
Asynchronous Distributed Estimation of Topic Models for
Document Analysis

Arthur Asuncion, Padhraic Smyth, Max Welling

Department of Computer Science

University of California, Irvine

Abstract

Given the prevalence of large data sets and the availabilityof inexpensive parallel comput-
ing hardware, there is significant motivation to explore distributed implementations of statistical
learning algorithms. In this paper, we present a distributed learning framework for Latent Dirich-
let Allocation (LDA), a well-known Bayesian latent variable model for sparse matrices of count
data. In the proposed approach, data are distributed acrossP processors, and processors inde-
pendently perform inference on their local data and communicate their sufficient statistics in a
local asynchronous manner with other processors. We apply two different approximate infer-
ence techniques for LDA, collapsed Gibbs sampling and collapsed variational inference, within
a distributed framework. The results show significant improvements in computation time and
memory when running the algorithms on very large text corpora using parallel hardware. De-
spite the approximate nature of the proposed approach, simulations suggest that asynchronous
distributed algorithms are able to learn models that are nearly as accurate as those learned by
the standard non-distributed approaches. We also find that our distributed algorithms converge
rapidly to good solutions.

Key words: Topic Model, Distributed Learning, Parallelization, Gibbs sampling

1. Introduction

The emergence of the Internet over the past decade has significantly increased the amount
of information available to end users. For instance, the Medline database contains millions of
scientific publications, the Netflix Prize data set has over 100 million movie ratings, and Google
indexes over a billion web pages. Statistical analysis withcomplex models on data sets of this
scale is often difficult on a single computer—the data may not fit in main memory orthe time to
perform the analysis may take on the order of days or weeks.

Fortunately, parallel and distributed computing resources are becoming relatively inexpensive
and widely available. New computers are typically equippedwith multi-core processors, and
clusters of computers can be deployed with relative ease. The increasing availability of multi-
processor and grid computing technologies provides a practical motivation to develop statistical
learning algorithms that are able take advantage of such computational resources.

In this paper, we focus on the specific problem of developing distributed learning algorithms
for the Latent Dirichlet Allocation model [1]. LDA is a Bayesian model for sparse high dimen-
sional matrices of counts, such as word frequencies in text documents or feature counts in images.
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In the machine learning community, LDA is widely referred toas the “topic model” since this
model facilitates the learning of low dimensional representations, or “topics”, from the data.
LDA has been primarily applied to text corpora for the purpose of performing automated docu-
ment analysis and multiple variants have already been proposed. Hierarchical Dirichlet Processes
(HDP) are a non-parametric analogue of LDA which allow the number of topics to vary [2]. The
Author-Topic model builds upon LDA by incorporating the notion of an author [3]. Models that
seek to learn correlations between topics include the Correlated Topic Model [4] and Pachinko
Allocation [5]. Applications of LDA include information retrieval [6], entity resolution [7], web
spam filtering [8], software artifact analysis [9], and computer vision tasks [10].

There is growing interest in applying these techniques to very large data sets. In order to scale
LDA to these large data sets, several distributed topic modeling algorithms have recently been
developed [11, 12, 13, 14]. Distributed computation in thiscontext provides two distinct benefits:
(1) parallelization across many machines can significantlyspeed up inference; (2) distributed
computing increases the total amount of collective memory,allowing corpora with billions of
words to be processed efficiently.

While synchronous distributed algorithms for topic modelshave been proposed in earlier
work, our primary contribution is the introduction ofasynchronous distributed algorithms for
LDA, based on collapsed Gibbs sampling and collapsed variational inference. Fully asynchronous
algorithms provide several computational advantages overtheir synchronous counterparts: (1)
there does not exist the computational bottleneck of globalsynchronization across all proces-
sors; (2) the system is fault-tolerant due to its decentralized nature; (3) heterogeneous machines
with different processor speeds and memory capacities can be used; (4) new processors and new
data can be incorporated into the system at any time.

We employ an asynchronous “gossip-based” framework [15] which only uses pairwise inter-
actions between random pairs of processors. The distributed framework we propose can provide
substantial memory and time savings over single-processorcomputation, since each processor
only needs to store and perform Gibbs sampling sweeps over1

P th of the data, whereP is the
number of processors. Furthermore, the asynchronous approach can scale to large corpora and
large numbers of processors, since no global synchronization steps are required.

In the proposed framework, local inference on individual processors is based on a noisy in-
exact view of the global topics. As a result, our distributedcollapsed sampling algorithm is not
sampling from the proper global posterior distribution. Likewise, the distributed collapsed varia-
tional inference algorithm we propose is not optimizing thetrue variational bound. Nonetheless,
as we will show in our experiments, these algorithms are empirically very robust and converge
rapidly to high-quality solutions. In most applications ofLDA, one is often most interested in
discovering good modes in the posterior rather than fully analyzing the posterior shape. We find
that our algorithms are particularly well-suited for this task.

We first review collapsed Gibbs sampling and collapsed variational inference for LDA. We
also briefly review the general use of distributed computingin statistics and machine learning.
Then we describe the details of our distributed algorithms.Finally, we present accuracy, con-
vergence, and speedup results for our algorithms when applied to text data and conclude with
directions for future work.

2. A Review of Latent Dirichlet Allocation

Dimensionality reduction and the discovery of latent relationships between variables are im-
portant problems which have prompted the development of statistical decomposition techniques
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such as factor analysis and related approaches. A well-known dimensionality reduction tech-
nique is Principal Components Analysis (PCA), which allowsfor the extraction of principal
components from data through the eigenvalue decompositionof the data covariance matrix [16].
Latent Semantic Analysis (LSA) can be viewed as the application of PCA to documents [17].
When applying LSA to text corpora, each document is represented as a vector of frequencies of
word counts for the document. The ensuing matrix of word-document counts is decomposed via
singular value decomposition, allowing documents to be mapped to a lower dimensional space.

Probabilistic Latent Semantic Analysis (PLSA) improves upon LSA by introducing a proba-
bilistic model for this decomposition [18]. In turn, LatentDirichlet Allocation (LDA) was pro-
posed as a generalization of PLSA, casting the model within agenerative Bayesian framework,
and in the process avoiding some of the overfitting issues that were observed with PLSA [1].
LDA also bears similarities to other statistical models, such as admixture models [19] and mixed-
membership models [20]. A general review of the similarities between PCA, LSA, PLSA, LDA,
and other models can be found in Buntine and Jakulin [21].
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Figure 1: LDA model.
Plates denote replication
over indices, boxes denote
parameters, circles denote
hidden variables, shaded
circles denote observed
variables, and arrows de-
note dependencies.

In LDA, each documentj in the corpus is modeled as a mixture
overK topics, and each topick is a discrete distribution,φwk, over a
vocabulary ofW words1. Each topic,φwk, is drawn from a Dirichlet
distribution with parameterη. In order to generate a new document,
the document’s mixture,θk j, is first sampled from a Dirichlet dis-
tribution with parameterα. For each tokeni in that document, a
topic assignmentzi j is sampled fromθk j, and the specific wordxi j

is drawn fromφwzi j . The graphical model for LDA is shown in Fig-
ure 1, and the generative process is below:

θk, j ∼ D[α] φw,k ∼ D[η] zi j ∼ θk, j xi j ∼ φw,zi j .

Given observed data, it is possible to infer the posterior distribution
of the latent variables. For LDA, a particularly simple and accu-
rate inference technique is collapsed Gibbs sampling (CGS)[22],
in which θk j andφwk are integrated out and sampling of the topic
assignments is performed sequentially in the following manner,

P(zi j = k|z¬i j, xi j = w) ∝
N¬i j

wk + η
∑

w N¬i j
wk +Wη

(

N¬i j
jk + α

)

. (1)

Nwk denotes the number of word tokens of typew assigned to topick, while N jk is the number of
tokens in documentj assigned to topick. N¬i j denotes the count with tokeni j removed.

Once an LDA model is learned, the topics,φ, can be used in a variety of ways. The high
probability words of each topic are informative of the semantic nature of the topic. For instance,
if the high probability words in topic 1 are “Student School Study Grades Teacher”, we would
interpret topic 1 to be about academics. Examples of actual LDA topics learned on the NIPS cor-
pus are shown later in the paper (Table 3). Moreover, each document’sθ gives us the distribution
of topics within that document. Thus, LDA provides an automatic way to summarize the seman-
tic content of a corpus (through topics) and discover the topical content within each document.

1To avoid notational clutter, we writeφwk or θk j to denote the set of all components, i.e.{φwk} or {θk j}. Similarly,
when sampling from a Dirichlet distribution, we writeθk j ∼ D[α] instead of [θ1, j , ..θK, j] ∼ D[α, .., α]. We use symmetric
Dirichlet priors for simplicity in this paper.
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Furthermore, similar documents can be clustered together based on the similarity between their
θ’s, allowing for applications such as document retrieval and classification.

An alternative approximate inference technique for LDA is variational Bayesian inference
(VB) [1], where the true posterior distribution is approximated by a fully factorized posterior
distribution in order to simplify inference. In VB, the negative marginal log likelihood is up-
per bounded by Jensen’s inequality, leading to a quantity known as the variational free energy.
The objective is to minimize this free energy with respect tothe variational parameters. As with
the collapsed Gibbs sampler,θk j andφwk can be integrated out within the variational inference
framework, yielding collapsed variational Bayesian (CVB)inference [23]. In CVB, each tokeni j
has an underlying discrete distribution over topics{γi j1...γi jK}, and the product of these distribu-
tions forms the fully factorized posterior. Optimizing with respect to these variational parameters
yields a relatively efficient deterministic update,

γi jk ∝
N¬i j

wk + η
∑

w N¬i j
wk +Wη

(

N¬i j
jk + α

)

exp

















−
V¬i j

jk

2(N¬i j
jk + α)

2
−

V¬i j
wk

2(N¬i j
wk + η)

2
+

∑

w V¬i j
wk

2(
∑

w N¬i j
wk +Wη)2

















.

(2)

In CVB, N jk denotes the expected number of tokens in documentj assigned to topick, and
can be calculated fromγ as follows:N¬i j

jk =
∑

i′,i γi′ jk. There is also a variance associated with

each count:V¬i j
jk =

∑

i′,i γi′ jk(1 − γi′ jk). This CVB update is fully derived in Teh et al. [23].
The distributed CVB algorithm that we introduce in this paper utilizes a hybrid technique which
performs CGS on singleton tokens (where the count in the word-document matrix is one) and
CVB updates on non-singleton tokens [24].

3. Related work on distributed learning

The use of parallel and distributed computing in statisticsand machine learning has garnered
significant interest in recent years. Kontoghiorghes has compiled a lengthy handbook of the use
of parallel computing in statistics, including parallel optimization methods, parallel algorithms
for linear algebra techniques, and parallel Bayesian computation [25]. Distributed expectation
maximization (EM) algorithms have been investigated in both the synchronous case [26] and
asynchronous case [27]. Rossini et al. propose a parallel programming framework in the R
language forembarrassingly parallel problems, i.e. problems which can be decomposed into
independent subtasks [28]. Chu et al. recast various machine learning algorithms, such as logistic
regression, PCA, EM, and SVD, within Google’s distributed Map-Reduce framework [29]

Parallelized Gibbs sampling techniques for the specific case of LDA models have been pro-
posed by Newman et al. [13] and Mimno and McCallum [11]. In other work, Nallapati et al. [12]
parallelize the variational expectation maximization algorithm for LDA by taking advantage of
the independence of variational parameters between documents. Similarly, Wolfe et al. [14]
parallelize both the E and M steps of the variational LDA algorithm, under various computer
network topologies. In a similar vein, other related models, such as PLSA, have also been par-
allelized [30]. The primary distinctions between the ideasin this paper and earlier work are that
(a) our algorithms use purely asynchronous communication rather than a global synchronous
scheme, and (b) we have incorporated both collapsed Gibbs sampling and collapsed variational
inference within our framework.
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Figure 2: Sampling two variables in parallel, conditioned on the opposing value in the previous
time step, produces two independent chains and incorrect results [34].

More generally, Gibbs sampling can be parallelized in relatively simple ways: (1) samplers
with different initial seeds can be run in parallel to obtain multiplesamples, (2) non-interacting
sets of variables can be sampled in parallel [25]. In this paper, we are more concerned with the
problem of parallelizing the generation of a single sample,since many applications of LDA only
require the discovery of a good posterior mode, e.g., the discovery and interpretation of specific
word-topic probability distributions. If variables are dependent, parallelizing within a single run
of Gibbs sampling is difficult to perform due to the sequential nature of MCMC. Consider Gibbs
sampling with two dependent variables, as shown in Figure 2.If both variables are sampled con-
currently given the values of the opposing variables at the previous iteration, two independent
Markov chains would form, and the sample (xt, yt) for any timet would never be simulated from
the correct distribution. Approximate parallel sampling for LDA makes use of the same con-
current sampling technique [13]. However, in LDA, because there can be millions of variables
(the latent topic assignments for the words), and these variables tend to be only weakly depen-
dent on each other, it is reasonable to believe that local sampling will be approximately correct.
Empirical studies have supported this intuition, by showing that approximations resulting from
performing Gibbs sampling on LDA models in parallel appear to be very slight [13, 31]. Fur-
thermore, it is possible to derive a bound for the approximation error for certain parallel LDA
samplers [32].

Exact parallel Gibbs samplers have been shown to exist by making use of periodic syn-
chronous random fields [33]; however, a method of construction for such a sampler is not avail-
able. Brockwell [34] presents a pre-fetching parallel algorithm for MCMC, and Winkler [35]
describes general parallel sampling schemes which rely on an annealing schedule. These tech-
niques appear to be impractical for large-scale sampling for LDA. Newman et al. [13] modify
the LDA model slightly to obtain a model in which collapsed inference is exactly parallelizable.
This particular technique does not seem to be applicable to the asynchronous distributed setup.
Other related sampling techniques are parallel particle filtering [36], and parallel tempering [37].

There also exists a large body of prior work on gossip algorithms (e.g., [15]), such as News-
cast EM, a gossip algorithm for performing EM on Gaussian mixture models [27]. The tech-
niques we present in this paper are also related to work on distributed averaging (e.g. [38]),
where each node has an initial value, and the goal is to calculate the average of these values
across the network of nodes in a distributed fashion. In our case, each node (or processor) has a
matrix of LDA word-topic counts, and the goal of each processor is to estimate the sum of these
matrices across all nodes in the network (in order to obtain the global topic information needed
for Gibbs sampling), with the added complication that thesecounts are dynamically changing on
each processor, due to Gibbs sampling.
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4. Asynchronous distributed learning algorithms for LDA

We consider the task of learning an LDA model withK topics in a distributed fashion where
J documents are distributed acrossP processors. Each processorp stores the following local
variables:wp

i j contains the word type for each tokeni in documentj in the processor, andzp
i j

contains the assigned topic for each token.N¬p
wk is the global word-topic count matrix stored at

the processor—this matrix stores counts of other processors gathered during the communication
step and does not include the processor’s local counts.Np

k j is the local document-topic count

matrix (derived fromzp), Np
w is the simple word count on a processor (derived fromwp), andNp

wk
is the local word-topic count matrix (derived fromzp andwp) which only contains the counts of
data on the processor. In the CVB case, instead of storing a scalar topic assignmentzp

i j for each
token, a distribution over topics is stored as{γpi j1...γpi jK}, and variance counts (V¬p

wk , V p
wk andV p

k j)
are also stored. In the following sections, we describe the details of our distributed algorithms.

4.1. Async-CGS: Asynchronous collapsed Gibbs sampling
We begin by describing a synchronous parallel version of LDAbased on collapsed Gibbs

sampling (which we call Parallel-CGS) introduced by Newmanet al. [13]. In Parallel-CGS,
each processor has responsibility for1

P of the documents in the corpus, and thez’s are globally
initialized. Each iteration of the algorithm is composed ofa Gibbs sampling step followed by
a synchronization step. In the sampling step, each processor samples its localzp by using the
global topics of the previous iteration. In the synchronization step, the local countsNp

wk on
each processor are aggregated to produce a global set of word-topic countsNwk. This process is
repeated for a fixed number of iterations or until a convergence criterion is satisfied.

While Parallel-CGS provides substantial memory and time savings over the standard single
processor algorithm, it is a fully synchronous algorithm which requires global synchronization
at each iteration. In some applications, a global synchronization step may not be desirable or
feasible. Some processors may be unavailable, while other processors may be in the middle of
a long Gibbs sweep, due to differences in processor speeds or different amounts of data on each
processor. To obtain the benefits of asynchronous computing, we introduce an asynchronous dis-
tributed version of LDA based on collapsed Gibbs sampling (Async-CGS) that follows a similar
two-step process to that above. Each processor performs a local collapsed Gibbs sampling step
followed by a step of communicating with another randomly selected processor.

In each iteration of Async-CGS, the processors perform a full sweep of collapsed Gibbs
sampling over their local topic assignment variableszp according to the following conditional
distribution, in a manner directly analogous to equation 1,

P(zpi j = k|z¬i j
p ,wp) ∝

(N¬p + Np)¬i j
wk + η

∑

w(N¬p + Np)¬i j
wk +Wη

(

N¬i j
p jk + α

)

. (3)

The sum ofN¬p
wk andNp

wk is used in the sampling equation. Recall thatN¬p
wk represents processor

p’s belief of the counts of all the other processors with whichit has already communicated (not
including processorp’s local counts), whileNp

wk is the processor’s local word-topic counts. Thus,
the sampling of thezp’s is based on the processor’s “noisy view” of the global set of topics.

Once the inference ofzp is complete (andNp
wk is updated), the processor finds another finished

processor and initiates communication2. We are generally interested in the case where memory

2We do not discuss in general the details of how processors might identify other processors that have finished their
iteration, but we imagine that a standard network protocol could be used, like peer-to-peer.
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Algorithm 1 Async-CGS

for each processorp in paralleldo
repeat

Samplezp locally (Equation 3)
ReceiveNg

wk from random procg
SendN p

wk to procg
if p has metg beforethen

SampleÑg
wk (Equation 4)

N¬p
wk ← N¬p

wk − Ñg
wk + Ng

wk
else

N¬p
wk ← N¬p

wk + Ng
wk

end if
until convergence

end for

Algorithm 2 Async-CVB

for each processorp in paralleldo
repeat

Updateγp locally (Equations 3, 5)
ReceiveNg

wk, Vg
wk from random procg

SendN p
wk, V p

wk to procg
if p has metg beforethen

CalculateÑg
wk, Ṽg

wk (Equation 6)
N¬p

wk ← N¬p
wk − Ñg

wk + Ng
wk

V¬p
wk ← V¬p

wk − Ṽg
wk + Vg

wk
else

N¬p
wk ← N¬p

wk + Ng
wk

V¬p
wk ← V¬p

wk + Vg
wk

end if
until convergence

end for

and communication bandwidth are both limited. We also assume in the simplified gossip scheme
that a processor can establish communication with every other processor. In the more general
case these assumptions can be relaxed.

In the communication step, if two processorsp andg have never met before, the processors
would simply exchange their localNp

wk’s (their local contribution to the global topic set), and
processorp would addNg

wk to its N¬p
wk , and vice versa.

When the two processors meet again, the synchronization is alittle more complex. The pro-
cessors should not simply swap and add their local counts again; rather, each processor should
first remove fromN¬p

wk the previous influence of the other processor during their previous en-
counter, in order to prevent processors that frequently meet from over-influencing each other. In
the general case, we can assume that processorp does not store in memory the previous counts
of all the other processors that processorp has already met. Since the previous local counts of
the other processor were already absorbed intoN¬p

wk and are thus not retrievable, we must take a
different approach. In Async-CGS, the processors exchange their Np

wk’s, from which the count of
words on each processor,Np

w can be derived. Using processorg’s Ng
w, processorp creates a proxy

set of counts,Ñg
wk, by samplingNg

w topic values randomly without replacement from collection
{N¬p

wk }. We can imagine that there are
∑

k N¬p
wk colored balls, withN¬p

wk balls of colork, from
which we pickNg

w balls uniformly at random without replacement. This process is equivalent to
sampling from a multivariate hypergeometric (MH) distribution. Ñg

wk acts as a substitute for the
Ng

wk that processorp received during their previous encounter. Since all knowledge of the previ-
ousNg

wk is lost, this method makes use of Laplace’s principle of indifference (or the principle of
maximum entropy). Finally, we updateN¬p

wk by subtractingÑg
wk and adding the currentNg

wk:

N¬p
wk ← N¬p

wk − Ñg
wk + Ng

wk where Ñg
w,k ∼ MH [ Ng

w; N¬p
w,1, ..,N

¬p
w,K] . (4)

Pseudocode for Async-CGS is shown in the display box for Algorithm 1. The assumption of lim-
ited memory can be relaxed by allowing processors to cache previous counts of other processors.
In this case, the cachedNg

wk would replaceÑg
wk.

A limitation of our merging scheme is that processors would need to visit all other processors
to obtain all the counts in the system. In simple gossip-based problems, such as computing the
global average of numbers stored on different processors, pairs of processors would exchange
their numbers and then compute and store the average of thosenumbers. This averaging pro-
cedure allows information to quickly propagate through thenetwork. However, the concept of
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Time (per iteration) Space Communication
Async-CGS 1

P (NK) 2WK + 1
P (N + JK) WK

Async-CVB 1
P (MK) 4WK + 1

P (MK + 2JK) 2WK

Table 1: Time, space, and communication complexities for Async-CGS and Async-CVB.

averaging counts does not appear to work well in the Async-CGS case. We have investigated
several asynchronous algorithms which average the global topic counts between two processors
and we found that averaging performs worse than the Async-CGS algorithm we have described.

One way to overcome this limitation is to relax the assumption of limited bandwidth. Pro-
cessorp could forward its individual cached counts (from other processors) tog, and vice versa,
to quicken the dissemination of information. In fixed topologies where the network is not fully
connected, forwarding is necessary to propagate the countsacross the network.

4.2. Async-CVB: Asynchronous collapsed variational Bayesian inference

As an alternative to collapsed Gibbs sampling, we now consider an asynchronous distributed
variational algorithm for LDA, which we will refer to as Async-CVB. The general scheme is
essentially the same as Async-CGS, except that collapsed variational updates are performed, in
a manner directly analogous to equation 2,

γpi jk ∝
(N¬p + Np)¬i j

wk + η
∑

w(N¬p + Np)¬i j
wk +Wη

(

N¬i j
p jk + α

)

exp

















−
V¬i j

p jk

2(N¬i j
p jk + α)

2
−

(V¬p + V p)¬i j
wk

2((N¬p + Np)¬i j
wk + η)

2
+

∑

w(V¬p + V p)¬i j
wk

2(
∑

w(N¬p + Np)¬i j
wk +Wη)2

















. (5)

Pseudocode for Async-CVB is found in the display box for Algorithm 2. Just like Async-
CGS, the combination of global and local topic counts is usedin the update equation. The corre-
sponding global and local variance counts are also used in the equation. Recall that Async-CVB
makes use of the improved hybrid technique [24], which performs CGS on singleton tokens (eq.
3) and CVB updates on non-singleton tokens (eq. 5) . When performing CGS for a singleton
token, the sampled topic assignmentzp

i j can be represented as{γpi j1...γpi jK } where all the proba-
bilities are zero except forγpi jzp

i j
which is set to one. Thus, both the CGS and CVB updates yield

a vector of variational parameters, and computation for theexpected counts remains the same.
One drawback of Async-CVB is that it oftentimes requires more memory than Async-CGS,

since Async-CVB needs to store the variance count matrices as well as a variational distribu-
tion for each token. Async-CVB also needs to transmit twice the amount of information as
Async-CGS, in order to maintain the global variance counts.If memory is limited or network
communication costs are expensive, Async-CGS would be preferable to Async-CVB.

Async-CVB does provide several benefits. Unlike MCMC techniques, variational techniques
are able to assess convergence by monitoring the change in the variational free energy. Further-
more, instead of sampling̃N from the MH distribution, the expected value is used, allowing
Async-CVB to avoid the costly sampling computation (Ṽ is also computed in a similar manner),

Ñg
w,k =















Ng
w ∗ N¬p

w,1

N¬p
w

, . . . ,
Ng

w ∗ N¬p
w,K

N¬p
w















, Ṽg
w,k =















Ng
w ∗ V¬p

w,1

N¬p
w

, . . . ,
Ng

w ∗ V¬p
w,K

N¬p
w















. (6)
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KOS NIPS NYT PUBMED
Total number of documents in training set 3,000 1,500 300,000 8,200,000
Size of vocabulary 6,906 12,419 102,660 141,043
Total number of words 410,595 1,932,365 99,542,125 737,869,083
Total number of documents in test set 430 184 – –

Table 2: Data sets used for experiments

Technically, it is possible for Async-CGS to also make use ofthese expected values; however,
these values should be adjusted to be integers to avoid fractional counts in Async-CGS.

Another benefit of using Async-CVB is that tokens with the same word-document indices
can be clumped and processed together in one update step at each iteration, with little loss in
accuracy. Thus, the running time of Async-CVB is linear in the number of non-zero cells (M)
in the word-document matrix, while the running time of Async-CGS is linear in the number of
tokens (N). Typically, M is much smaller thanN. Table 1 shows the time, space, and communi-
cation complexities of the algorithms for each processor, assuming allJ documents are of equal
size. These tradeoffs suggest that one should consider memory limitations, network latencies,
and data set characteristics in order to decide which distributed inference scheme to use.

5. Experiments

We use four text data sets for evaluation: KOS, a data set derived from blog entries (dai-
lykos.com); NIPS, a data set derived from NIPS papers (books.nips.cc); NYT, a collection of
news articles from the New York Times (nytimes.com); and PUBMED, a large collection of
PubMed abstracts (ncbi.nlm.nih.gov/pubmed). The characteristics of these data sets are summa-
rized in Table 2. These data sets are available at the UCI Machine Learning Repository [39].

For the experiments that measure the accuracy of our algorithms, parallel processors were
simulated in software and run on smaller data sets (KOS, NIPS), to enable us to test the statistical
limits of our algorithms. Actual parallel hardware is used to measure speedup on larger data sets
(NYT, PUBMED). The simulations use a gossip scheme over a fully connected network that
lets each processor communicate with one other randomly selected processor at the end of every
iteration. For instance, withP=100, there are 50 communicating pairs at each iteration.

In our experiments, the data set is separated into training and test sets. We learn our models
on the training set, and then we measure the performance of our algorithms on the test set using
perplexity, a widely-used metric in the topic modeling community. Perplexity is defined as the
exponentiated average per-word log-likelihood and is widely used as a quantitative metric in
speech and language modeling [40]. Moreover, perplexity has been shown to correlate well with
other performance measures, such as precision/recall metrics [41] and word error rate in speech
recognition [42]. For each of our experiments, we performS = 5 different Gibbs runs for stability
purposes, with each run lasting 1500 iterations (unless otherwise noted), and we obtain a sample
at the end of each of those runs. The 5 samples are averaged when computing perplexity:

log p(xtest) =
∑

jw

Ntest
jw log

1
S

∑

s

∑

k

θ̂s
jkφ̂

s
wk where θ̂s

jk =
N s

jk + α

N s
j + Kα

, φ̂s
wk =

N s
wk + η

N s
k +Wη

. (7)

After the model is run on the training data,φ̂s
wk is available in samples. The tokens in each test

document are split into two sets of equal size by random selection. To obtainθ̂s
jk, we resample
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Figure 3:(a) Top-Left: Async-CGS perplexities on KOS.(b) Top-Right: Async-CVB perplex-
ities on KOS.(c) Bottom-Left: Async-CGS perplexities on NIPS.(d) Bottom-Right: Async-
CVB perplexities on NIPS. For Async-CGS, cache=5 when P≥100, and 3000 iterations were
used when P≥500. For Async-CVB, 2000 iterations were used when P=100.

the topic assignments of the first set of tokens of each test document while holdinĝφs
wk fixed.

Perplexity is evaluated on the second set of tokens for each test document, given̂φs
wk and θ̂s

jk.
This procedure eliminates the possibility of “peeking” at the test data during the training phase.

Since each processor effectively learns a separate local topic model, we can directly com-
pute the perplexity for each processor’s local model. In ourexperiments, we report the average
perplexity among processors, and we show error bars denoting the minimum and maximum per-
plexity among all processors. The variance of perplexitiesbetween processors is usually quite
small, which suggests that the local topic models learned oneach processor are equally accurate.

For KOS and NIPS, we used the same settings for the symmetric Dirichlet priors:α = 0.1,
η = 0.01 for CGS, CVB, Async-CGS, and Async-CVB. Note that it is also possible to learn these
hyperparameters [41].

5.1. Perplexity results

Figures 3(a,c) show the perplexity results for Async-CGS onthe KOS and NIPS data set for
varying numbers of topics,K, and varying numbers of processors,P. The variation in perplexities
between CGS and Async-CGS is slight and is significantly lessthan the variation in perplexities
as the number of topicsK is changed. Figures 3(b,d) show perplexities for Async-CVB. For
both CVB and Async-CVB, we use the hybrid technique and we clump tokens with the same
word-document indices. There is a slight degradation in perplexity for theP=100 case, since
caching was not enabled in Async-CVB. Nonetheless, these results suggest that Async-CGS and
Async-CVB converge to solutions of nearly the same quality as CGS and CVB.
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Figure 4:(a) Top-Left: Convergence plot for Async-CGS on KOS, K=16. (b) Top-Right: Same
plot with x-axis as relative time.(c) Bottom-Left: Convergence plot comparing Async-CGS to
Async-CVB on NIPS, K=20. (d) Bottom-Right: Async-CGS speedup results on NYT and
PUBMED, K=100, using an MPI cluster.

In Figure 3(a) we stretched the limits of our algorithm by increasingP considerably for the
K=16 case. Note that, forP=1500, there are only two documents on each processor. Even in
this extreme case, we found that performance was virtually unchanged. As a baseline we ran an
experiment where processors never communicate. As the number of processorsP was increased
from 10 to 1500 the corresponding perplexities increased from 2600 to 5700, notably higher than
our Async-CGS algorithm, indicating (unsurprisingly) that processor communication is essential
to obtain high quality models.

5.2. Convergence results

Figure 4(a) shows the rate of convergence of Async-CGS. Here, we monitor convergence of
the perplexity score on the test data. As the number of processors increases, the rate of con-
vergence slows, since it takes more iterations for information to propagate to all the processors.
However, it is important to note that one iteration in real time of Async-CGS is up toP times
faster than one iteration of CGS. We show the same curve in terms of estimated real time in
Figure 4(b), assuming a parallel efficiency of 0.5, and one can see that Async-CGS converges
much more quickly than CGS.

In Figure 4(a), we also show the performance of a baseline asynchronous averaging scheme,
where global counts are averaged together:N¬p

wk ← (N¬p
wk +N¬g

wk )/d +Ng
wk. To prevent unbounded

count growth,d must be greater than 2, and so we arbitrarily setd to 2.5. While this averaging
scheme initially converges quickly, it converges to a final solution that is worse than Async-CGS.
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The rate of convergence for Async-CGSP=100 can be significantly improved by letting each
processor maintain a cache of previousNg

wk counts of other processors. Figures 4(a,b),C=5, show
the improvement made by letting each processor cache the fivemost recently seenNg

wk’s. Note
that we still assume a limited bandwidth – each processor does not forward individual cached
counts, but instead shares a single matrix of combined cachecounts that helps processors achieve
faster burn-in time. In this manner, one can elegantly make atradeoff between time and memory.

We also compare the performance of Async-CVB to Async-CGS onNIPSK=20, without any
averaging of samples. On very large corpora, there may be only time to perform one run, and so
this experiment simulates a situation of interest. Figure 4(c) reveals that Async-CGS is slightly
more accurate than Async-CVB in this case. Both algorithms converge relatively quickly to
nearly the same solution, although for theP=10 case, Async-CVB converges at a slightly faster
rate than Async-CGS.

Finally, we note that formal MCMC convergence tests are impractical to apply in the case
of Async-CGS, given the very large number of parameters in these models. However, one may
still assess convergence based on specific measures of interest, such as perplexity and mean
entropy of the topic distributions. We conducted several experiments where we ran multiple
chains (each governed by our Async-CGS algorithm) initialized at overdispersed starting points,
and we calculated the well-known̂R statistic which compares within-chain variance to between-
chain variance [43]. We obtained̂R values of 1.1 and 1.2 when using perplexity and mean entropy
of the topic distributions as measures, respectively. Since these values are close to 1, they suggest
that the chains have essentially converged, relative to ourmeasures of interest. Furthermore, in
the case of Async-CVB, one can calculate the variational free energy at each iteration to monitor
the progress of the algorithm and assess convergence [23].

5.3. Speedup results

Figure 4(d) shows actual speedup results for Async-CGS on NYT and PUBMED, and the
speedups are competitive to those reported for Parallel-CGS [13]. For these experiments, we
used the Message Passing Interface (MPI) Library in C to allow processors to communicate with
each other. We ran MPI on our cluster of 4 machines, each containing 8 cores. As the data set
size grows, the parallel efficiency increases, since communication overhead is dwarfedby the
sampling time. These results suggest that substantial speedups can be obtained on large data
sets, using our our asynchronous distributed framework.

Since the speedups obtained by our asynchronous algorithmsare comparable to the speedups
obtained by the synchronous parallel algorithms, a practical issue is determining whether to
use synchronous or asynchronous algorithms. Our asynchronous framework provides additional
benefits such as fault tolerance, lack of a global bottleneck, pairwise communication, and the use
of heterogeneous machines. If none of these asynchronous benefits are needed, we recommend
that the synchronous parallel versions be used, since they are easier to implement in practice.

5.4. Other experiments

In certain applications, it is desirable to learn a topic model incrementally as new data arrives.
For instance, consider a news article database that receives new articles daily. In our framework,
if new data arrives, we assign the new data to a new processor,and then let that new processor
enter the “world” of processors with which it can begin to communicate. Our asynchronous
approach requires no global initialization or global synchronization step. We do assume a fixed
global vocabulary, but one can imagine schemes which allow the vocabulary to grow as well. We
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Figure 5:(a) Left: Online learning on KOS, K=16 via Async-CGS.(b) Right: When the syn-
chronization interval, SI, is increased, Async-CGS converges to a suboptimal solution when P=2.

performed an experiment for Async-CGS where we introduced 10 new processors (each carrying
new data) every 100 iterations. In the first 100 iterations, only 10% of the KOS data is known,
and every 100 iterations, an additional 10% of the data is added to the system through new
processors. Figure 5(a) shows that perplexity decreases asmore processors and data are added.
After 1000 iterations, the Async-CGS perplexity has converged to the standard LDA perplexity.
Thus, in this experiment, learning in an online fashion doesnot adversely affect the final model.

We also note that it is possible to perform online learning with a fixed number of proces-
sors. For instance, one can introduce new “logical” processors with new data, where each actual
processor would handle multiple threads, each representing a logical processor. Alternatively,
one may augment the document-topic matrixNp jk with the new documents and also add the new
counts toNp

wk; however, this approach may require complicated bookkeeping of the topic counts
to avoid inconsistencies between processors.

In Figure 5(b), we show a case where our asynchronous algorithms perform suboptimally. In
this experiment, we introduced a synchronization intervalof 20, i.e. processors only communi-
cate after 20 iterations of local Gibbs sampling. We did not perform averaging of samples in this
experiment. In theP=2 case, Async-CGS converges to a suboptimal solution because processor
1’s topics start to drift far from processor 2’s topics as thesynchronization interval increases,
causing label switching to potentially occur. The effects of drifting can be mitigated by perform-
ing bipartite matching between processor 1’s topics and processor 2’s topics, via the Hungarian
algorithm for bipartite matching [44]. In this experiment,Async-CGS with topic matching per-
forms significantly better than without matching. Note thatasP increases, drifting becomes less
of an issue, since each processor can only modify1

P of the total topic assignments. Async-CGS
P=10 (without matching), performs significantly better than theP=2 case.

In Table 3, we show representative topics learned by CGS, Async-CGSP=10, and Async-
CVB P=10 on NIPS,K=20. Note that not all the topics are exactly alike; for instance, in the
fourth cell of Table 3, Async-CVB’s topic seems to be a hybridof a “signal processing” topic
and a “tree” topic. Nonetheless, the general semantic coherence and similarity between the topics
learned by different algorithms suggest that our distributed approach is able to learn high-quality
models.

Other situations of interest, such as distributed learningwith load imbalance and distributed
learning of the HDP model (the non-parametric analogue of LDA), are described in earlier
work [31].
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CGS model distribution data gaussian probability parameter likelihood mixture
Async-CGS model distribution data probability gaussian parameter likelihood mean
Async-CVB model data distribution gaussian parameter probability likelihood mean

CGS neuron cell model spike synaptic firing input potential
Async-CGS neuron cell model synaptic input firing spike activity
Async-CVB neuron model input cell synaptic spike activity firing

CGS function bound algorithm theorem threshold number set result
Async-CGS function bound theorem result number threshold neural set
Async-CVB function bound algorithm learning number theorem set result

CGS signal filter frequency noise component channel information source
Async-CGS signal information frequency channel filter noise component source
Async-CVB information node component tree nodes signal algorithm independent

Table 3: High probability words of topics learned by CGS, Async-CGS, Async-CVB on NIPS

6. Conclusions

We have presented two different algorithms for distributed learning for LDA. Our perplexity
and speedup results suggest that latent variable models such as LDA can be learned in a scal-
able asynchronous fashion for a wide variety of situations.One can imagine these algorithms
being performed by a large network of idle processors, in an effort to mine the terabytes of text
information available on the Internet.

A practical issue is determining the number of processors touse for a given data set, based on
the tradeoff between the quality of approximation and the savings in processing time. As we have
seen in our experiments, there is very little degradation inthe quality of solution achieved, even
when the number of processors is dramatically increased. Thus, we generally advocate using
as many processors as are available. However, if the communication time between processors
dominates the time it takes to perform local CGS/CVB sweeps over the data, then perhaps the
data set is not large enough to justify using many processors. Another practical issue is the use
of count caching to improve the rate of convergence of the algorithm. We generally recommend
that caching be performed according to the memory capacities of each processor.

Although processors perform inference locally based on inexact global counts, the asyn-
chronous algorithms proposed in this paper nonetheless produce solutions that are almost iden-
tical to those produced by standard single-processor algorithms, but that can be obtained in a
fraction of the time. The only case where we found that the distributed algorithms break down is
when the processors do not synchronize on a regular basis. Providing a theoretical justification
for these distributed topic model algorithms is still an open area of research. More generally,
parallelization within a single MCMC/Gibbs sampling run has yet to be fully explored.
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