Asynchronous Distributed L earning of Topic Models

Arthur Asuncion, Padhraic Smyth, Max Welling
Department of Computer Science
University of California, Irvine
Irvine, CA 92697-3435
{asunci on, smyth, wel I i ng}@cs. uci . edu

Abstract

Distributed learning is a problem of fundamental interashiachine learning and
cognitive science. In this paper, we present asynchronistribdited learning al-
gorithms for two well-known unsupervised learning framekgo Latent Dirichlet
Allocation (LDA) and Hierarchical Dirichlet Processes (AP In the proposed
approach, the data are distributed acrgsprocessors, and processors indepen-
dently perform Gibbs sampling on their local data and comigata their infor-
mation in a local asynchronous manner with other processtks demonstrate
that our asynchronous algorithms are able to learn glolpat tmodels that are
statistically as accurate as those learned by the stand@kdahd HDP samplers,
but with significant improvements in computation time andmoey. We show
speedup results on a 730-million-word text corpus using r®2gssors, and we
provide perplexity results for up to 1500 virtual processéss a stepping stone in
the development of asynchronous HDP, a parallel HDP sarig#éso introduced.

1 Introduction

Learning algorithms that can perform in a distributed abyooous manner are of interest for several
different reasons. The increasing availability of multepessor and grid computing technology
provides an immediate and practical motivation to deve&gyning algorithms that are able take
advantage of such computational resources. Similarlyinttieasing proliferation of networks of
low-cost devices motivates the investigation of distrdaliearning in the context of sensor networks.
On a deeper level, there are fundamental questions abdribdisd learning from the viewpoints
of artificial intelligence and cognitive science.

In this paper, we focus on the specific problem of developaypehronous distributed learning algo-
rithms for a class of unsupervised learning techniquesipally LDA [1] and HDP [2] with learn-

ing via Gibbs sampling. The frameworks of LDA and HDP haveergly become popular due to
their effectiveness at extracting low-dimensional repngsgtions from sparse high-dimensional data,
with multiple applications in areas such as text analysis@mputer vision. A promising approach
to scaling these algorithms to large data sets is to digaithe data across multiple processors and
develop appropriate distributed topic-modeling algon#{3, 4, 5]. There are two somewhat distinct
motivations for distributed computation in this context) (o address the memory issue when the
original data and count matrices used by the algorithm ekttemain memory capacity of a single
machine; and (2) using multiple processors to significaspkyed up topic-learning, e.g., learning a
topic model in near real-time for tens of thousands of doaumeeturned by a search-engine.

While synchronous distributed algorithms for topic modelse been proposed in earlier work, here
we investigat@synchronousdistributed learning of topic models. Asynchronous altjnis provide
several computational advantages over their synchronmwsterparts: (1) no global synchroniza-
tion step is required; (2) the system is extremely fauletaht due to its decentralized nature; (3)
heterogeneous machines with different processor speetimamory capacities can be used; (4)
new processors and new data can be incorporated into thesgstany time.

Our primary novel contribution is the introduction of newyashronous distributed algorithms for
LDA and HDP, based on local collapsed Gibbs sampling on eamtegsor. We assume an asyn-
chronous “gossip-based” framework [6] which only allowsrpése interactions between random
processors. Our distributed framework can provide sutistanemory and time savings over single-
processor computation, since each processor only neetdséamsd perform Gibbs sweeps o@h

of the data, wher# is the number of processors. Furthermore, the asynchr@appseach can scale
to large corpora and large numbers of processors, sincebalglynchronization steps are required.
While building towards an asynchronous algorithm for HDPB,also introduce a novel synchronous
distributed inference algorithm for HDP, again based otapsled Gibbs sampling.

In the proposed framework, individual processors perfoibb&sampling locally on each processor
based on a noisy inexact view of the global topics. As a reeult algorithms are not necessarily
sampling from the proper global posterior distribution.ngtheless, as we will show in our experi-
ments, these algorithms are empirically very robust andege rapidly to high-quality solutions.

We first review collapsed Gibbs sampling for LDA and HDP. Thendescribe the details of our
distributed algorithms. We present perplexity and speedsaplts for our algorithms when applied
to text data sets. We conclude with a discussion of relate#t aod future extensions of our work.

2 A brief review of topic models

Before delving into the details of our distributed algonmith, we first |§_| @
describe the LDA and HDP topic models. In LDA, each documjést @ @
modeled as a mixture ovéf topics, and each topicis a multinomial

distribution, ¢.,,, over a vocabulary off” words'. Each document’s

mixture over topicsfy;, is drawn from a Dirichlet distribution with N N
parameter. In order to generate a new documehy, is first sampled @ I @ I)
from a Dirichlet distribution with parameter. For each toker in

that document, a topic assignmeny is sampled fron¥,,;, and the Figure 1: Graphical models
specific wordz;; is drawn fromg,, ., ;. The graphical model for LDA for LDA (left) and HDP (right).
is shown in Figure 1, and the generative process is below:

Orj ~ Dla] dwr ~Dnl zij~0rj Tij~ uzy

Given observed data, it is possible to infer the posteristrithution of the latent variables. One
can perform collapsed Gibbs sampling [7] by integrating tyytand ¢, and sampling the topic
assignments in the following manner:

Noi +n

P(zij = k|27, w) SONT 4wy
w " wk

(Nﬁfj + a) 1)

Ny, denotes the number of word tokens of typeassigned to topié, while N;;, denotes the
number of tokens in documejissigned to topié. N % denotes the count with tokeé removed.

The HDP mixture model is composed of a hierarchy of Diricpleicesses. HDP is similar to LDA
and can be viewed as the model that results from taking theitmfiimit of the following finite
mixture model. Let, be the number of mixture components, ahdoe top level Dirichlet variables
drawn from a Dirichlet distribution with parametey L. The mixture for each documertt;, is
generated from a Dirichlet with parametes,.. The multinomial topic distributiong),,, are drawn
from a base Dirichlet distribution with parameterAs in LDA, z;; is sampled fron#;,;, and word
x;; is sampled fromp,,;.. If we take the limit of this model at goes to infinity, we obtain HDP:

Br ~ Dly/L] Orj~ DlaBr] dwr~ Dl zij~0k; Tij ~ buwzy

To sample from the posterior, we follow the details of theedirassignment sampler for HDP [2].
Both 6,; and ¢, are integrated out, ang; is sampled from a conditional distribution that is
almost identical to that of LDA, except that a small amounpafbability mass is reserved for the
instantiation of a new topic. Note that although HDP is defittehave an infinite number of topics,
the only topics that are instantiated are those that arafiycused.

To avoid clutter, we writ,,i. or 8, to denote the set of all components, {@.,x} or {f;}. Similarly,
when sampling from a Dirichlet, we writ®,; ~ D[«0x] instead ofi01 ;, .0k ;] ~ D]afu, .., aBk].

3 Asynchronousdistributed learning for the L DA model

We consider the problem of learning an LDA model withtopics in a distributed fashion where
documents are distributed acrddgrocessors. Each procespatores the following local variables:
w?. contains the word type for each tokénn documentj in the processor, is the global word-
topic count matrix stored at the processor—this matrixesgaounts of other processors gathered
during the communication step and does not include the psocis local countsN,fj is the local
document-topic count matrix (derived froif), N? is the simple word count on a processor (derived
from w?), and N?, is the local word-topic count matrix (derived fros¥ andw?) which only

¢

contains the counts of data on the processor.

Newman et al. [5] introduced a parallel version of LDA basadollapsed Gibbs sampling (which
we will call Parallel-LDA). In Parallel-LDA, each processmceives% of the documents in the
corpus and the’s are globally initialized. Each iteration of the algorittis composed of two steps:
a Gibbs sampling step and a synchronization step. In thelsegrgiep, each processor samples its
local zP by using the global topics of the previous iteration. In tiechronization step, the local
countsN? on each processor are aggregated to produce a global setrdftomc countsV,,y.
This process is repeated for either a fixed number of iteratay until the algorithm has converged.

Parallel-LDA can provide substantial memory and time sgsirHowever, it is a fully synchronous
algorithm since it requires global synchronization at eiéetation. In some applications, a global
synchronization step may not be feasible, e.g. some proessay be unavailable, while other
processors may be in the middle of a long Gibbs sweep, dudferatices in processor speeds. To
gain the benefits of asynchronous computing, we introduasgnchronous distributed version of
LDA (Async-LDA) that follows a similar two-step process toet above. Each processor performs
a local Gibbs sampling step followed by a step of commumicatiith another random processor.

For Async-LDA, during each iteration, the processors penfa full sweep of collapsed Gibbs
sampling over their local topic assignment variabiésccording to the following conditional dis-
tribution, in a manner directly analogous to Equation 1,

Py = klz w,) o

(NP +NP) 47 (
Y ow(N7P 4+ NP) 7 4+ W

wk

N 4 a))

pjk

— -p b . ,
The combination ONw&fndek is used inthe Samp“ngAIgorithm 1 Async-LDA

equation. Recall tha¥ ; represents processps belief :
of the counts of all the other processors with which it hasforrgggaq processqrin paralleldo
already communicated (not including processerlocal » .
counts), whileN?, is the processor’s local word-topic Samplez” locally (Equation 2)

; . - ReceiveN? from random prog
counts. Thus, the sampling of thé’s is based on the SendN?, to procg

processor’s “noisy view" of the global set of topics. if p has mey beforethen
Once the inference of? is complete (andV?, is up- o Ny — Ny = N + Nig
dated), the processor finds another finished processorand €% _ -p 9
initiates communicatioh We are generally interested in end wh T wk

the case where memory and communication bandwidth convergence

are both limited. We also assume in the simplified gos-gnd for

sip scheme that a processor can establish communication

with every other processor — later in the paper we also désstenarios that relax these assumptions.

In the communication step, let us consider the case wher@tagessorgy andg have never met
before. In this case, processors simply exchange theit I§¢a’s (their local contribution to the
global topic set), and procesgosimply addsV?, toits N, 7, and vice versa.

wk

Consider the case where two processors meet again. Thespassshould not simply swap and add
their local counts again; rather, each processor shoutdéinsove fromV, 7’ the previous influence
of the other processor during their previous encountenrdeicto prevent processors that frequently
meet from over-influencing each other. We assume in the gknase that a processor does not
store in memory the previous counts of all the other proagestbat processar has already met.

2We don't discuss in general the details of how processortidgntify other processors that have finished
their iteration, but we imagine that a standard protocolabe used, like P2P.

Since the previous local counts of the other processor werady absorbed intd_ ¥ and are thus
not retrievable, we must take a different approach. In Agdybé, the processors exchange their
NP s, from which the count of words on each proces$éf, can be derived. Using processgs

wk

Ng, processop createijf]k by sampling/N¢, topic values randomly without replacement from
-p

collection{N_7}. We can imagine that there ayé, N7 colored balls, withV 7 balls of color,
from which we pick/NV balls uniformly at random without replacement. This predesquivalent

to sampling from a multivariate hypergeometric distribuati Ngk acts as a substitute for thé’,
that processop received during their previous encounter. Since all kndgéeof the previous

N7 is lost, this method can be justified by Laplace’s principfléndifference (or the principle of
maximum entropy). Finally, we updaté_? by subtractingV?, and adding the curred¥? :
N;i)(_N;i)_Ngk—’_Ng)k where Ng;kNMH [NgnN;,plvaN;,pK] (3)

Pseudocode for Async-LDA is provided in the display box fdg@ithm 1. The assumption of
limited memory can be relaxed by allowing processors to egrhvious counts of other processors
— the cachedV?, would replaceN?,. We can also relax the assumption of limited bandwidth.
Processop could forward its individual cached counts (from other mssors) tg;, and vice versa,

to quicken the dissemination of information. In fixed togpnés where the network is not fully
connected, forwarding is necessary to propagate the cacmss the network. Our approach can
be applied to a wide variety of scenarios with varying membandwidth, and topology constraints.

4 Synchronous and asynchronous distributed learning for the HDP model

Inference for HDP can be performed in a distributed manneveds Before discussing our asyn-
chronous HDP algorithm, we first describe a synchronoudlpairgterence algorithm for HDP.

We begin with necessary notation for HDPs:is the concentration parameter for the top level
Dirichlet Process (DP)y is the concentration parameter for the document leveldRB, are top-
level topic probabilities, ang is the Dirichlet parameter for the base distribution. Thapdical
model for HDP is shown in Figure 1.

We introduce Parallel-HDP, which is analogous to Pardl@h except that new topics may be
added during the Gibbs sweep. Documents are again digdlautoss the processors. Each proces-
sor maintains locab parameters which are augmented when a new topic is localjted. During

the Gibbs sampling step, each processor locally sampleg’ttapic assignments. In the synchro-
nization step, the local word-topic coumg, are aggregated into a single matrix of global counts
N, and the local3}’s are averaged to form a glob&l. Thea, 3, and~y hyperparameters are
also globally resampled during the synchronization stepe-Teh et al. [2] for details. We fix to

be a small constant. While and~ can also be fixed, sampling these parameters improves the rat
of convergence. To facilitate sampling, relatively flat gaanpriors are placed amand~. Finally,
these parameters and the global count matrix are distdtagek to the processors.

Algorithm 2 Parallel-HDP Algorithm 3 Async-HDP
repeat for each processgrin paralleldo
for each processgrin paralleldo repeat
Samplez? locally Samplez? and them?”, 57, +* locally
SendN? | 57 to master node ReceiveN? , a9, 3¢ from random progy
end for SendN?,, o, G7 to procg
Nuwk < 32, Noy, if p has mety beforethen
Br— (2,8 1P Ny — Ny = N + Ny
Resampley, G, v globally else
Distribute Ny, o, B, 7 to all processors Nop < Nyi+NJ,
until convergence end if

af — (a? +af) 12 and B, — (8L + 7)) 12
until convergence
end for

Motivated again by the advantages of local asynchronousraamication between processors, we
propose an Async-HDP algorithm. Itis very similar in spiatAsync-LDA, and so we focus on the
differences in our description. First, the sampling equrator 27 is different to that of Async-LDA,

KOS NIPS NYT PUBMED
Total number of documents in training set 3,000 1,500 300,000 8,200,000
Size of vocabulary 6,906 12,419 102,660 141,043
Total number of words 410,000 1,900,000| 100,000,000 730,000,000
Total number of documents in test set 430 184 - -

Table 1:Data sets used for perplexity and speedup experiments

since some probability mass is reserved for new topics:

(NTPANT) i+ ~ij | pap -
—ij =, e \Veik FaPBi) s k< K
P(zpij = K[z, ,wp) o<
P3P . .
O‘Tﬁ”ew, if k is new

We also resample the hyperparametéts3?, 4* locally during the inference step, and kegfixed.

In Async-HDP, a processor can add new topics to its collaatioring the inference step. Thus,
when two processors communicate, the number of topics dnracessor might be different. One
way to merge topics is to perform bipartite matching acrbsso topic sets, using the Hungarian
algorithm. However, performing this topic matching stegposes a computational penalty as the
number of topics increase. In our experiments for Async-l.Barallel-HDP, and Async-HDP, we
do not perform topic matching, but we simply combine thedspin different processors based their
topic ids and (somewhat surprisingly) the topics gradusdlij-organize and align. Newman et al.
[5] also observed this same behavior occurring in Paralz.

During the communication step, the count§, and the parametetg’ and/3;, values are exchanged
and merged. Async-HDP removes a processor’s previous irdiugnrough the same MH technique
used in Async-LDA. Pseudocode for Async-HDP is providedmdisplay box for Algorithm 3.

5 Experiments

We use four text data sets for evaluation: KOS, a data setedefiom blog entries (dailykos.com);
NIPS, a data set derived from NIPS papers (books.nips.c¥), [collection of news articles
from the New York Times (nytimes.com); and PUBMED, a larg#emtion of PubMed abstracts
(ncbi.nlm.nih.gov/pubmed/). The characteristics of éhesir data sets are summarized in Table 1.

For our perplexity experiments, parallel processors wenellsited in software and run on smaller
data sets (KOS, NIPS), to enable us to test the statistiwdtisliof our algorithms. Actual parallel
hardware is used to measure speedup on larger data sets INBMED). Our simulation features
a gossip scheme over a fully connected network that letsgaciessor communicate with one other
random processor at the end of every iteration, e.g., Rith00, there are 50 pairs at each iteration.

In our perplexity experiments, the data set is separatediftrtaining set and a test set. We learn our
models on the training set, and then we measure the perfasrarour algorithms on the test set
using perplexity, a widely-used metric in the topic modgldommunity.

We briefly describe how perplexity is computed for our mod®srplexity is simply the exponen-
tiated average per-word log-likelihood. For each of ourezkpents, we perforny’ = 5 different
Gibbs runs, with each run lasting 1500 iterations (unleksmtise noted), and we obtain a sample
at the end of each of those runs. The 5 samples are then aslevage computing perplexity. For
Parallel-HDP, perplexity is calculated in the same way astandard HDP:

1 JUEA R of + N3, R n+ N?
1 tes :E 1 —E E 035,05, where 5, = ————2"— §3, = ——wk (4
ng(x [) c 0og S — ka(bﬂ)k jk Zk (aﬁk) TN (bwk W77+ N]: ()

J
After the model is run on the training daig , is available in sample. To obtainé;k,, one must
resample the topic assignments on the first half of each deotim the test set while hoIdinAngk
fixed. Perplexity is evaluated on the second half of eachwecttin the test set, givefy,, and6?, .

The perplexity calculation for Async-LDA and Async-HDP aghe same formula. Since each pro-
cessor effectively learns a separate local topic model, avedirectly compute the perplexity for

1800 200055 2000
G L - B . < ry
1700 O Async-LDA
= 21800 , 21800 ~
é _ <>]<) K=20 X - - é
2 1600 K=16.x -~ o= = = ﬁ(_)lse
[5) [} [T
& 0 1600f k=40 x - o {01600 Xx -0 -o= © & &
1500 K=32 X o= =
1200 % < = 14002 % hd b 1400
1 10 100 1 10 100 1 10 100 500 10001500
Processors Processors Processors

Figure 2:(a) Left: Async-LDA perplexities on KOS. (b) Middle: AsyrdA perplexities on NIPS. (c) Right:
Async-LDA perplexities on KOS with many procs. Cache=5 wRer100. 3000 iterations run whern>%00.

each processor’s local model. In our experiments, we reperaverage perplexity among proces-
sors, and we show error bars denoting the minimum and maxiparpiexity among all processors.
The variance of perplexities between processors is usgaitg small, which suggests that the local
topic models learned on each processor are equally accurate

For KOS and NIPS, we used the same settings for priors andigpes: o = 0.1, n = 0.01 for
LDA and Async-LDA, andy = 0.01, v ~ Gam(10, 1), anda ~ Gam(2, 1) for the HDP algorithms.

5.1 Async-LDA perplexity and speedup results

Figures 2(a,b) show the perplexities for Async-LDA on KOS &HPS data sets for varying numbers
of topics. The variation in perplexities between LDA and AsyLDA is slight and is significantly
less than the variation in perplexities as the number otgfi is changed. These numbers suggest
that Async-LDA converges to solutions of the same qualitytasdard LDA. While these results are
based on a single test/train split of the corpus, we havepgdormed cross-validation experiments
(results not shown) which give virtually the same result®ss different test/train splits.

We also stretched the limits of our algorithm by increasinde.g. for P=1500, there are only
two documents on each processor), and we found that penfmeneas virtually unchanged (figure
2(c)). As a baseline we ran an experiment where processees oemmunicate. As the number of
processor$’ was increased from 10 to 1500 the corresponding perplsitereased from 2600 to
5700, dramatically higher than our Async-LDA algorithndiicating (unsurprisingly) that processor
communication is essential to obtain good quality moddtputie 3(a) shows the rate of convergence
of Async-LDA. As the number of processors increases, theeaBtonvergence slows, since it takes
more iterations for information to propagate to all the gs8ors. However, it is important to note
that one iteration in real time of Async-LDA is up 18 times faster than one iteration of LDA. We
show the same curve in terms of estimated real time in figuk, 2(ssuming a parallel efficiency of
0.5, and one can see that Async-LDA converges much more lguitdn LDA. Figure 3(c) shows
actual speedup results for Async-LDA on NYT and PUBMED, amel $peedups are competitive
to those reported for Parallel-LDA [5]. As the data set simag, the parallel efficiency increases,
since communication overhead is dwarfed by the sampling.tim

In Figure 3(a), we also show the performance of a baselinechisgnous averaging scheme, where
global counts are averaged togeth®y;; — (N7 +N,7)/2+ N2, . While this averaging scheme
initially converges quickly, it converges to a final solutithat much worse than Async-LDA. Note

2500y 2500 L7

—LDA —LDA 30t ---Perfect
—+Async-LDA P=10 —+—Async-LDA P=10 £ Async-LDA (PUBMED)
-©-Async-LDA P=100 -©-Async-LDA P=100 25 =-Async-LDA (NYT)

4 Async-LDA P=100 C=5
-==Averaging P=100

-4-Async-LDA P=100 C=5

Perplexity
N
o
(=)
(=)

0 100 200 300 400 500 0 50 100 32

8 16 2
Iteration Relative Time Processors (MPI)

Figure 3:(a) Left: Convergence plot for Async-LDA on KOS, K=16. (b) ddile: Same plot with x-axis as
relative time. (c) Right: Speedup results for NYT and PUBM@&Da cluster, using Message Passing Interface.

X HDP

w
o
o
4 ©
w
o
o
o

~ —HDP —HDP
1500 'g izrf"'ce_'H';'?,P ~+Parallel-HDP P=10 —+Async-HDP P=10
> 1400 Y , 2000 -=-Parallel-HDP P=100 -4-Async-HDP P=100 C=5
3 1300 1O% x 0® O=

NN
S N N
O A e N e N A

Perplexity
4 "N "

=
o
o
o

No. of Topics

L A A

1 10 100 500 1000 0 500 1000
Processors Iteration Iteration

No. of Topics || Perplexity
3
o
S

P
:
No. of Topics || Perplexity

Figure 4:(a) Left: Perplexities for Parallel-HDP and Async-HDP. Gas5 used for Async-HDP P=100. (b)
Middle: Convergence plot for Parallel-HDP on KOS. (c) Righbnvergence plot for Async-HDP on KOS.

that dividing by 2 causes the counts to eventually grow withmund; however, this baseline update
still converges to an inferior solution even when using ottenominators.

The rate of convergence for Async-LDR=100 can be dramatically improved by letting each pro-
cessor maintain a cache of previali§, counts of other processors. Figure 3(©}5, shows the
improvement made by letting each processor cache the fiveremently seeV? 's. Note that we
still assume a limited bandwidth — processors do not foniradlividual cached counts, but instead
share a single matrix of combined cache counts that helpgrimessors to achieve faster burn-in

time. In this manner, one can elegantly make a tradeoff Ettiene and memory.

5.2 Parallel-HDP and Async-HDP results

We now discuss the results of Parallel-HDP. The perplexftie Parallel-HDP after 1500 iterations
are shown in Figure 4(a), and they suggest that the moderateeby Parallel-HDP has nearly
the same predictive power as standard HDP. Figure 4(b) stimt$arallel-HDP converges at es-
sentially the same rate as standard HDP on the KOS data set tleeugh topics are generated at
a slower rate. Topics grow at a slower rate in Parallel-HDRenhew topics that are generated lo-
cally on each processor are merged together during eachmynization step. In this experiment,
even though the number of topics is still growing, the pedpjenas clearly converged, because the
newest topics are smaller and they do not significantly affexpredictive power of the model. The
number of topics does stabilize after thousands of itematio

The perplexities for Async-HDP are shown in Figures 4(accell. Topics are generated at a
slightly faster rate for Async-HDP than for Parallel-HDRbase Async-HDP take a less aggressive
approach on pruning small topics, since processors neeg ¢areful when pruning topics locally.
Like Parallel-HDP, Async-HDP converges rapidly to the sajuality of solution as standard HDP.

5.3 Extended experimentsfor realistic scenarios
In certain applications, it is desirable to learn a topic elddcrementally as new data arrives. In
our framework, if new data arrives, we simply assign the natado a new processor, and then
let that new processor enter the “world” of processors witticl it can begin to communicate.
Our asynchronous approach requires no global initiabratr global synchronization step. We
do assume a fixed global vocabulary, but one can imagine sshamich allow the vocabulary to
grow as well. We performed an experiment for Async-LDA wheeeintroduced 10 new processors
(each carrying new data) every 100 iterations. In the fir§tif€rations, only 10% of the KOS data
is known, and every 100 iterations. an additional 10% of thids added to the system through
3000

0% =—LDA —LDA 3000,
b -©-Async-LDA P=100 —+Async-LDA P=10 Random —LDA
—+Async-LDA P=100 (Online) -B-Async-LDA P=10 Non-Random -©-Async-LDA P=100
2500 . f —+Async-LDA P=10 (Imbalanced)
g i ' 2 2500
= 5 2 =
3 3 £
2 _30% 2 3
E , 40% of data seen, etc. & (TEJL
2000 € 5000
1500 1500 1500

0 200 400 600 800 1000 0 100 200 300 400 500 0 200 400 600 800 1000
Iteration Iteration Iteration

Figure 5:(a) Left: Online learning for Async-LDA (K=16) on KOS. (b) Mile: Comparing random vs. non-
random distribution of documents for Async-LDA on NIPS, K=2(c) Right: Async-LDA on KOS, K=16,
where processors have varying amounts of data. In all 3 cAsgac-LDA converges to a good solution.

new processors. Figure 5(a) shows that perplexity decsemsmore processors and data are added.
After 1000 iterations, the perplexity of Async-LDA has cenged to the standard LDA perplexity.
Thus, in this experiment, learning in an online fashion dugsadversely affect the final model.

In the experiments previously described, documents weadomraly distributed across processors. In
reality, a processor may have a document set that is spesadb only a few topics. We investigated
the behavior of Async-LDA on a non-random distribution oftdments over processors. After
running LDA (with 20 topics) on NIPS, we used the inferred aiment mixtured,;, to separate the
corpus into 20 different sets of documents correspondingea?0 topics. We assigned two sets
of documents to each of 10 processors, so that each procas#ains documents that are highly
specialized to 2 topics. Figure 5(b) shows that Async-LDAqgens just as well on this non-random
distribution of documents as on a random distribution. V¥e &und (results not shown) that Async-
LDA can learn an accurate topic model on a synthetic dataes#ded to be adversarial, in which
processors contain documents with words and topics notfaoudocuments of other processors

Another situation of interest is the case where the amoutiétzf on each processor varies. KOS was
divided into 30 blocks of 100 documents and these blocks agsigned to 10 processors according
to a distribution:{7,6,4, 3,3,2,2,1,1,1}. We assume that if a processor kasocks of documents
then it will takek units of time to complete one Gibbs sampling sweep. Figucggi{ows that this
load imbalance does not affect the final perplexity achieidre generally, the tim&’,, that each
processolp takes to perform Gibbs sampling dictates the communicajiaph that will ensue.
There exist pathological cases where the graph may be discted due to phase-locking (e.g. 5
processors with timeg = {10, 12,14, 19,20} where P1, P2, P3 enter the network at time 0 and P4,
P5 enter the network at time 34). However, the graph is gteedarto be connected over timeTif

has a stochastic component (e.g. due to network delaySdsamable assumption in practice.

In our experiments, we assumed a fully connected networkadfgssors and did not focus on other
network topologies. After running Async-LDA on both a 10xX&d grid network and a 100 node
chain network on KOS(=16, we have verified that Async-LDA achieves the same peitglas
LDA as long as caching and forwarding of cached counts odeetgeen processors.

6 Discussion and Conclusions

The work that is most closely related to that in this papeh& bf Mimno and McCallum [3]
and Newman et al. [5], who each propose parallel algorittongtfe collapsed sampler for LDA.
In other work, Nallapati et al. [4] parallelize the variated EM algorithm for LDA. The primary
distinctions between our work and other work on distribut&A are that (a) our algorithms use
purely asynchronous communication rather than a globalspmous scheme, and (b) we have also
extended these ideas (synchronous and asynchronous) taiip®generally, exact parallel Gibbs
sampling is difficult to perform due to the sequential natfi®ICMC. Brockwell [8] presents a pre-
fetching parallel algorithm for MCMC, but this techniquenigt applicable to the collapsed sampler
for LDA. There is also a large body of prior work on gossip aitions (e.qg., [6]), such as Newscast
EM, a gossip algorithm for performing EM on Gaussian mixteggning [9].

Although processors perform local Gibbs sampling basecdhexaict global counts, our algorithms
nonetheless produce solutions that are nearly the samatasf #tandard single-processor samplers.
One can think of our asychronous algorithms as being EM; likéhat thez's are chosen based on
the underlying counts during the sampling distributedd¢apobdel algorithms is still an open area
of research. Another possible extension of this work is tolgtthe effects of imposing different
communication patterns between processors.

In conclusion, we have proposed a new set of algorithms &iriduted learning of LDA and HDP
models. Our perplexity and speedup results suggest thastrobpic models can be learned in a
scalable asynchronous fashion for a wide variety of sitmati One can imagine (for example) our
algorithms being performed by a large network of idle degktwachines, in a collective effort to
mine the terabytes of information available on the Internet

Acknowledgments

This material is based upon work supported in part by theddatiScience Foundation under Award
Number [1S-0083489 (PS and AA), 11S-0447903 and [IS-053BVW), and an NSF graduate
fellowship (AA). MW was also supported by ONR under Grant N9014-06-1-073, and PS was
also supported by a Google Research Award.

References

[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocatioJMLR, 3:993-1022, 2003.
[2] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical @inlet processeslASA, 101(476), 2006.

[3] D. Mimno and A. McCallum. Organizing the OCA: learningci&ted subjects from a library of digital
books. InJCDL '07, pages 376-385, New York, NY, USA, 2007. ACM.

[4] R. Nallapati, W. Cohen, and J. Lafferty. Parallelizediational EM for latent Dirichlet allocation: An
experimental evaluation of speed and scalabilitt GBM Workshop On High Perf. Data Mining, 2007.

[5] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distrtbd inference for latent Dirichlet allocation.
In NIPS20. MIT Press, Cambridge, MA, 2008.

[6] S.Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip igos: design, analysis and applications. In
INFOCOM, pages 1653-1664, 2005.

[7] T. L. Griffiths and M. Steyvers. Finding scientific topid8NAS, 101 Suppl 1:5228-5235, April 2004.
[8] A.Brockwell. Parallel Markov chain Monte Carlo simuilath by pre-fetchingJCGS 15, No. 1, 2006.
[9] W. Kowalczyk and N. Vlassis. Newscast EM. NiPS17. MIT Press, Cambridge, MA, 2005.

