations where for each point
in the graph the chain is trained further only on the observed test words. In the graph we present
results for the author topic model, the topic (LDA) model, and the author topic (AT) model with
fictitious authors. The insert shows the author model and the author topic model.

The author model (insert) has by far the worst performance—including latent topics significantly
improves the predictive log-likelihood of such a model (lower curve in the insert). In the main plot,
for relatively small numbers of observed words (up to 16), the author topic models (with and

24



without fictitious authors) have lower perplexity than the LDA model. The LDA model learns a
topic mixture for each document in the training data. Thus, on a new document with zero or even
just a few observed words, it is difficult for the LDA model to provide predictions that are tuned to
that document. In contrast, the author topic model performs better than LDA with few (or even
zero) words observed from a document, by making use of available the side-information about the
authors of the document.

Once enough words from a specific document have been observed the predictive performance
of the LDA model improves since it can learn a more accurate predictive model for that specific
document. On average, after about 16 words, the LDA predictions have lower perplexity than the
author-topic predictions. Above 16 observed words, on average, the author topic model is not as
accurate as the LDA model since it does not have a document-specific topic mixture that can be
tuned to the specific word distribution of the test document. Adding one (unique) fictitious author
per document results in a curve that is systematically better than the author topic model (without
a fictitious author). The fictitious author model is not quite as accurate as the LDA (topic) model
after 64 words or so (on average). This is intuitively to be expected: the presence of a fictitious
author gives this model more modeling flexibility compared to the author topic model, but it is
still more constrained than the LDA model for a specific document.

7 Conclusions

The author topic model proposed in this paper provides a relatively simple probabilistic model for
exploring the relationships between authors, documents, topics, and words. This model provides
significantly improved predictive power in terms of perplexity compared to a more impoverished
author model, where the interests of authors are directly modeled with probability distributions
over words. When compared to the LDA topic model, the author topic model was shown to have
more focused priors when relatively little is known about a new document, but the LDA model can
better adapt its distribution over topics to the content of individual documents as more words are
observed. The primary benefit of the author topic model is that it allows us to explicitly include
authors in document models, providing a general framework for answering queries and making
predictions at the level of authors as well as the level of documents.

We presented results of applying the author topic model to large text corpora, including NIPS
proceedings papers, CiteSeer abstracts, and Enron emails. Potential applications include automatic
reviewer recommender systems where potential reviewers or reviewer panels are matched to papers
based on the words expressed in a paper as well the names of the authors. The author topic
model could be incorporated in author identification systems to infer the identity of an author of
a document not only on the basis of stylistic features, but also using the topics expressed in a
document.

The underlying probabilistic model of the author topic model is quite simple and ignores several
aspects of real-world document generation that could be explored with more advanced generative
models. For example, as with many statistical models of language, the generative process does not
make any assumptions about the order of words as they appear in documents. Griffiths et al. [2005]
present an extension of the LDA model in which words are factorized into function words, handled
by a hidden Markov model (HMM) and content words handled by a topic model. Because these
models automatically parse documents into content and non-content words, there is no the need
for a preprocessing stage where non-content related words are filtered out based on a predefined
stop-word list. These HMM extensions could also be incorporated into the author topic model, to
highlight parts of documents where content is expressed by particular authors.
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Beyond the authors of a document, there are several other sources of information that can
provide opportunities to learn about the set of topics expressed in a document. For example, for
email documents McCallum et al. [2004] propose an extension of the author topic model where
topics are conditioned on both the sender as well as the receiver. For scientific documents we have
explored simple extensions within the author topic modeling framework to generalize the notion of
an author to include any information source that might constrain the set of topics. For example,
one can redefine ad to include not only the set of authors for a document but also the set of
citations. In this manner, words and topics expressed in a document can be associated with either
an author or a citation. These extensions are attractive because they do not require changes to
the generative model. The set of topics could also be conditioned on other information about the
documents (beyond authors and citations), such as the journal source, the publication year, and the
institutional affiliation of the authors. An interesting direction for future work is to develop efficient
generative models where the distribution over topics is conditioned jointly on all such sources of
information.

Appendix A: Deriving the Sampling Equations in the Author Topic
Model

In this appendix, we set out the details of the derivation of the sampling equation, Equation 4, used
to generate the samples for the author topic model. Our starting point is Equation 2; It defines
the probability for a set of words. It contains probabilities of author and topic assignments and
the sums over all possible assignments. As usually happens with discrete random variables and
multinomial distribution, the probability distribution for the set of words can be manipulated to
include sums over all possible combinations of vector assignments, x,z,

P (w|α, β,A, T ) =

∫ ∫

p(Θ,Φ|α, β)

D
∏

d=1

[

1

Ad

]Nd
∑

x,z

∏

a∈ad

T
∏

t=1

W
∏

w=1

φ
CWT

wt

wt θ
CTA

ta

ta dΘdΦ (12)

The summation here goes through all possible combinations (sometimes called the trace over all

possible configurations), it contains
∏D

d=1

(

ANd

d × T Nd

)

different elements, different possible assign-

ments. The assignments are summarized into two variables, CTA
ta , the number of words assigned to

topic t for author a, and CWT
wt the number of words from the w entry in the vocabulary that are

assigned to topic t.
One should bear in mind that in the training phase, the word vector, w, is observed and the

aim is to estimate the posterior distributions of the latent variables. After these distributions
are estimated, as often happens in Bayesian models they become priors for estimates of word
distributions in new, test, documents. As a first step we estimate the posterior distribution of x and
z, the author and topic assignments to words. They are inferred by a standard sampling technique,
Gibbs sampling. Gibbs sampling requires knowing the full conditional probability distribution, the
probability of assigning topic t to the ith word in the dth document, conditioned on all observed
words and current assignments of authors and topics. This conditional distribution can be derived
from Equation 12.

By writing the Dirichlet distributions over Θ and Φ explicitly in Equation 12 one gets

P (w|α, β,A, T ) =
∑

x,z

∫ ∫

P (z,x,w,Θ,Φ|A, α, β) dΘdΦ (13)
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where

P (z,x,w,Θ,Φ|A, α, β) = Const

A
∏

a=1

T
∏

t=1

W
∏

w=1

θα−1
ta φβ−1

wt θ
CTA

ta

ta φ
CWT

wt

wt (14)

with

Const =

[

Γ(Tα)

(Γ(α))T

]A [

Γ(Wβ)

(Γ(β))W

]T D
∏

d=1

1

ANd

d

(15)

provided x assigns only authors a ∈ ad for each document d, and 0 otherwise. The integration over
both random variables, Θ and Φ, in Equation 13, is over the simplex. These Dirichlet integrals are

well-known (see, e.g, [Box and Tiao, 1973]), they are of the type
∫

∏M
m=1[x

km

m dxm] =
∏

M

m=1
Γ(km)

∑

M

m=1
km

,

with the integral over the simplex. Making use of this identity one obtains

P (z,x,w|A, α, β) = Const

A
∏

a=1

[

∏T
t=1 Γ(CTA

ta + α)

Γ(
∑

t′ C
TA
t′a + Tα)

]

T
∏

t=1

[

∏W
w=1 Γ(CWT

wt + β)

Γ(
∑

w′ CWT
w′t + Wβ)

]

(16)

Note that so far no approximation is employed. We need to estimate P (z,x|Dtrain, α, β)—this
estimation is carried by a Gibbs sampler. The Gibbs sampler utilizes the conditional distribution
in Equation 17, found by employing Bayes rule,

P (zi = t, xi = a|wi = w, z−i,x−i,w−i,A, α, β) =
P (z,x,w|A, α, β)

∑

zi,xi
P (z,x,w|A, α, β)

(17)

Here y
−i stands for all components of the vector y except for the ith component. Note that the

constant in Equation 15 cancels out, and from the Γ functions only terms that contain the value
of the ith word, w, and the assignment of the ith topic to t and the ith author to a, remain.

Appendix B: Computing probabilities from a single sample

In Figures 1, 2, 6, 7 we presented examples of topics, with predictive distributions for words and
authors given a particular topic assignment. In this appendix we provide the details on how to
compute these predictive distributions for a particular sample.

The probability that a new word, in a particular sample s, would be wN+1 = w, given that it
is generated from topic zN+1 = t, is given by

P (wN+1 = w|zN+1 = t) =
(CWT

wt )s + β
∑

w′(CWT
w′t )s + Wβ

. (18)

Similarly, the probability that a novel word generated by the author xN+1 = a would be assigned
to topic zN+1 = t is obtained by

P (zN+1 = t|xN+1 = a) =
(CTA

ta )s + α
∑

t′(C
TA
t′a )s + Tα

(19)

(Note that for the sake of clarity we omitted terms that we condition on from the probabilites

in this section; Terms such as xs, zs, Dtrain, α β and T ). We can also compute the probability
that a novel word is authored by author xN+1 = a given that it is assigned to topic zN+1 = t
given a sample from the posterior distribution, xs ,zs. The novel word is part of a new unobserved
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Figure 12: Matrix factorization interpretation of different models. (a) The author topic model (b)
A simple topic model. (c) A simple author model.

document that contains a single word and is authored by all authors in the corpus. One can first
calculate the joint probability of the author assignment as well as the topic assignment,

P (zN+1 = t, xN+1 = a) = P (zN+1 = t|xN+1 = a)P (xN+1 = a) =
1

A

(CTA
ta )s + α

∑

t′(C
TA
t′a )s + Tα

, (20)

and using Bayes rule one obtains

P (xN+1 = a|zN+1 = t) =

(CTA
ta

)s+α
∑

t′
(CTA

t′a
)s+Tα

∑

a′

(CTA

ta′
)s+α

∑

t′
(CTA

t′a′
)s+Tα

. (21)

Appendix C: Interpreting models as matrix factorization

The relationships among the models discussed in Section 6 can be illustrated by interpreting each
model as a form of matrix factorization [c.f. Lee and Seung, 1999, Canny, 2004]. Each model
specifies a different scheme for obtaining a probability distribution over words for each document
in a corpus. These distributions can be assembled into a W × D matrix P, where pwd is the
probability of word w in document d. In all three models, P is a product of matrices. As shown in
Figure 12, the models differ only in which matrices are used.

In the author topic model, P is the product of three matrices: the W ×T matrix of distributions
over words Φ, the T × A matrix of distributions over topics Θ, and an A × D matrix A, as shown
in Figure 12 (a). The matrix A expresses the uniform distribution over authors for each document,
with aad taking value 1

Ad
if a ∈ ad and zero otherwise. The other models each collapse together one
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pair of matrices in this product. In the topic model, Θ and A are collapsed together into a single
T × D matrix Θ, as shown in Figure 12 (b). In the author model, Φ and Θ are collapsed together
into a single W × A matrix Φ, as shown in Figure 12 (c).

Under this view of the different models, parameter estimation can be construed as matrix
factorization. As Hofmann [1999] pointed out for the topic model, finding the maximum-likelihood
estimates for Θ and Φ is equivalent to minimizing the Kullback-Leibler divergence between P and
the empirical distribution over words in each document. The three different models thus correspond
to three different schemes for constructing an approximate factorization of the matrix of empirical
probabilities, differing only in the elements into which that matrix is decomposed.
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