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Abstract

Given the prevalence of large data sets and the availabilityexpensive parallel comput-
ing hardware, there is significant motivation to explorériisited implementations of statistical
learning algorithms. In this paper, we present a distrithiearning framework for Latent Dirich-
let Allocation (LDA), a well-known Bayesian latent varighinodel for sparse matrices of count
data. In the proposed approach, data are distributed aBrpsscessors, and processors inde-
pendently perform inference on their local data and comuataitheir stficient statistics in a
local asynchronous manner with other processors. We apulydifferent approximate infer-
ence techniques for LDA, collapsed Gibbs sampling and psdd variational inference, within
a distributed framework. The results show significant inwproents in computation time and
memory when running the algorithms on very large text cap@ing parallel hardware. De-
spite the approximate nature of the proposed approach]ations suggest that asynchronous
distributed algorithms are able to learn models that arelyea accurate as those learned by
the standard non-distributed approaches. We also find thradistributed algorithms converge
rapidly to good solutions.
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1. Introduction

The emergence of the Internet over the past decade has cagnlifi increased the amount
of information available to end users. For instance, the IMedlatabase contains millions of
scientific publications, the Netflix Prize data set has 0@ million movie ratings, and Google
indexes over a billion web pages. Statistical analysis witimplex models on data sets of this
scale is often dficult on a single computer—the data may not fit in main memorpeitime to
perform the analysis may take on the order of days or weeks.

Fortunately, parallel and distributed computing resosieze becoming relatively inexpensive
and widely available. New computers are typically equipp&ith multi-core processors, and
clusters of computers can be deployed with relative ease.ifidreasing availability of multi-
processor and grid computing technologies provides aipedchotivation to develop statistical
learning algorithms that are able take advantage of suclpatational resources.

In this paper, we focus on the specific problem of developistgiluted learning algorithms
for the Latent Dirichlet Allocation model [1]. LDA is a Bayie® model for sparse high dimen-
sional matrices of counts, such as word frequencies in tecdithents or feature counts inimages.
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In the machine learning community, LDA is widely referreda® the “topic model” since this
model facilitates the learning of low dimensional repréagons, or “topics”, from the data.
LDA has been primarily applied to text corpora for the pugpo§performing automated docu-
ment analysis and multiple variants have already been gezpdiierarchical Dirichlet Processes
(HDP) are a non-parametric analogue of LDA which allow thenber of topics to vary [2]. The
Author-Topic model builds upon LDA by incorporating the oot of an author [3]. Models that
seek to learn correlations between topics include the Gdee Topic Model [4] and Pachinko
Allocation [5]. Applications of LDA include information tdeval [6], entity resolution [7], web
spam filtering [8], software artifact analysis [9], and cartgy vision tasks [10].

There is growing interest in applying these techniques tp ka@ge data sets. In order to scale
LDA to these large data sets, several distributed topic fireglalgorithms have recently been
developed[11, 12, 13, 14]. Distributed computation in tetext provides two distinct benefits:
(1) parallelization across many machines can significespised up inference; (2) distributed
computing increases the total amount of collective memaligwing corpora with billions of
words to be processedfeiently.

While synchronous distributed algorithms for topic modedse been proposed in earlier
work, our primary contribution is the introduction eynchronous distributed algorithms for
LDA, based on collapsed Gibbs sampling and collapsed vanigtinference. Fully asynchronous
algorithms provide several computational advantages twer synchronous counterparts: (1)
there does not exist the computational bottleneck of glelpathronization across all proces-
sors; (2) the system is fault-tolerant due to its decerziedinature; (3) heterogeneous machines
with different processor speeds and memory capacities can be useeiv(grocessors and new
data can be incorporated into the system at any time.

We employ an asynchronous “gossip-based” framework [15¢kvbnly uses pairwise inter-
actions between random pairs of processors. The distdiftaenework we propose can provide
substantial memory and time savings over single-processoputation, since each processor
only needs to store and perform Gibbs sampling sweeps ﬁgﬂeof the data, wher@ is the
number of processors. Furthermore, the asynchronous agpoan scale to large corpora and
large numbers of processors, since no global synchroaizateps are required.

In the proposed framework, local inference on individualgassors is based on a noisy in-
exact view of the global topics. As a result, our distributetlapsed sampling algorithm is not
sampling from the proper global posterior distributionkéwise, the distributed collapsed varia-
tional inference algorithm we propose is not optimizingtitue variational bound. Nonetheless,
as we will show in our experiments, these algorithms are gogtly very robust and converge
rapidly to high-quality solutions. In most applicationslddA, one is often most interested in
discovering good modes in the posterior rather than fulblyaring the posterior shape. We find
that our algorithms are particularly well-suited for thasit.

We first review collapsed Gibbs sampling and collapsed tiarial inference for LDA. We
also briefly review the general use of distributed compuiimgtatistics and machine learning.
Then we describe the details of our distributed algorithfFigially, we present accuracy, con-
vergence, and speedup results for our algorithms whenexbtgi text data and conclude with
directions for future work.

2. A Review of Latent Dirichlet Allocation

Dimensionality reduction and the discovery of latent rielaghips between variables are im-
portant problems which have prompted the development t§stal decomposition techniques
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such as factor analysis and related approaches. A well-kribmensionality reduction tech-
nique is Principal Components Analysis (PCA), which alldies the extraction of principal
components from data through the eigenvalue decompositithre data covariance matrix [16].
Latent Semantic Analysis (LSA) can be viewed as the appdinaif PCA to documents [17].
When applying LSA to text corpora, each document is repitesias a vector of frequencies of
word counts for the document. The ensuing matrix of wordutieent counts is decomposed via
singular value decomposition, allowing documents to bepedfo a lower dimensional space.

Probabilistic Latent Semantic Analysis (PLSA) improvesuh SA by introducing a proba-
bilistic model for this decomposition [18]. In turn, Latebirichlet Allocation (LDA) was pro-
posed as a generalization of PLSA, casting the model witlgarerative Bayesian framework,
and in the process avoiding some of the overfitting issuesvibee observed with PLSA [1].
LDA also bears similarities to other statistical modelgtsas admixture models [19] and mixed-
membership models [20]. A general review of the similasitietween PCA, LSA, PLSA, LDA,
and other models can be found in Buntine and Jakulin [21].

In LDA, each document in the corpus is modeled as a mixture
overK topics, and each topicis a discrete distributionrj,k, over a
vocabulary ofW words'. Each topicguk, is drawn from a Dirichlet
distribution with parametey. In order to generate a new document, @_
the document’s mixturedy;, is first sampled from a Dirichlet dis-
tribution with parameter.. For each token in that document, a
topic assignmert;; is sampled frond;, and the specific word;;
is drawn from,;;. The graphical model for LDA is shown in Fig- D, i
ure 1, and the generative process is below: K N; 3

®

Gk,j ~ D[G,’] ¢W,k ~ D[U] zi] ~ Gk,j XlJ ~ ¢W,Zij . Figure 1: LDA model.

Given observed data, it is possible to infer the posteristriiution Plates denote replication
of the latent variables. For LDA, a particularly simple arata over indices, boxes denote
rate inference technique is collapsed Gibbs sampling (J&%) parameters, circles denote
in which 6; and¢w« are integrated out and sampling of the topitidden variables, shaded
assignments is performed sequentially in the following nean ~ circles denote observed
variables, and arrows de-
note dependencies.

NV;Lj +1n (

Sw NG+ Wy

P(zj = Kz, xj = W) Nil+a). (1)
Nuk denotes the number of word tokens of typassigned to topik, while Nj is the number of
tokens in documenitassigned to topik. N~'1 denotes the count with tokéjremoved.

Once an LDA model is learned, the topigs,can be used in a variety of ways. The high
probability words of each topic are informative of the setiamature of the topic. For instance,
if the high probability words in topic 1 areStudent School Study Grades Teacher”, we would
interpret topic 1 to be about academics. Examples of aciDAltiopics learned on the NIPS cor-
pus are shown later in the paper (Table 3). Moreover, eachrdent’'sd gives us the distribution
of topics within that document. Thus, LDA provides an autimaay to summarize the seman-
tic content of a corpus (through topics) and discover thectgontent within each document.

1To avoid notational clutter, we writéy or 0k;j to denote the set of all components, i{@w} or {fx;}. Similarly,
when sampling from a Dirichlet distribution, we writgj ~ D[a] instead of 1 j, ..k j] ~ Dla, ..,a]. We use symmetric
Dirichlet priors for simplicity in this paper.
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Furthermore, similar documents can be clustered togetmadon the similarity between their
#'s, allowing for applications such as document retrieval alassification.

An alternative approximate inference technique for LDA #iational Bayesian inference
(VB) [1], where the true posterior distribution is approxitad by a fully factorized posterior
distribution in order to simplify inference. In VB, the ndiyg marginal log likelihood is up-
per bounded by Jensen’s inequality, leading to a quantiopiknas the variational free energy.
The objective is to minimize this free energy with respedh®variational parameters. As with
the collapsed Gibbs samplék; and¢w can be integrated out within the variational inference
framework, yielding collapsed variational Bayesian (C\tigrence [23]. In CVB, each toke
has an underlying discrete distribution over todig$:...7ijk }, and the product of these distribu-
tions forms the fully factorized posterior. Optimizing tvitespect to these variational parameters
yields a relatively ficient deterministic update,

Nad 1 Vi Vo S Vi
wk —ij jk wk w Vwk
ST (N Ha)expl o - o ] 2|
Yw Ny +Wn 2Ny + @) 2(Ng +m)?  2(Zw Ny +Wn)
2)

In CVB, Nj« denotes the expected number of tokens in docuessigned to topik, and
can be calculated from as follows: N;k” = Y+ Yirjk- There is also a variance associated with
each countV;! = 3 7 j(1 - yrjx). This CVB update is fully derived in Teh et al. [23].
The distributed CVB algorithm that we introduce in this papgizes a hybrid technique which

performs CGS on singleton tokens (where the count in the sloiment matrix is one) and
CVB updates on non-singleton tokens [24].

Yijk &

3. Related work on distributed learning

The use of parallel and distributed computing in statissitd machine learning has garnered
significant interest in recent years. Kontoghiorghes haspiled a lengthy handbook of the use
of parallel computing in statistics, including paralleltiopization methods, parallel algorithms
for linear algebra techniques, and parallel Bayesian caatiom [25]. Distributed expectation
maximization (EM) algorithms have been investigated inhbtbie synchronous case [26] and
asynchronous case [27]. Rossini et al. propose a parabbglr@mming framework in the R
language forembarrassingly parallel problems, i.e. problems which can be decomposed into
independent subtasks [28]. Chu et al. recast various matdanning algorithms, such as logistic
regression, PCA, EM, and SVD, within Google’s distributedpv¥Reduce framework [29]

Parallelized Gibbs sampling techniques for the specifie cdd. DA models have been pro-
posed by Newman et al. [13] and Mimno and McCallum [11]. Ineotivork, Nallapati et al. [12]
parallelize the variational expectation maximizationoaithm for LDA by taking advantage of
the independence of variational parameters between dotam&imilarly, Wolfe et al. [14]
parallelize both the E and M steps of the variational LDA ailidpon, under various computer
network topologies. In a similar vein, other related mogdsleh as PLSA, have also been par-
allelized [30]. The primary distinctions between the ideethis paper and earlier work are that
(a) our algorithms use purely asynchronous communicattimer than a global synchronous
scheme, and (b) we have incorporated both collapsed Gilbhglisey and collapsed variational
inference within our framework.
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Figure 2: Sampling two variables in parallel, conditionedtioe opposing value in the previous
time step, produces two independent chains and incorrealtsg34].

More generally, Gibbs sampling can be parallelized in nedét simple ways: (1) samplers
with different initial seeds can be run in parallel to obtain multgdeples, (2) non-interacting
sets of variables can be sampled in parallel [25]. In thisspape are more concerned with the
problem of parallelizing the generation of a single samgilege many applications of LDA only
require the discovery of a good posterior mode, e.g., theodery and interpretation of specific
word-topic probability distributions. If variables aregndent, parallelizing within a single run
of Gibbs sampling is diicult to perform due to the sequential nature of MCMC. Consigibbs
sampling with two dependent variables, as shown in Figutttith variables are sampled con-
currently given the values of the opposing variables at tiegipus iteration, two independent
Markov chains would form, and the sampié, ¢*) for any timet would never be simulated from
the correct distribution. Approximate parallel samplirmg £EDA makes use of the same con-
current sampling technique [13]. However, in LDA, becaussé can be millions of variables
(the latent topic assignments for the words), and thesabi@s tend to be only weakly depen-
dent on each other, it is reasonable to believe that locapbagwill be approximately correct.
Empirical studies have supported this intuition, by shanimat approximations resulting from
performing Gibbs sampling on LDA models in parallel appeabé¢ very slight [13, 31]. Fur-
thermore, it is possible to derive a bound for the approxiomagrror for certain parallel LDA
samplers [32].

Exact parallel Gibbs samplers have been shown to exist byingalse of periodic syn-
chronous random fields [33]; however, a method of conswadtir such a sampler is not avail-
able. Brockwell [34] presents a pre-fetching parallel alpon for MCMC, and Winkler [35]
describes general parallel sampling schemes which rehnanaealing schedule. These tech-
nigues appear to be impractical for large-scale samplindtBA. Newman et al. [13] modify
the LDA model slightly to obtain a model in which collapsetkirence is exactly parallelizable.
This particular technique does not seem to be applicableet@$ynchronous distributed setup.
Other related sampling techniques are parallel parti¢zifilg [36], and parallel tempering [37].

There also exists a large body of prior work on gossip algor# (e.g., [15]), such as News-
cast EM, a gossip algorithm for performing EM on Gaussiantunex models [27]. The tech-
nigues we present in this paper are also related to work dritdited averaging (e.g. [38]),
where each node has an initial value, and the goal is to edcthe average of these values
across the network of nodes in a distributed fashion. In asegceach node (or processor) has a
matrix of LDA word-topic counts, and the goal of each processto estimate the sum of these
matrices across all nodes in the network (in order to obtergiobal topic information needed
for Gibbs sampling), with the added complication that thements are dynamically changing on
each processor, due to Gibbs sampling.



4. Asynchronousdistributed learning algorithmsfor LDA

We consider the task of learning an LDA model wihtopics in a distributed fashion where
J documents are distributed acrd3gprocessors. Each procesgostores the following local
variables:vvi”j contains the word type for each tokeim documentj in the processor, anzfj
contains the assigned topic for each tokB@kp is the global word-topic count matrix stored at
the processor—this matrix stores counts of other proceggthered during the communication
step and does not include the processor’s local counlfﬁ.is the local document-topic count
matrix (derived fronzP), Ny, is the simple word count on a processor (derived fiatyy andNF,
is the local word-topic count matrix (derived frazh andwP) which only contains the counts of
data on the processor. In the CVB case, instead of storinglardopic assignmerzﬂ for each
token, a distribution over topics is stored{@g j1...y;ijk }, and variance countS/@f, V\f,k andvlfj)
are also stored. In the following sections, we describe #iaild of our distributed algorithms.

4.1. Async-CGS: Asynchronous collapsed Gibbs sampling

We begin by describing a synchronous parallel version of Lia&ed on collapsed Gibbs
sampling (which we call Parallel-CGS) introduced by Newnearal. [13]. In Parallel-CGS,
each processor has responsibility foof the documents in the corpus, and teeare globally
initialized. Each iteration of the algorithm is composedadBibbs sampling step followed by
a synchronization step. In the sampling step, each proceasaples its locat® by using the
global topics of the previous iteration. In the synchrotima step, the local countslv’\),k on
each processor are aggregated to produce a global set oftemicdcountsN,«. This process is
repeated for a fixed number of iterations or until a convecgemiterion is satisfied.

While Parallel-CGS provides substantial memory and tinwingg over the standard single
processor algorithm, it is a fully synchronous algorithmiahhrequires global synchronization
at each iteration. In some applications, a global synclzaditin step may not be desirable or
feasible. Some processors may be unavailable, while otieeepsors may be in the middle of
a long Gibbs sweep, due tofffirences in processor speeds dfailent amounts of data on each
processor. To obtain the benefits of asynchronous computmtroduce an asynchronous dis-
tributed version of LDA based on collapsed Gibbs samplingyffc-CGS) that follows a similar
two-step process to that above. Each processor perforntabdollapsed Gibbs sampling step
followed by a step of communicating with another randomlgsted processor.

In each iteration of Async-CGS, the processors perform lasfuéep of collapsed Gibbs
sampling over their local topic assignment varial#esccording to the following conditional
distribution, in a manner directly analogous to equation 1,

(N7P+ Np)\;,ikj +7
(NP + NP) 4 Wi

(NS + ). 3)

P(z5ij = k|Z;ij,Wp) oc

The sum ofN‘;E and NV’\’,k is used in the sampling equation. Recall th@f represents processor
p's belief of the counts of all the other processors with whitdias already communicated (not
including processop’s local counts), WhiIeN\f,k is the processor’s local word-topic counts. Thus,
the sampling of the”’s is based on the processor’s “noisy view” of the global $ebpics.

Once the inference @ is complete (an(tklv’ik is updated), the processor finds another finished
processor and initiates communicafiokiVe are generally interested in the case where memory

2We do not discuss in general the details of how processorbtritigntify other processors that have finished their
iteration, but we imagine that a standard network protooaldbe used, like peer-to-peer.
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Algorithm 1 Async-CGS Algorithm 2 Async-CVB

for each processaqu in paralleldo for each processaguin paralleldo
repeat repeat
Samplez® locally (Equation 3) UpdateyP locally (Equations 3, 5)
ReceiveNy, from random prog ReceiveN?,, V3, from random prog
SendN}, to procg SendN},, V&, to procg
if phas meg beforethen if phas meg beforethen
SampleN¢, (Equation 4) CalculateN?, , VS, (Equation 6)
NP e NP — NS + NS, NP e NP — N+ NS,
ese VD e VP -V o+ v
NP« NP+ N2, ese
end if NP — NP+ NS
until convergence Voo« Vb + Vo
end for end if
until convergence
end for

and communication bandwidth are both limited. We also assuarthe simplified gossip scheme
that a processor can establish communication with evergrgitocessor. In the more general
case these assumptions can be relaxed.

In the communication step, if two process@randg have never met before, the processors
would simply exchange their Iocsz'\’,k’s (their local contribution to the global topic set), and
processop would addN?, to itsN_ ¥ , and vice versa.

When the two processors meet again, the synchronizatiolitieanore complex. The pro-
cessors should not simply swap and add their local counis;agdher, each processor should
first remove fromN\;E the previous influence of the other processor during thevipus en-
counter, in order to prevent processors that frequentiyt fn@@ over-influencing each other. In
the general case, we can assume that procgsdoes not store in memory the previous counts
of all the other processors that procespdras already met. Since the previous local counts of
the other processor were already absorbedNjjpand are thus not retrievable, we must take a
different approach. In Async-CGS, the processors exchangé\théd, from which the count of
words on each processdt, can be derived. Using processs NS, processop creates a proxy
set of countsN\ﬁ’,k, by samplingNy, topic values randomly without replacement from collection
{N,f}. We can imagine that there ap& N, ;P colored balls, withN, )P balls of colork, from
which we pickNg balls uniformly at random without replacement. This predesquivalent to
sampling from a multivariate hypergeometric (MH) disttion. N\i’,k acts as a substitute for the
N\f,k that processop received during their previous encounter. Since all kndgéeof the previ-
ousN\f‘\’,k is lost, this method makes use of Laplace’s principle offtiedénce (or the principle of
maximum entropy). Finally, we updaldg;f by subtracting‘(l\?,k and adding the currem\?vk:

Ny — No& = N& + NJ, - where N&, ~ MHNGNGE, . NJRT . (4)
Pseudocode for Async-CGS is shown in the display box for Algm 1. The assumption of lim-
ited memory can be relaxed by allowing processors to caahaqurs counts of other processors.
In this case, the cachedf, would replaceN?,.

A limitation of our merging scheme is that processors wo@eldto visit all other processors
to obtain all the counts in the system. In simple gossip-daseblems, such as computing the
global average of numbers stored olffelient processors, pairs of processors would exchange
their numbers and then compute and store the average of thuoskers. This averaging pro-
cedure allows information to quickly propagate throughrkévork. However, the concept of
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Time (per iteration) Space Communication
Async-CGS I (NK) 2WK + £ (N + JK) WK
Async-CVB 1 (MK) AWK + I (MK + 2JK) 2WK

Table 1: Time, space, and communication complexities fgm&sCGS and Async-CVB.

averaging counts does not appear to work well in the Asyn&C&se. We have investigated
several asynchronous algorithms which average the glopal tounts between two processors
and we found that averaging performs worse than the Asyng-@igorithm we have described.

One way to overcome this limitation is to relax the assummptiblimited bandwidth. Pro-
cessorp could forward its individual cached counts (from other @®s0rs) ta@, and vice versa,
to quicken the dissemination of information. In fixed topgits where the network is not fully
connected, forwarding is necessary to propagate the caartss the network.

4.2. Async-CVB: Asynchronous collapsed variational Bayesian inference

As an alternative to collapsed Gibbs sampling, we now camnsid asynchronous distributed
variational algorithm for LDA, which we will refer to as AsgaCVB. The general scheme is
essentially the same as Async-CGS, except that collapsedivaal updates are performed, in
a manner directly analogous to equation 2,

(N7P+ Np)\;,ikj +7

Ypijk o€ C NI
P S (NP + NP +Wn( pik )
Vo (VP V) BV P+ VP ©
exp| — ! _ v N g .
2Ngje+ @) 2(NP+ NP)+ )7 2(Su(NP + NP)G + Wi)?

Pseudocode for Async-CVB is found in the display box for Algon 2. Just like Async-
CGS, the combination of global and local topic counts is usede update equation. The corre-
sponding global and local variance counts are also useaiadbation. Recall that Async-CVB
makes use of the improved hybrid technique [24], which penfoCGS on singleton tokens (eq.
3) and CVB updates on non-singleton tokens (eq. 5) . Wheropeifig CGS for a singleton
token, the sampled topic assignmq'?jman be represented @gij1...vpijx } Where all the proba-
bilities are zero except fqrpijqu which is set to one. Thus, both the CGS and CVB updates yield
a vector of variational parameters, and computation foettpected counts remains the same.

One drawback of Async-CVB is that it oftentimes requires enmemory than Async-CGS,
since Async-CVB needs to store the variance count matrisegedl as a variational distribu-
tion for each token. Async-CVB also needs to transmit twloe amount of information as
Async-CGS, in order to maintain the global variance coutftesaemory is limited or network
communication costs are expensive, Async-CGS would begaele to Async-CVB.

Async-CVB does provide several benefits. Unlike MCMC teqglueis, variational techniques
are able to assess convergence by monitoring the change watiational free energy. Further-
more, instead of samplinly from the MH distribution, the expected value is used, alfayvi
Async-CVB to avoid the costly sampling computatidhié also computed in a similar manner),

g —-P 9 -P

\79 _ [NW * Vw,l Ny * VW,K

wk T -p L] -p
Ny Ny

(6)

g -p 9 -p

Ng _ Ny * Nw,l Ny * NW,K]

W,k - -p L] -p )
Ny Ny



KOS NIPS NYT PUBMED
Total number of documents in training set 3,000 1,500 300,000 8,200,000
Size of vocabulary 6,906 12,419 102,660 141,043
Total number of words 410,595| 1,932,365| 99,542,125| 737,869,083
Total number of documents in test set 430 184 - -

Table 2: Data sets used for experiments

Technically, it is possible for Async-CGS to also make us¢hebe expected values; however,
these values should be adjusted to be integers to avoiddinattounts in Async-CGS.

Another benefit of using Async-CVB is that tokens with the sanord-document indices
can be clumped and processed together in one update stepghatezation, with little loss in
accuracy. Thus, the running time of Async-CVB is linear ie ttumber of non-zero cell$\)
in the word-document matrix, while the running time of Asy@GS is linear in the number of
tokens (). Typically, M is much smaller thail. Table 1 shows the time, space, and communi-
cation complexities of the algorithms for each processsuming allJ documents are of equal
size. These tradéid suggest that one should consider memory limitations, or&tlatencies,
and data set characteristics in order to decide which bigd inference scheme to use.

5. Experiments

We use four text data sets for evaluation: KOS, a data setetbfrom blog entries (dai-
lykos.com); NIPS, a data set derived from NIPS papers (hagdscc); NYT, a collection of
news articles from the New York Times (nytimes.com); and RIED, a large collection of
PubMed abstracts (ncbi.nlm.nih.gpubmed). The characteristics of these data sets are summa-
rized in Table 2. These data sets are available at the UCI Madlearning Repository [39].

For the experiments that measure the accuracy of our digusitparallel processors were
simulated in software and run on smaller data sets (KOS, NtB&nable us to test the statistical
limits of our algorithms. Actual parallel hardware is usedrieasure speedup on larger data sets
(NYT, PUBMED). The simulations use a gossip scheme over lg ftdnnected network that
lets each processor communicate with one other randondgteel processor at the end of every
iteration. For instance, witR=100, there are 50 communicating pairs at each iteration.

In our experiments, the data set is separated into traimdgest sets. We learn our models
on the training set, and then we measure the performance elgarithms on the test set using
perplexity, a widely-used metric in the topic modeling coomity. Perplexity is defined as the
exponentiated average per-word log-likelihood and is lyidesed as a quantitative metric in
speech and language modeling [40]. Moreover, perplexisyieen shown to correlate well with
other performance measures, such as pred¢igioall metrics [41] and word error rate in speech
recognition [42]. For each of our experiments, we perf&ma 5 different Gibbs runs for stability
purposes, with each run lasting 1500 iterations (unlessrailse noted), and we obtain a sample
at the end of each of those runs. The 5 samples are averageccatmguting perplexity:

1 PO ~ N'Sk ta N3 +7n
tesy _ test - S 7S S _ J S _ Wk
log p(x'®Y) = ,EW Ni%'log S Es gk 6% b Where 65, —st R Pk N+ Wy (7)

After the model is run on the training daﬂ@k is available in sample. The tokens in each test

document are split into two sets of equal size by random BefecTo obtainéjS , we resample
9
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Figure 3:(a) Top-Left: Async-CGS perplexities on KO®) Top-Right: Async-CVB perplex-
ities on KOS.(c) Bottom-L eft: Async-CGS perplexities on NIP&d) Bottom-Right: Async-
CVB perplexities on NIPS. For Async-CGS, caefsewhen 100, and 3000 iterations were
used when P500. For Async-CVB, 2000 iterations were used whei 60.

the topic assignments of the first set of tokens of each tesirdent while holding?ﬁ\j,k fixed.
Perplexity is evaluated on the second set of tokens for ezsttrdbcument, givelﬁjvk and é'jsk.
This procedure eliminates the possibility of “peeking”fa test data during the training phase.
Since each processoffectively learns a separate local topic model, we can dirextn-
pute the perplexity for each processor’s local model. Ineygeriments, we report the average
perplexity among processors, and we show error bars denibggnminimum and maximum per-
plexity among all processors. The variance of perplexhbiesveen processors is usually quite
small, which suggests that the local topic models learnesgbheh processor are equally accurate.
For KOS and NIPS, we used the same settings for the symmatiah[at priors:a = 0.1,
n = 0.01 for CGS, CVB, Async-CGS, and Async-CVB. Note that it igi®ssible to learn these
hyperparameters [41].

5.1. Perplexity results

Figures 3(a,c) show the perplexity results for Async-CG$henKOS and NIPS data set for
varying numbers of topic¥, and varying numbers of processd?s,The variation in perplexities
between CGS and Async-CGS is slight and is significantlytless the variation in perplexities
as the number of topicK is changed. Figures 3(b,d) show perplexities for Async-Cwér
both CVB and Async-CVB, we use the hybrid technique and wenpltokens with the same
word-document indices. There is a slight degradation iple&ity for the P=100 case, since
caching was not enabled in Async-CVB. Nonetheless, thesdtsesuggest that Async-CGS and
Async-CVB converge to solutions of nearly the same quabtZ&S and CVB.
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Figure 4:(a) Top-L eft: Convergence plot for Async-CGS on KOS5K6. (b) Top-Right: Same
plot with x-axis as relative time(c) Bottom-L eft: Convergence plot comparing Async-CGS to
Async-CVB on NIPS, K-20. (d) Bottom-Right: Async-CGS speedup results on NYT and
PUBMED, K=100, using an MPI cluster.

In Figure 3(a) we stretched the limits of our algorithm byragasingP considerably for the
K=16 case. Note that, fdP=1500, there are only two documents on each processor. Even in
this extreme case, we found that performance was virtualihanged. As a baseline we ran an
experiment where processors never communicate. As theeumhprocessorB was increased
from 10 to 1500 the corresponding perplexities increasaa 2600 to 5700, notably higher than
our Async-CGS algorithm, indicating (unsurprisingly)tbaocessor communication is essential
to obtain high quality models.

5.2. Convergence results

Figure 4(a) shows the rate of convergence of Async-CGS.,ierenonitor convergence of
the perplexity score on the test data. As the number of psocgsncreases, the rate of con-
vergence slows, since it takes more iterations for informmatb propagate to all the processors.
However, it is important to note that one iteration in reaidiof Async-CGS is up t® times
faster than one iteration of CGS. We show the same curve instef estimated real time in
Figure 4(b), assuming a parallefieiency of 0.5, and one can see that Async-CGS converges
much more quickly than CGS.

In Figure 4(a), we also show the performance of a baselinecisgnous averaging scheme,
where global counts are averaged togeth&f «— (NP + N %)/d + N,. To prevent unbounded
count growthd must be greater than 2, and so we arbitrarilydsed 2.5. While this averaging
scheme initially converges quickly, it converges to a firdlison that is worse than Async-CGS.
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The rate of convergence for Async-C®S100 can be significantly improved by letting each
processor maintain a cache of previdifs counts of other processors. Figures 4(a)5, show
the improvement made by letting each processor cache thenfige recently seehl\f,k’s. Note
that we still assume a limited bandwidth — each processos doeforward individual cached
counts, but instead shares a single matrix of combined camivgs that helps processors achieve
faster burn-in time. In this manner, one can elegantly makadedt between time and memory.

We also compare the performance of Async-CVB to Async-CGBI®S K=20, without any
averaging of samples. On very large corpora, there may hetiomé to perform one run, and so
this experiment simulates a situation of interest. Figyoy veveals that Async-CGS is slightly
more accurate than Async-CVB in this case. Both algorithotsserge relatively quickly to
nearly the same solution, although for the10 case, Async-CVB converges at a slightly faster
rate than Async-CGS.

Finally, we note that formal MCMC convergence tests are anfical to apply in the case
of Async-CGS, given the very large number of parameterseésaimodels. However, one may
still assess convergence based on specific measures dsinteuch as perplexity and mean
entropy of the topic distributions. We conducted severglegixnents where we ran multiple
chains (each governed by our Async-CGS algorithm) ineaiat overdispersed starting points,
and we calculated the well-knovRistatistic which compares within-chain variance to between
chain variance [43]. We obtainétvalues of 1.1 and 1.2 when using perplexity and mean entropy
of the topic distributions as measures, respectively.&inese values are close to 1, they suggest
that the chains have essentially converged, relative tormasures of interest. Furthermore, in
the case of Async-CVB, one can calculate the variational éreergy at each iteration to monitor
the progress of the algorithm and assess convergence [23].

5.3. Speedup results

Figure 4(d) shows actual speedup results for Async-CGS o Aid PUBMED, and the
speedups are competitive to those reported for Parall&-{13]. For these experiments, we
used the Message Passing Interface (MPI) Library in C tavghlimcessors to communicate with
each other. We ran MPI on our cluster of 4 machines, each ioimga8 cores. As the data set
size grows, the parallelfiéeciency increases, since communication overhead is dwénfetie
sampling time. These results suggest that substantialepsecan be obtained on large data
sets, using our our asynchronous distributed framework.

Since the speedups obtained by our asynchronous algorétec®mparable to the speedups
obtained by the synchronous parallel algorithms, a praktgsue is determining whether to
use synchronous or asynchronous algorithms. Our asynchsdramework provides additional
benefits such as fault tolerance, lack of a global bottleneaikwise communication, and the use
of heterogeneous machines. If none of these asynchronoeéitseare needed, we recommend
that the synchronous parallel versions be used, since teegasier to implement in practice.

5.4. Other experiments

In certain applications, it is desirable to learn a topic eladcrementally as new data arrives.
For instance, consider a news article database that reca@ve articles daily. In our framework,
if new data arrives, we assign the new data to a new processithen let that new processor
enter the “world” of processors with which it can begin to eommicate. Our asynchronous
approach requires no global initialization or global symactization step. We do assume a fixed
global vocabulary, but one can imagine schemes which allewdcabulary to grow as well. We
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Figure 5:(a) Left: Online learning on KOS, K16 via Async-CGS(b) Right: When the syn-
chronization interval, Sl, is increased, Async-CGS cogesito a suboptimal solution whegP.

performed an experiment for Async-CGS where we introdu@atkiv processors (each carrying
new data) every 100 iterations. In the first 100 iteratiomdy 40% of the KOS data is known,
and every 100 iterations, an additional 10% of the data isddd the system through new
processors. Figure 5(a) shows that perplexity decrease®gsprocessors and data are added.
After 1000 iterations, the Async-CGS perplexity has cogeerto the standard LDA perplexity.
Thus, in this experiment, learning in an online fashion du@sadversely fiect the final model.

We also note that it is possible to perform online learninthvei fixed number of proces-
sors. For instance, one can introduce new “logical” promesswith new data, where each actual
processor would handle multiple threads, each repreggeatingical processor. Alternatively,
one may augment the document-topic makpy with the new documents and also add the new
counts toN\f,k; however, this approach may require complicated bookkeppi the topic counts
to avoid inconsistencies between processors.

In Figure 5(b), we show a case where our asynchronous digwiperform suboptimally. In
this experiment, we introduced a synchronization inteo§&0, i.e. processors only communi-
cate after 20 iterations of local Gibbs sampling. We did restqrm averaging of samples in this
experiment. In thé®>=2 case, Async-CGS converges to a suboptimal solution begaosessor
1's topics start to drift far from processor 2’s topics as $igachronization interval increases,
causing label switching to potentially occur. Theeets of drifting can be mitigated by perform-
ing bipartite matching between processor 1's topics andgs®or 2's topics, via the Hungarian
algorithm for bipartite matching [44]. In this experimeAsync-CGS with topic matching per-
forms significantly better than without matching. Note thgP increases, drifting becomes less
of an issue, since each processor can only moé‘liQf the total topic assignments. Async-CGS
P=10 (without matching), performs significantly better thhaP=2 case.

In Table 3, we show representative topics learned by CGSn&§GSP=10, and Async-
CVB P=10 on NIPS,K=20. Note that not all the topics are exactly alike; for ins&nn the
fourth cell of Table 3, Async-CVB'’s topic seems to be a hylwidh “signal processing” topic
and a “tree” topic. Nonetheless, the general semantic eoleerand similarity between the topics
learned by dferent algorithms suggest that our distributed approadbiésta learn high-quality
models.

Other situations of interest, such as distributed leariitly load imbalance and distributed
learning of the HDP model (the non-parametric analogue oA),lare described in earlier
work [31].

13



CGS model distribution data gaussian probability parameter likelihood mixture
Async-CGS | model distribution data probability gaussian parameter likelihood mean
Async-CVB | model data distribution gaussian parameter probability likelihood mean

CGS neuron cell model spike synaptic firing input potential
Async-CGS | neuron cell model synaptic input firing spike activity
Async-CVB | neuron model input cell synaptic spike activity firing

CGS function bound algorithm theorem threshold number set result
Async-CGS | function bound theorem result number threshold neural set
Async-CVB | function bound algorithm learning number theorem set result

CGS signal filter frequency noise component channel information source
Async-CGS | signal information frequency channel filter noise component source
Async-CVB | information node component tree nodes signal algorithm independent

Table 3: High probability words of topics learned by CGS, As\CGS, Async-CVB on NIPS

6. Conclusions

We have presented twoftirent algorithms for distributed learning for LDA. Our plexity
and speedup results suggest that latent variable modéisasucDA can be learned in a scal-
able asynchronous fashion for a wide variety of situatio@se can imagine these algorithms
being performed by a large network of idle processors, infiortdo mine the terabytes of text
information available on the Internet.

A practical issue is determining the number of processousédor a given data set, based on
the traded between the quality of approximation and the savings ingssing time. As we have
seen in our experiments, there is very little degradaticdhénquality of solution achieved, even
when the number of processors is dramatically increasedis,Tlie generally advocate using
as many processors as are available. However, if the conuation time between processors
dominates the time it takes to perform local GG8B sweeps over the data, then perhaps the
data set is not large enough to justify using many procesgorsther practical issue is the use
of count caching to improve the rate of convergence of therélgm. We generally recommend
that caching be performed according to the memory capadfieach processor.

Although processors perform inference locally based omadoeglobal counts, the asyn-
chronous algorithms proposed in this paper nonethelesiipeosolutions that are almost iden-
tical to those produced by standard single-processor ighgas, but that can be obtained in a
fraction of the time. The only case where we found that theitiged algorithms break down is
when the processors do not synchronize on a regular bagigidifig a theoretical justification
for these distributed topic model algorithms is still an o@gea of research. More generally,
parallelization within a single MCM/Gibbs sampling run has yet to be fully explored.
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