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Abstract

Probabilistic model-based clustering, based
on finite mixtures of multivariate models, is
a useful framework for clustering data in a
statistical context. This general framework
can be directly extended to clustering of se-
quential data, based on finite mixtures of
sequential models. In this paper we con-
sider the problem of fitting mixture models
where both multivariate and sequential ob-
servations are present. A general EM algo-
rithm is discussed and experimental results
demonstrated on simulated data. The prob-
lem is motivated by the practical problem of
clustering individuals into groups based on
both their static characteristics and their dy-
namic behavior.

1 Introduction and Motivation

Consider the following problem. We have a set of in-
dividuals (a random sample from a larger population)
whom we would like to cluster into groups based on ob-
servational data. For each individual we can measure
characteristics which are relatively static (e.g., their
height, weight, income, age, sex, etc). Probabilistic
model-based clustering in this context usually takes
the form of a finite mixture model, where each compo-
nent in the mixture is a multivariate probability den-
sity function (or distribution function) for a particular
group. This approach has been found to be a use-
ful general technique across a variety of applications
for extracting hidden structure from multivariate data
(Symons, 1981; McLachlan and Basford, 1988; Ban-
field and Raftery, 1993; Celeux and Govaert, 1995;
Cheeseman and Stutz, 1996; Thiesson et al, 1997).
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Consider instead where we have dynamic observa-
tions (rather than static multivariate measurements)
for each individual (such as time series data). For ex-
ample, in a medical context we might have EEG traces
for a set of patients, or in a user-modeling context we
might have traces of user actions within a digital en-
vironment such as Unix, or at a particular Website,
etc. It is straightforward to extend the standard mul-
tivariate model-based clustering methods to such se-
quential data by using a finite mixture of probability
density functions on sequences (e.g., a Markov model
for discrete-valued observations or an autoregressive
model on real-valued data; see Rabiner et al. (1989),
Krogh et al (1994), or Smyth (1997)). TIssues such
as defining distances between sequences, clustering se-
quences of different lengths, and finding the best num-
ber of clusters from the data, can all be handled in
a principled manner. This is a distinct advantage of
the probabilistic framework compared to alternatives
(such as defining pairwise distances between sequences
using some form of edit-distance, for example), but
comes of course at the cost of imposing a specific model
structure on the data.

The more general case of course is when we have both
static and dynamic observations on each individual,
e.g., a person’s age and income (static) combined with
traces of Web page accesses (dynamic). Such combi-
nations of heterogeneous data types are increasingly
common across applications in medicine, business, sci-
ence, and engineering as data becomes easier to collect
and store.

Clustering in this context is non-trivial. The prob-
lem is how to combine the static and dynamic data
in a meaningful manner; for example, how should the
dynamic data be weighted relative to the static data?
One practical option is to reduce the dynamic observa-
tions to multivariate form (e.g., a histogram of which
Web pages were visited) and, thus, perform multivari-
ate clustering. However, while this methodology is of-
ten useful in practice, it may ignore useful dynamic



information. For example, one could have the same
marginal distributions for two different sets of dynamic
behavior.

In this paper we show that the mixture model clus-
tering framework can be extended relatively easily
to clustering of individuals based on static and dy-
namic observations. For the particular case when
the static characteristics and dynamic behavior are
assumed independent given the hidden cluster vari-
able, the Expectation-Maximization (EM) procedure
(for estimating the parameters of the model) has a
particularly intuitive interpretation. In this paper we
outline the motivation for the model, the EM learn-
ing algorithm, and illustrate the method on simulated
data.

2 Notation

2.1 Multivariate Model-Based Clustering

Let X be a multivariate random variable taking val-
ues z and let C' be a discrete-valued cluster variable
taking values ¢, 1 < k < K. We will refer to the z
as the static characteristics of an individual on which
measurements are made. The probability of individual
observation z, assuming a finite mixture model with
K components, 1s defined as:
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where p(cg) is the marginal probability of the kth clus-
ter, and fx(z|ck) is the multivariate density model for
the kth cluster. (The dependence on the parameters of
the mixture model and the model itself (K) has been
suppressed here for simplicity). This mixture model
is the basis for probabilistic model-based clustering,
where EM can be used to fit the parameters given ob-
served data D, = {z;,...,2z,} and the resulting K
fitted component models are interpreted as individual
clusters.

2.2 Model-Based Clustering of Sequences

Now let S be a “sequential” random variable taking
values s = {s1,...,8t,...,s7}. (For convenience of
presentation we will assume that the s; are univari-
ate and discrete-valued, although this is not neces-
sary). We can think of the process generating the s;
as being a stochastic finite state machine, i.e., a model
which can generate a string of observations s, where
the length T' can vary, according to some probabilis-
tic model p(S = s). We will assume each individ-
ual behaves according to some such probability model
on S, and we will refer to the observed s as the ob-

served dynamic behavior of an individual. Thus, we

can have a random sample of individuals for whom we
have sequential measurements D; = {s;,...,sy}. For
simplicity we can imagine a 1-1 mapping from ran-
domly chosen individuals and the s;, although this is
not strictly necessary since multiple observations for a
given individual can easily be handled.

Clustering in this context means modeling the dy-
namic behavior of the population of individuals as a
finite group of K behaviors in the form of a mixture
model:
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where p(cx) is the marginal (“prior”) probability of
component model & and pg(s|ck) is the generative
probabilistic sequence model for the kth group. For
example, each pg(s|ex) could be a first-order Markov
model with a different transition matrix Ag. Learning
in this context is directly analogous to the standard
EM algorithm for learning with multivariate mixture
models (not surprising since Equations (1) and (2)
have the same general form). Note that the model
above is not equivalent to the standard hidden Markov
model: there the cluster variable C' itself has Markov
behavior whereas here it 1s static.

This general idea of sequence clustering can be gen-
eralized to a variety of models where the cluster vari-
able itself has Markov behavior, some of which lead
to the standard hidden Markov models, and some of
which are quite different in flavor (see Smyth (1998)
for examples). We note in passing that all of these
models have natural interpretations as directed graph-
ical models (aka belief networks) (Smyth, Heckerman,

and Jordan; 1997).

3 Clustering based on Static
Characteristics and Dynamic
Behavior

In this paper, we restrict our attention specifically to
the following situation (since it is a well-motivated one
from a practical viewpoint as described earlier):

e A static cluster variable C'
e Observed static characteristics x

e Observed dynamic behavior s

Thus, our observed data are of the form D =
{(zy,81), -, (Zy,8x)}. We assume that there is a
hidden variable C' (the cluster identity) whose value is
unobserved and that the data are being generated by



a finite mixture model of the form
K
flz,8) = fel@, slex)p(er) (3)
k=1

where the p(cg) are the marginal probabilities for clus-
ter k. The fx(z,s|cy) are the component models
for each cluster, and can be factorized as either (1)

pr(slz, ) fi(z|ex) or (2) as fi(zs, ex)pr(s]er).

From a causal viewpoint we can interpret each factor-
ization. The first factorization tells us that the dy-
namic behavior s is dependent on the static charac-
teristics z. This type of dependence is quite plausible
in many practical situations, e.g., the EEG of a pa-
tient may depend on the patient’s age or condition,
or the Web surfing behavior of an individual may de-
pend on an individual’s educational background, age,
or related factors. The second factorization, where the
static characteristics x are dependent on the dynamic
behavior s, seems less likely to be a common causal
mechanism for typical applications.

Parametrization of these dependencies depends on the
precise nature of the sequential and multivariate prob-
ability models being used. For example, if the sequen-
tial observations s; are discrete-valued and modeled
by a finite-order Markov model, pi (s|z, cx) can repre-
sent a model where the Markov transition probabilities
are parametrized as a logistic function of the multi-
variate observation z (Hughes, 1993; MacDonald and
Zucchini, 1997). For a binary first-order Markov chain
we have
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where fi;x(z) is a parametrized function of z for the
log-odds ratio of the Markov transition probability
from state j to state ¢ for class k. If f;;x(z) is assumed
to be a linear function of z then one is in effect mod-
eling the transition probability as a threshold function
in z-space, i.e., pg(si|s;,z,cx) = 0.5 for fijr(z) =0
and goes to 0 or 1 as one travels away from the line
defined by this solution. Such a threshold effect might
be useful (for example) in modeling the development
of motor skills (the dynamic variable) as a threshold
function of infant age (a 1-dimensional static variable).
Equally well, one could model fj;x(z) as a symmet-
ric unimodal “bump” function centred around a mean
By, in z-space, where here the transition probability is
maximized for z values close to g, and falls off mono-
tonically as z gets further from_ﬁk. In this case By

could (for example) represent a specific 2-dimensional
cluster in age, education — level space (the static vari-
ables) with particular Web-surfing characteristics (the
dynamic variable).

For the purpose of clustering, a potentially simplifying
assumption is that the static and dynamic variables are
conditionally independent given the cluster variable:

Tr(z, slex) = fu(z|er)pr(s|er). (6)

This leads to a particularly simple model structure in
that we do not need to parametrize the coupling of the
static and dynamic models explicitly. It also leads to
an intuitive interpretation in terms of the associated
EM algorithm for learning, which we will discuss in
the next section. This assumption may be especially
useful in practice for the following general reasons:

e For clustering purpose we are interested in the
differences between classes. To detect such differ-
ences we do not necessarily need to fully model
all dependencies.

e Learning with hidden variables in a Markov con-
text is known to be difficult since typically there
are many local maxima of the likelihood surface
in parameter space. Thus, the simpler the model,
the better chance there is of fitting it in a reliable
fashion.

e In the absence of problem-specific prior knowledge
for a particular application, it may be difficult
to choose an appropriate parametrization for the
dependence of s on z and to reliably learn this
parametrization from a finite amount of data. For
example, the issue of identifiability of such models
in a general mixture context is somewhat open.

4 EM Learning of the Cluster Model

The EM algorithm can be used to search for the un-
known parameters that maximize the likelihood of the
observed data (or find the mode of the posterior den-
sity from a mazimum a posteriori viewpoint) under
the model assumptions stated earlier. To make the
discussion more specific, we could assume that the x
are d-dimensional real-valued variables with each mul-
tivariate cluster component fi(z|cx) being modeled by
a Gaussian with parameters X, and mean B - We
could also assume that the sequential observations s;
are univariate and discrete-valued (taking m values),
and each cluster is modeled as a first-order Markov
model with transition matrix A and initial distribu-
tion m(s1). We will use these models for illustration in
the next section, but in the general discussion below we
can think of much broader class of model structures,



e.g., general graphical models for the multivariate com-
ponents and linear models (such as ARMA models) for
real-valued sequential data.

The p(ck), the marginal probabilities of each cluster,
are also typically unknown and must be learned from
the data. Let ®g denote the overall set of unknown
parameters. In this paper we will assume K is fixed:
more generally, one can use penalized likelihood, cross-
validation, or Bayesian techniques to find the best
value for K as well.

We can express f(z,s|Pxk) as

fla,s|®k) = fula, slex, @x)p(er) (7)

If we assume that the ®x are known (fixed to ten-
tative values) we can calculate the probability that a
particular observation (z,s) was generated by a spe-
cific component as:

_ Jr(z, s|ex, ®r)p(ck)
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These “membership probabilities” are then used in
the M-step of the EM algorithm find new parame-
ters @Y, such that new likelihood is at least as great
as the original likelihood, ensuring convergence (under
fairly general conditions) to at least a local maximum
of the likelihood function.

plexlz, s) (8)

It is interesting to look at the exact form of the mem-
bership probabilities if we make the conditional inde-
pendence assumption, namely that f(z,s|ek, Pr) =
f(zlek, ®x)pr(s|es, Px) = fx(z)pr(z) for short. The
membership probabilities are then

Jr(2)pr(s)p(ck)
Y i @pi(9)p(es)

Here we can see the relative roles of the static and
dynamic information in terms of clustering and how
this information is implicitly combined and weighted.
Consider what happens when, for example, pg(s) =
1/K,1 < k < K, i.e., a sequence s is equally likely
to belong to any of the K components. In this case,
the pi(s) terms drop out of the expression above and
we are left with the standard weights for multivariate
mixture modeling. Thus, if the dynamic sequence in-
formation does not provide any discriminative power
between clusters, the membership weights are solely
a function of the static multivariate information (and
vice-versa). More generally the membership informa-
tion provided by each of the dynamic and static models
are combined by Equation 9 in such a way that they
are weighted relative to their discriminative power rel-
ative to the K clusters.

)
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Note in particular that although the static and dy-
namic models are assumed conditionally independent,
the models are implicitly coupled during learning by
Equation 9. Thus, the parameters of the joint model
can 1n principle be quite different to the model which
would be obtained by clustering each separately and
then combining the models.

5 Experimental Results on Simulated
Data

We present here a simple experiment on “toy” simu-
lated data to demonstrate the approach. We generated
data from a two-component mixture of 2-dimensional
Gaussians coupled to a first-order Markov chain on a
binary alphabet. The Gaussians each had identity co-
variance matrices and had means at (0,0) and (2,2).
The Markov transition matrix for the first cluster had
self transition probabilities of 0.45 for each state, with
a 0.45 probability of transiting to the other state, and
a 0.1 probability of terminating the string. The other
cluster had (for each state) a self-transition probabil-
ity of 0.8, a cross-transition probability of 0.1, and a
termination probability of 0.1. 20 observations from
each cluster were simulated using the conditional in-
dependence model.

EM was judged to have adequately converged when
the average difference in cluster membership prob-
abilities (across observations) from one iteration to
the next was less than 107%. The Gaussian mixtures
were initialized using the k-means algorithm, and the
Markov transition matrices were initialized randomly.
We ran EM on the Gaussian data alone (Gaussian mix-
ture model), the sequence data alone (Markov mix-
ture model), and joint data set (the coupled mixture
model), in each case assuming that the functional form
of the true model structure is known.

Table 1 summarizes the results from the 3 different
EM runs. There is one observation per row, sorted
by true cluster label C. The columns pM, pG, pJ in-
dicate the posterior probabilities for cluster 1 for the
Markov, Gaussian, and joint clusterings, respectively.
x1, x2 are the static multivariate 2d data, and s is
the dynamic sequential data.

Looking at the rightmost 3 columns provides some idea
of the nature of the clustering problem (imagine that
the rows are randomized rather than ordered). One
can clearly see the separation between the two Gaus-
sian clusters and one can also clearly see (in the longer
sequences) some distinction between the short runs of
the same symbol in cluster 1 data and the longer runs
in data from cluster 2.

Clearly the most “noisy” information comes from clus-



Table 1: Table of posterior cluster probabilities under different models (pM: Markov, pG: Gaussian, and pJ: Joint)
for a subset of the training data samples. (x1, x2) are the 2-dimensional multivariate measurements and s is

the associated sequence data.

#C pM PG pJ x1 x2
11 0.71 1.00 0.99 -0.98 1.08
21 0.97 1.00 0.99 -0.69 2.37
31 0.45 0.00 0.51 1.34 0.23
41 0.78 1.00 1.00 -0.91 -0.27
51 0.48 1.00 0.94 -0.41 0.70
61 0.89 1.00 1.00 -0.51 -0.49
71 0.71 0.00 0.10 1.62 1.86
81 1.00 0.99 1.00 0.08 1.11
91 0.30 1.00 1.00 -1.00 -1.23
10 1 1.00 1.00 1.00 -1.12 -0.67
21 2 0.00 0.00 0.00 2.84 1.35
22 2 0.02 0.00 0.00 1.28 0.92
23 2 0.45 0.00 0.09 1.28 1.95
24 2 0.02 0.00 0.00 1.80 2.38
25 2 0.48 0.00 0.02 1.98 1.67
26 2 0.12 0.00 0.00 2.28 1.50
27 2 0.01 0.00 0.00 3.06 1.96
28 2 0.02 0.00 0.00 2.62 1.83
29 2 0.00 0.96 0.01 0.25 1.04
30 2 0.05 0.00 0.00 2.70 3.29

tering based on the sequence data alone (column pM).
This is partly due to the fact that the cluster iden-
tities of the shorter sequences (e.g., numbers 3, 5, 6,
23, 25) will be completely ambiguous even given the
true parameters. The Gaussian and joint clusterings
are better able to separate the clusters (as evidenced
by columns pG and pJ). But the joint clustering is the
more accurate of the two virtue of the fact that it can
leverage the extra information present in the sequen-
tial data. For example, in terms of classification of the
data, the joint method makes 2 classification errors
compared to the 7 made by the Gaussian clustering.

Of course it is not surprising that the model with the
more parameters (the joint model) should fit better
on the data used for parameter estimation. However,
the joint model also models the true structure bet-
ter than either single model. The average absolute
distance (in units of standard deviation) between the
estimated mean parameters from the joint clustering
was 0.128, compared to 0.255 from clustering on the
multivariate data alone. The average absolute distance
between the estimated Markov transition probabilities
from the joint clustering was 0.038, compared to 0.044
from clustering on the sequential data alone. Thus,
the joint clustering is not just combining two separate
static and dynamic models for prediction, but learns
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a more accurate model by coupling the two sources
of information during the EM learning iterations. On
other performance metrics, such as the log-probability
score on out-of-sample data, the joint model also out-
performed the single models.

The main point of this experiment is not to show that
the coupled model is better. After all, since it matches
the true structure of the data generating mechanism
we know it will be better, at least once given enough
training data. Instead the point is simply to demon-
strate that coupled clustering of static and dynamic
data is quite feasible.

6 Related Work

For modeling of single sequences, there has been a va-
riety of work on modeling heterogeneity within a se-
quence (rather than across sequences). For example,
the “mixture of experts” model, applied to sequences,
provides a very general and flexible framework for
identifying multiple regimes in sequential data (e.g.,
Jordan and Jacobs (1992), Weigend et al (1995), Cac-
ciatore and Nowlan (1995), Zeevi et al (1997)).

The focus of all of this work, however, is on improv-
ing predictive accuracy, rather than developing inter-



pretable clustering models per se (although clearly
these models could be used for the purposes of clus-
tering). Indeed, if one can write down a generative
mixture model for whatever data structure one has
(be it multivariate, sequential, spatial, longitudinal,
functional, and so forth), then the general framework
for model-based clustering follows very naturally. In
this context, the contribution of this paper should be
viewed as noting that the earlier model-based cluster-
ing work of the likes of Banfield and Raftery (1993)
and Cheeseman and Stutz (1996) applies to a much
broader framework than simply for multivariate data.

7 Conclusion

We looked at the problem of modeling cluster struc-
ture across a set of individuals, based on measurements
of static characteristics (multivariate data) coupled
to dynamic behavior (sequential data). Probabilistic
clustering (based on finite mixture models) provides a
principled and coherent methodology for this problem.
In particular, issues such as how to “weight” the rel-
ative contributions of the multivariate and sequential
data measurements are handled in a natural and co-
herent manner. Obvious topics for further lines of in-
vestigation include determining the practicality of this
approach on real-world data sets as well as more sys-
tematic investigation of model selection issues in this
general context.
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