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Abstract

In this paper we address the problem of clus-
tering sets of curve or trajectory data gener-
ated by groups of objects or individuals. The
focus is to model curve data directly using
a set of model-based curve clustering algo-
rithms referred to as mixtures of regressions

or regression mixtures (DeSarbo and Cron,
1988; Gaffney and Smyth, 1999). Our pro-
posed methodology concerns an extension to
regression mixtures that we shall call ran-

dom effects regression mixtures which inte-
grates linear random effects models (Laird
and Ware, 1982) with standard regression
mixtures. We develop an explicit maximum
a posteriori or MAP-based EM algorithm for
random effects regression mixtures and show
an application to the clustering of cyclone
data using these methods.

1 Introduction

Clustering is typically used as a tool for understanding
and exploring large data sets. Most clustering algo-
rithms operate on feature vectors of fixed dimension.
In contrast in this paper we address the problem of
clustering sets of variable-length curve or trajectory
data generated by groups of objects or individuals.
The curves y are sequences of observations measured
over time (or some notion of time), functionally de-
pendent on an independent variable or set of variables
x. Typically, x is itself time, but in general it can be
any number of variables measured over the same in-
terval as y. Unlike fixed-dimensional feature vectors,
y curves have variable lengths and can be observed
at different measurement intervals as well as contain
missing observations.

This type of data is quite common in various scientific
contexts. For example, Figure 1 shows a set of trajec-
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Figure 1: Some cyclone trajectories tracked over the
North Atlantic.

tory data from the atmospheric sciences. In this figure
we see a number of Extra Tropical Cyclones (ETCs)
that were tracked over the North Atlantic in the win-
ter months (November to April) from 1980 to 1995
(Gaffney, Robertson, & Smyth, 2001). The x-axis is
longitude and the y-axis is latitude. Although the
direction of movement is not explicitly shown, most
ETCs tend to move from west to east. The curve data
here is multidimensional with respect to time (i.e.,
there is a two dimensional lat-lon observation vector
at each time). Research questions of interest to at-
mospheric scientists include the finding of evidence for
the existence of clusters of cyclones, characterizing the
component behaviors within these clusters, determin-
ing the relation of these clusters to other climate phe-
nomena such as precipitation or global pressure pat-
terns, and prediction of the most likely trajectories for
new cyclones given both their trajectory up to some
time point and the learned model of cyclone behavior.

This type of curve data cannot be clustered with stan-
dard vector-based clustering algorithms without re-
sorting to some ad hoc preprocessing procedure to re-
duce the data to a set of fixed-dimensional feature vec-
tors. Our focus in this paper is to model curve data
directly using a set of model-based curve clustering
algorithms referred to as mixtures of regressions or re-



gression mixtures (DeSarbo and Cron, 1988; Gaffney
and Smyth, 1999).

The model-based curve clustering approach has some
inherent advantages compared to non-probabilistic
clustering techniques in a scientific context. As well
as providing a generative model for the data, it can
easily handle missing and irregularly spaced measure-
ments, it can be directly generalized to 2, 3 or higher
dimensional curves, it can explicitly model trajectory
smoothness as a function of time, and the model can be
evaluated out-of-sample in terms of predictive power.

Our proposed methodology concerns an extension to
regression mixtures that we shall call random effects

regression mixtures which integrates linear random ef-
fects models (Laird and Ware, 1982) with standard
regression mixtures. Random effects mixture mod-
els were first introduced in the fully Bayesian setting
(Lenk and DeSarbo, 2000) in which the mixture com-
ponents were allowed to be generalized linear models
(McCullagh and Nelder, 1983). In contrast, we pro-
pose the development of an explicit maximum a pos-
teriori or MAP-based EM algorithm for random ef-
fects regression mixtures. This approach avoids the
use of Markov Chain Monte Carlo (MCMC) techniques
(Gelfand and Smith, 1990) used by Lenk and DeSarbo
(2000) in order to perform inference.

After we present our new methodology, we show its
application to the clustering of cyclones from an atmo-
spheric dataset and show that it outperforms standard
regression mixtures.

2 Prior Work

The earliest works on regression-based mixtures fo-
cused on the definition of a simple two-component
mixture likelihood using various methods (e.g., con-
jugate gradient descent) to estimate parameter val-
ues (Quandt, 1972; Quandt and Ramsey, 1978; Hos-
mer, 1974). Of note, is Hosmer who, in retrospect,
developed an EM algorithm (Dempster et al., 1977)
for the simple two-component case. Späth (1979), on
the other hand, designed a non-probabilistic algorithm
called clusterwise linear regression similar to K-means
(Hartigan and Wong, 1978) that found the solution to
K different regression equations over a single dataset.

Later the general K-cluster case employing EM was
developed (DeSarbo and Cron, 1988; Jones and
McLachlan, 1992; Gaffney and Smyth, 1999) and ex-
tended to various situations including the use of curve
data and to non-parametric kernel regression models.
General random effects mixtures in the fully Bayesian
context were introduced by Lenk and DeSarbo (2000).
They focused on full Bayesian inference for mixtures

of generalized linear models with random effects, using
MCMC techniques.

A closely related model family is that of Hierarchical
Mixtures of Experts (HME; Jordan and Jacobs, 1994),
which share some similar features to mixtures of re-
gressions in that they define gating networks which
contain mixtures of generalized linear models. Al-
though an HME can be mathematically similar to
some regression mixture models, the focus of HMEs is
on supervised learning and not on unsupervised learn-
ing.

3 Generative Model-Based Curve

Clustering

Model-based clustering is a probabilistic technique
that assumes the data set can be explained by a finite
mixture of group-specific density components (Ban-
field and Raftery, 1993; Fraley and Raftery, 1998). In
the standard setup, we model multivariate x by the
mixture density

p(x|θ) =

K
∑

k

αkpk(x|θk), (1)

where pk is the component density with parameters θk

for the kth cluster, and αk is the unconditional prob-
ability that x was generated by cluster k. It’s possible
to learn the parameters θ of many mixture models us-
ing standard EM-based algorithms (Dempster et al.,
1977; McLachlan and Krishnan, 1997).

Model-based curve clustering is based on a mixture
model similar to the above mixture; however, the com-
ponent models pk(x|θk) are replaced by conditional
densities pk(y|x, θk) so that the resulting mixture den-
sity is conditional. In general, the curves y are se-
quences of observations measured over time (or some
notion of time), functionally dependent on an indepen-
dent variable or set of variables x. The curve clustering
model

p(y|x, θ) =

K
∑

k

αkpk(y|x, θk), (2)

is completed with the specification of the conditional
density components.

3.1 Standard Regression Mixtures

Standard regression mixtures results from placing re-
gression components into the curve clustering model.
This allows the modelling of a set of potentially hetero-
geneous curves by a mixture of K regression equations.
For example, assume we have a p-th order regression
relationship between y and x as

y = Xβk + εi, εi ∼ N(0, σ2

kI), (3)



in which X is the usual n × (p + 1) regression ma-
trix containing an initial column of ones, βk are the
regression coefficients for the k-th cluster, and σ2

kI is
the k-th covariance matrix. This is equivalent to set-
ting pk(y|x, θk) in the curve clustering model equal
to N(y|Xβk, σ2

kI), where N is the conditional multi-
variate normal density with mean Xβk and covariance
σ2

kI. Detailed description of this model and the ac-
companying EM algorithm for trajectory data is given
in (Gaffney and Smyth, 1999).

4 Random Effects Regression

Mixtures

In the standard regression mixtures framework it is
assumed that each cluster is modelled with cluster-
specific parameters θk and that the set of curves are
defined as a mixture over these clusters. This can be
used to effectively account for subpopulations of ho-

mogeneous behavior. However, more care should be
taken when considerable heterogeneity exists within
each subpopulation or group.

For example suppose we have a set of individuals from
K groups. Using the standard regression mixtures
framework, we would hypothesize that within each
group all individuals are sufficiently homogeneous to
appropriately fit the common group component model.
However, in the presence of significant heterogeneity
within any group, one would have to resort to fitting
more groups than the known K to be able to suffi-
ciently describe the data, an option that is left unde-
sirable.

What we want is the ability to let an individual vary
from the template for its group, yet still exhibit the un-
derlying behavior that distinguishes this group from
the rest. Linear random effects models (Laird and
Ware, 1982) allow population individuals to vary from
the population mean by an individual-specific random
effects term. Lenk and DeSarbo (2000) proposed the
integration of this idea to mixtures of generalized lin-
ear models in which each individual varied from each
cluster mean.

We focus on the specific development of random effects

regression mixtures in which we define a hierarchical
model structure with a mixture on parameters at the
top level (parameter-level) and a simple individual-
specific regression model at the bottom level (data-
level). We then define an EM algorithm using MAP
estimation to enable inference in the hierarchy.

4.1 Hierarchical Model Structure

Let us assume we have a set of n individuals from K
groups and that each individual i generates a trajec-

tory of measurements yi of length ni according to the
normal regression model

yi = Xiβi + εi, εi ∼ N(0, σ2I), (4)

which gives conditional density

p(yi|Xi, βi, σ
2) = f(yi|Xiβi, σ

2I), (5)

where Xi and βi are as in (3), with f the conditional
multivariate normal density with mean Xiβi and co-
variance σ2I. Notice that each individual has its own
regression model through the parameter βi (i.e., we
do not have βk here). This is the random effect. In
fact, there is no dependence on group membership at
all at this level, the bottom-level (or data-level) of the
hierarchy. Instead at this level we allow for individual-
specific heterogeneity.

At the top-level of the hierarchy we have a probabilistic
model that describes the distribution of the parame-
ters βi for each individual. Suppose we let ki give the
group membership for the ith individual. Knowledge
of membership allows us to define a distribution on βi

according to the group template as

p(βi|ki, φki
) = gki

(βi|µki
,Rki

), φki
= {µki

,Rki
},

where gki
is the multivariate normal density with mean

µki
and covariance Rki

. Unconditional of class mem-
bership, the prior for βi,

p(βi|Φ) =

K
∑

ki=1

αki
gki

(βi|µki
,Rki

), (6)

is a finite mixture with Φ = {α1, . . . , αK , φ1, . . . , φK}.
At this level of the hierarchy we allow for the cluster-
ing of homogeneous group behavior. As a result we
now have a finite mixture model allowing for homo-
geneous group behavior at the top-level, and a simple
regression model allowing for individual heterogeneity
at the bottom-level.

One issue with this model is that we are now trying
to estimate K distinct covariance matrices which may
be problematic. One solution would be to pool the K
covariance matrices into a single representative matrix
R. Banfield and Raftery (1993) introduce a number of
methods to reparameterize covariance matrices so that
instead of all clusters sharing a single R, they only
share certain chosen characteristics (e.g., orientation,
size, or shape).

In addition, one can also introduce a bayesian regular-
ization methodology to the framework to curb prob-
lematic estimations. We define hyperpriors for Rk and
αk in this regard. The standard conjugate priors for
R−1

k and α = (α1, . . . , αK)′ are the Wishart density



W (R−1

k |R0, ν) and the Dirichlet density D(α|η) (Bun-
tine, 1994; Gelman et al., 1995; Ormoneit and Tresp,
1995). We complete the model by assuming a simple
non-informative prior for both σ2 and µk.

4.2 MAP vs. ML Estimation

The hierarchical model specification naturally leads to
MAP instead of ML (maximum likelihood) estimation.
That is, it is natural to define the posterior of the pa-
rameters given the data as proportional to the likeli-
hood of the bottom-level times the prior of the top-
level. Let Θ = {β1, . . . , βn, σ2} be the parameters at
the bottom-level and let Φ be the parameters at the
top-level. Then we define our MAP objective function
M proportional to the posterior p(Θ, Φ|Y) of the pa-
rameters (note that X is left out for simplicity). Thus
we define

M(Θ, Φ) = log p(Y |X, Θ, Φ)p(Θ, Φ)

= log p(Y |X, Θ)p(Θ|Φ)p(Φ),

with

p(Y |X, Θ) =
∏

i

f(yi|Xiβi, σ
2I),

p(Θ|Φ) =
∏

i

K
∑

k

αkgk(βi|µk,Rk),

and

p(Φ) = D(α|η)
∏

k

W (R−1

k |R0, ν)

as our MAP objective function for the parameters Θ
and Φ.

4.3 MAP-based EM Algorithm

Analysis of M in our setting leads to the conclusion
that direct maximization is not feasible. However, we
can develop a MAP-based EM algorithm that will pro-
duce consistent parameter estimates.

In the random effects regression mixture model there
is a notion that each individual is chosen from, or is
generated from, one of K different groups. Usually we
are not given the group memberships along with the
data X,Y . The group memberships are instead hidden

or missing. The EM algorithm is an iterative method
that deals with these so-called missing data problems.
In fact there are two sources of hidden data in a ran-
dom effects regression model. First, the memberships
are hidden but also the individual-specific regression
coefficients βi are also considered hidden and not ob-
servable.

4.4 Complete-Data Function

In the EM framework, the function M is referred to as
the incomplete-data function since it does not contain
all the missing data. It is the missing data that makes
the problem complex. Therefore, to make the prob-
lem easier we simply define another function that does

contain the missing data. Suppose we define Z to be
the set consisting of memberships ki for all individuals
i and notate the set of all unobservable βi as β. Then
we define the complete-data MAP objective function
of σ2 and Φ as

MC(σ2, Φ) = log p(Y , Z, β|X, σ2, Φ)p(Φ)

= log p(Y |X, Θ)p(Θ, Z|Φ)p(Φ),

with

p(Y |X, Θ) =
∏

i

f(yi|Xiβi, σ
2I),

p(Θ, Z|Φ) =
∏

i

αki
gki

(βi|µki
,Rki

),

and

p(Φ) = D(α|η)
∏

k

W (R−1

k |R0, ν).

Notice that we are rid of the logarithm of the sum-
mation due to the move from p(Θ|Φ) to p(Θ, Z|Φ).
Of course, we don’t know the true values for Z and
β so we take expectations with respect to their joint
posterior distribution as we shall see next.

4.5 EM Solutions

The EM algorithm consists of two steps: (1) the ex-
pected value of MC is taken with respect to the pos-
terior hidden distribution p(Z, β|Y ), and (2) this ex-
pectation is maximized over the parameters σ and Φ
to yield the new parameter values.

4.5.1 E-Step

In the E-step, the expectation of MC is taken
with respect to p(Z, β|Y ) which factors into
p(Z|Y )p(β|Z , Y ). In this step we simply need to
calculate two things: the membership probability
p(zi = k|yi),and the expected value of the posterior
p(βi|zi,yi). First we calculate the membership proba-
bility

wik = p(zi = k|yi)

∝ αkp(yi|σ
2, φk) (7)

that curve i was generated from cluster k. Note that
we are not given βi in p(yi|σ

2, φk); this is the marginal



model of yi. And second we set the expected value of
βi given yi and ki to

β̂ik = (1/σ2X′

iXi + R−1

k )−1(1/σ2X′

iyi + R−1

k µk)

which is the mean of the posterior p(βi|yi, ki). Note

that β̂ik is simply the result of Bayesian regression with
prior µk. Also, for simplicity, we set

V
β̂ik

= (1/σ2X′

iXi + R−1

k )−1

which gives the posterior covariance.

4.5.2 M-Step

In the M-step we use wik , β̂ik, and V
β̂ik

from the E-
step to update the model parameters. First we maxi-
mize the top-level (the mixture model on parameters),
and then we maximize the bottom-level (the regression
model on y and x data). For the top-level we update
the parameters

α̂k =

∑n

i wik + (ηk − 1)

n + (
∑

k ηk − K)
,

µ̂k =

∑n

i wik β̂ik
∑n

i wik

,

and

R̂k =

∑n

i wik

[

‖ β̂ik − µ̂k ‖2 +V
β̂ik

]

+ R−1

0

∑n

i wik + (ν − (p + 1))
. (8)

While on the bottom-level we update the parameter

σ̂2 =

∑

ik wik

[

‖ yi −Xiβ̂ik) ‖2 +V
β̂ik

]

N
.

There is a small issue of setting the hyperparameters
for the hyperprior p(Φ). One can set ν to the neutral
value of p + 1 which then cancels in the denominator
of (8) as well as set R−1

0
to ωI for some positive ω.

In this way, ω acts as a type of smoothing parameter.
One can also set the Dirichlet to neutral values (e.g.,
η1 = · · · = ηk = 1), or it can be used to deal with
issues such as background clusters. In this case, you
may want to enforce a rule that for every 100 curves,
there “should” be at least one in the background.

5 Cyclone Clustering

The primary application of random effects regression
mixtures that we have investigated up to this point is
the clustering of ETC (Extra-Tropical Cyclone) tracks
from meteorological data. Atmospheric scientists are
interested in the spatio-temporal patterns of evolu-
tion of ETCs for a number of reasons. For exam-
ple, it is not well-understood how long-term climate

Figure 2: The full set of cyclone trajectories.

changes (such as global warming) may influence ETC
frequency, strength, occurrence and spatial distribu-
tion. Similarly, changes in ETC patterns may provide
clues of long-term changes in the climatic processes
that drive ETCs. The links between ETCs and local
weather phenomena are also of interest: clearly ETCs
have significant influence on local precipitation, and in
this context, a better understanding of their dynam-
ics could provide better forecasting techniques both on
local and seasonal time-scales.

5.1 Prior Work on Clustering ETC
Trajectories

The work of Blender et al. (1997) is illustrative of
the use of conventional clustering techniques in at-
mospheric science. Using sea-level pressure data on
a grid over the North Atlantic (measurements every
6 hours, available over several winters) they detect
local minima in the pressure map and then use a
nearest-neighbor tracking algorithm to connect up the
minima in successive maps and determine trajecto-
ries. The trajectories are then converted into a fixed-
dimensional vector for clustering by the K-means al-
gorithm. Based on subjective analysis of the data,
K = 3 clusters are chosen and fit in the resulting
fixed-dimensional space. Despite the somewhat ad hoc
nature of the approach the resulting clusters demon-
strate that storms in the North Atlantic clearly cluster
into different types of trajectory paths.

5.2 Experimental Results w/ Random
Effects Regression Mixtures

In this section we describe some experimental results
with cyclone clustering using our random effects re-
gression mixtures framework. The datasets that we
are working with are part of the CCM3 AMIP II sim-
ulation data model runs. Specifically, we have data for
the winter months (November to April) from 1980 to
1995 that give mean sea-level pressure (MSLP) mea-
surements on a 2.5◦ × 2.5◦ grid over the earth every



6hrs. Since we are interested in ETCs over the North
Atlantic we focus only on the area between 30◦N-70◦N
and 80◦W-10◦E.

This “raw” data is taken and cyclones are detected and
tracked over space and time in a similar manner as that
described in Section 5.1. Essentially static detection
of relative pressure minima at each time is followed by
a simple nearest-neighbor-based tracking algorithm to
associate the minima over time to form trajectories
(representing cyclones). Further details about the raw
data and the detection and tracking of cyclones can be
found in (Gaffney, Robertson, & Smyth, 2001).

In Figure 2 we see the resulting set of all 614 tracked
cyclones. The cyclones have varying durations but all
have a minimum of 10 observations (this is due to the
definition of cyclones in the tracking algorithm). We
take this set of curves as input to our algorithm.

Looking at the bottom-level of our proposed hierar-
chical model in (4), we take yi equal to the ni × 2
matrix of latitude-longitude positions for the i-th cy-
clone of length ni. All cyclones are “zeroed” so that
yi begins at the relative latitude-longitude position of
(0, 0). This allows a clustering on the basis of shape
and eliminates initial starting position as a source of
variation. Furthermore, we employ a quadratic poly-
nomial fit in the regression model and thus we set Xi

to the ni × 3 matrix consisting of an initial column
of ones followed by a column of the times at which
yi was measured, and ending with a column of the
squared values in column 2.

In the top-level of the hierarchy we have a mixture
model on the resulting regression coefficients from the
bottom-level. Thus, the top-level employs a clustering
of cyclones based on a notion of cyclone velocity as
well as direction. This means that clustered cyclones
will tend to share common component velocities and
will tend to move in the same latitude-longitude di-
rection. However direction is not unique to a clus-
ter since two cyclones can move at rather different
component velocities–thus resulting in different clus-
ter assignments–and yet still move in the same lat-lon
direction (which is determined by the ratio of veloci-
ties). Therefore, analysis of the resulting clustering is
quite a bit more complex than allowed by the limited
space here; however, the following resultant figures are
useful nonetheless.

5.2.1 Cluster Analysis

Figures 3-5 show the three returned clusters mapped
onto a projection of the earth over the North Atlantic.
We set the algorithm to find K = 3 clusters not only
for simplicity but because current literature in the at-
mospheric sciences leans towards this number (e.g.,

Figure 3: Diagonally oriented cluster.

Figure 4: Vertically oriented cluster.

Figure 5: Horizontally oriented cluster.



Blender et al., 1997). The figures only show a few
randomly selected cyclones from each cluster so as to
reduce clutter and allow for simple analysis.

In Figure 3 we see a large cluster of diagonally oriented
cyclones. Further analysis also reveals that these cy-
clones have a larger average velocity (59 km/h) than
the cyclones in the other clusters and also exhibit a
larger variance around this value. In Figure 4 we
see a cluster of vertically-moving and somewhat back-
bending cyclones. The cyclones in this cluster have
an average velocity of 42 km/h and individual cy-
clones tend to exhibit erratic velocity change during
their lifespan. Figure 5 shows the final cluster; it de-
picts cyclones that move horizontally into the coast-
line of Europe. This cluster seems to be somewhat
more directionally noisy than the others. However,
this cluster has a somewhat larger average velocity (44
km/h) than the vertical-moving cluster and consists of
many smaller duration cyclones (approximately 40%
have durations less than 3.25 days as opposed to only
26–30% for the other two clusters). This cluster is of
particular interest to atmospheric scientists since this
cluster contains many of the storms that head straight
into the European coastline and thus have a potential
to cause much damage.

Although we see a similar overall picture here as
Blender et al. (1974) find using their K-means-based
method, they lack the ability to deal with cyclones of
varying durations due to their fixed-dimensional vector
space and are not able to use the smoothness informa-
tion inherent in trajectories so as to better guide the
clustering. Furthermore, it should be noted that the
cyclone tracks are unregistered or misaligned. That
is, the tracking algorithm may pick up one cyclone
too early or too late, or the cyclone might have been
merged into another larger cyclone that was separately
tracked. In any case, the problem is the same: the
curves are misaligned. By adding the random effect
in the mixture model we can allow for this deficiency
by letting individual parameters vary to some degree
from the group mean behavior.

We can use a randomized cross validation scheme
known as Monte Carlo Cross Validation (MCCV;
Shao, 1993) to evaluate the degree to which our
proposed methodology outperforms both the fixed-
dimensional setup as in Blender et al. (1974) as well as
the standard regression mixtures setup in which there
is no random effect. Since K-means is not a probabilis-
tic method, one can simply use multivariate Gaussian
mixtures as a proxy for K-means and simply truncate
all cyclones to a common minimum duration in con-
forming to the Blender et al. (1974) methodology.

For this test we trained each clustering method on 70%
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Figure 6: Cross Validation comparison of random ef-
fects regression mixtures and standard regression mix-
tures on the cyclone data. The error bars give two
standard deviations on each side of the mean.

of the cyclone tracks and then calculated the test log-
likelihood on the other 30% of the data. Each regres-
sion method was run while fitting polynomials of order
two (quadratic). In addition, each algorithm was al-
lowed ten different random starts of EM. This whole
procedure was then iterated fifty different times with
a different random 70-30 split. The results are plotted
in Figure 6.

We can see that the random effects mixture easily out-
performs the non-random effects method on the cy-
clone dataset. The error bars give two standard de-
viations on each side of the mean. Not on the graph
is the result for the proxy Gaussian mixtures since it
is well below both of these methods in terms of test
log-likelihood.

6 Conclusion

We have developed a random effects regression mixture
framework and derived a MAP-based EM algorithm to
perform inference. Our methodology has roots in the
work of Lenk and DeSarbo (2000) in which they define
mixtures of generalized linear models with random ef-
fects in the fully Bayesian setting. We depart from
Lenk and DeSarbo by not requiring the use of MCMC
techniques for parameter inference. This reduces the
complexity of the programming required to implement
the inference scheme and allows for simplified debug-
ging due to the non-decreasing likelihood guarantee
from EM theory.

An application to cyclone clustering was presented and
it was shown that the proposed methodology outper-



forms standard regression mixtures as well as a proxy
method representing current clustering work in this
area. However there are many avenues for future re-
search with this work. For example, the problem of
registration was pointed out with the cyclone data and
this is a common problem with all curve-type datasets.
Integration of registration into the clustering could
play a key role in the final results. Also the automatic
and objective identification of the number of clusters
under this methodology is an important problem.
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