
Asynchronous Distributed Learning of Topic Models

Arthur Asuncion, Padhraic Smyth, Max Welling
Department of Computer Science
University of California, Irvine

Irvine, CA 92697-3435
{asuncion,smyth,welling}@ics.uci.edu

Abstract

Distributed learning is a problem of fundamental interest in machine learning and
cognitive science. In this paper, we present asynchronous distributed learning al-
gorithms for two well-known unsupervised learning frameworks: Latent Dirichlet
Allocation (LDA) and Hierarchical Dirichlet Processes (HDP). In the proposed
approach, the data are distributed acrossP processors, and processors indepen-
dently perform Gibbs sampling on their local data and communicate their infor-
mation in a local asynchronous manner with other processors. We demonstrate
that our asynchronous algorithms are able to learn global topic models that are
statistically as accurate as those learned by the standard LDA and HDP samplers,
but with significant improvements in computation time and memory. We show
speedup results on a 730-million-word text corpus using 32 processors, and we
provide perplexity results for up to 1500 virtual processors. As a stepping stone in
the development of asynchronous HDP, a parallel HDP sampleris also introduced.

1 Introduction
Learning algorithms that can perform in a distributed asynchronous manner are of interest for several
different reasons. The increasing availability of multi-processor and grid computing technology
provides an immediate and practical motivation to develop learning algorithms that are able take
advantage of such computational resources. Similarly, theincreasing proliferation of networks of
low-cost devices motivates the investigation of distributed learning in the context of sensor networks.
On a deeper level, there are fundamental questions about distributed learning from the viewpoints
of artificial intelligence and cognitive science.

In this paper, we focus on the specific problem of developing asynchronous distributed learning algo-
rithms for a class of unsupervised learning techniques, specifically LDA [1] and HDP [2] with learn-
ing via Gibbs sampling. The frameworks of LDA and HDP have recently become popular due to
their effectiveness at extracting low-dimensional representations from sparse high-dimensional data,
with multiple applications in areas such as text analysis and computer vision. A promising approach
to scaling these algorithms to large data sets is to distribute the data across multiple processors and
develop appropriate distributed topic-modeling algorithms [3, 4, 5]. There are two somewhat distinct
motivations for distributed computation in this context: (1) to address the memory issue when the
original data and count matrices used by the algorithm exceed the main memory capacity of a single
machine; and (2) using multiple processors to significantlyspeed up topic-learning, e.g., learning a
topic model in near real-time for tens of thousands of documents returned by a search-engine.

While synchronous distributed algorithms for topic modelshave been proposed in earlier work, here
we investigateasynchronous distributed learning of topic models. Asynchronous algorithms provide
several computational advantages over their synchronous counterparts: (1) no global synchroniza-
tion step is required; (2) the system is extremely fault-tolerant due to its decentralized nature; (3)
heterogeneous machines with different processor speeds and memory capacities can be used; (4)
new processors and new data can be incorporated into the system at any time.

1

Our primary novel contribution is the introduction of new asynchronous distributed algorithms for
LDA and HDP, based on local collapsed Gibbs sampling on each processor. We assume an asyn-
chronous “gossip-based” framework [6] which only allows pairwise interactions between random
processors. Our distributed framework can provide substantial memory and time savings over single-
processor computation, since each processor only needs to store and perform Gibbs sweeps over1

P
th

of the data, whereP is the number of processors. Furthermore, the asynchronousapproach can scale
to large corpora and large numbers of processors, since no global synchronization steps are required.
While building towards an asynchronous algorithm for HDP, we also introduce a novel synchronous
distributed inference algorithm for HDP, again based on collapsed Gibbs sampling.

In the proposed framework, individual processors perform Gibbs sampling locally on each processor
based on a noisy inexact view of the global topics. As a result, our algorithms are not necessarily
sampling from the proper global posterior distribution. Nonetheless, as we will show in our experi-
ments, these algorithms are empirically very robust and converge rapidly to high-quality solutions.

We first review collapsed Gibbs sampling for LDA and HDP. Thenwe describe the details of our
distributed algorithms. We present perplexity and speedupresults for our algorithms when applied
to text data sets. We conclude with a discussion of related work and future extensions of our work.

2 A brief review of topic models
α

ijZ

ijXwkΦ

kjθ
kβ

ijZ

ijX

kjθ

wkΦ
K J

N�
∞ J

η η

γ

α

N�
Figure 1: Graphical models
for LDA (left) and HDP (right).

Before delving into the details of our distributed algorithms, we first
describe the LDA and HDP topic models. In LDA, each documentj is
modeled as a mixture overK topics, and each topick is a multinomial
distribution,φwk, over a vocabulary ofW words1. Each document’s
mixture over topics,θkj , is drawn from a Dirichlet distribution with
parameterη. In order to generate a new document,θkj is first sampled
from a Dirichlet distribution with parameterα. For each tokeni in
that document, a topic assignmentzij is sampled fromθkj , and the
specific wordxij is drawn fromφwzij

. The graphical model for LDA
is shown in Figure 1, and the generative process is below:

θk,j ∼ D[α] φw,k ∼ D[η] zij ∼ θk,j xij ∼ φw,zij

Given observed data, it is possible to infer the posterior distribution of the latent variables. One
can perform collapsed Gibbs sampling [7] by integrating outθkj andφwk and sampling the topic
assignments in the following manner:

P (zij = k|z¬ij , w) ∝
N¬ij

wk + η
∑

w N¬ij
wk + Wη

(

N¬ij
jk + α

)

(1)

Nwk denotes the number of word tokens of typew assigned to topick, while Njk denotes the
number of tokens in documentj assigned to topick. N¬ij denotes the count with tokenij removed.

The HDP mixture model is composed of a hierarchy of Dirichletprocesses. HDP is similar to LDA
and can be viewed as the model that results from taking the infinite limit of the following finite
mixture model. LetL be the number of mixture components, andβk be top level Dirichlet variables
drawn from a Dirichlet distribution with parameterγ/L. The mixture for each document,θkj , is
generated from a Dirichlet with parameterαβk. The multinomial topic distributions,φwk are drawn
from a base Dirichlet distribution with parameterη. As in LDA, zij is sampled fromθkj , and word
xij is sampled fromφwk. If we take the limit of this model asL goes to infinity, we obtain HDP:

βk ∼ D[γ/L] θk,j ∼ D[αβk] φw,k ∼ D[η] zij ∼ θk,j xij ∼ φw,zij

To sample from the posterior, we follow the details of the direct assignment sampler for HDP [2].
Both θkj and φwk are integrated out, andzij is sampled from a conditional distribution that is
almost identical to that of LDA, except that a small amount ofprobability mass is reserved for the
instantiation of a new topic. Note that although HDP is defined to have an infinite number of topics,
the only topics that are instantiated are those that are actually used.

1To avoid clutter, we writeφwk or θkj to denote the set of all components, i.e.{φwk} or {θkj}. Similarly,
when sampling from a Dirichlet, we writeθkj ∼ D[αβk] instead of[θ1,j , ..θK,j] ∼ D[αβ1, .., αβK].

2

3 Asynchronous distributed learning for the LDA model
We consider the problem of learning an LDA model withK topics in a distributed fashion where
documents are distributed acrossP processors. Each processorp stores the following local variables:
wp

ij contains the word type for each tokeni in documentj in the processor, is the global word-
topic count matrix stored at the processor—this matrix stores counts of other processors gathered
during the communication step and does not include the processor’s local counts.Np

kj is the local
document-topic count matrix (derived fromzp), Np

w is the simple word count on a processor (derived
from wp), andNp

wk is the local word-topic count matrix (derived fromzp and wp) which only
contains the counts of data on the processor.

Newman et al. [5] introduced a parallel version of LDA based on collapsed Gibbs sampling (which
we will call Parallel-LDA). In Parallel-LDA, each processor receives1

P
of the documents in the

corpus and thez’s are globally initialized. Each iteration of the algorithm is composed of two steps:
a Gibbs sampling step and a synchronization step. In the sampling step, each processor samples its
local zp by using the global topics of the previous iteration. In the synchronization step, the local
countsNp

wk on each processor are aggregated to produce a global set of word-topic countsNwk.
This process is repeated for either a fixed number of iterations or until the algorithm has converged.

Parallel-LDA can provide substantial memory and time savings. However, it is a fully synchronous
algorithm since it requires global synchronization at eachiteration. In some applications, a global
synchronization step may not be feasible, e.g. some processors may be unavailable, while other
processors may be in the middle of a long Gibbs sweep, due to differences in processor speeds. To
gain the benefits of asynchronous computing, we introduce anasynchronous distributed version of
LDA (Async-LDA) that follows a similar two-step process to that above. Each processor performs
a local Gibbs sampling step followed by a step of communicating with another random processor.

For Async-LDA, during each iteration, the processors perform a full sweep of collapsed Gibbs
sampling over their local topic assignment variableszp according to the following conditional dis-
tribution, in a manner directly analogous to Equation 1,

P (zpij = k|z¬ij
p , wp) ∝

(N¬p + Np)¬ij
wk + η

∑

w(N¬p + Np)¬ij
wk + Wη

(

N¬ij
pjk + α

)

(2)

Algorithm 1 Async-LDA

for each processorp in paralleldo
repeat

Samplezp locally (Equation 2)
ReceiveNg

wk from random procg
SendNp

wk to procg
if p has metg beforethen

N
¬p

wk ← N
¬p

wk − Ñ
g

wk + N
g

wk

else
N
¬p

wk ← N
¬p

wk + N
g

wk

end if
until convergence

end for

The combination ofN¬p
wk andNp

wk is used in the sampling
equation. Recall thatN¬p

wk represents processorp’s belief
of the counts of all the other processors with which it has
already communicated (not including processorp’s local
counts), whileNp

wk is the processor’s local word-topic
counts. Thus, the sampling of thezp’s is based on the
processor’s “noisy view” of the global set of topics.

Once the inference ofzp is complete (andNp
wk is up-

dated), the processor finds another finished processor and
initiates communication2. We are generally interested in
the case where memory and communication bandwidth
are both limited. We also assume in the simplified gos-
sip scheme that a processor can establish communication
with every other processor – later in the paper we also discuss scenarios that relax these assumptions.

In the communication step, let us consider the case where twoprocessors,p andg have never met
before. In this case, processors simply exchange their local Np

wk’s (their local contribution to the
global topic set), and processorp simply addsNg

wk to itsN¬p
wk , and vice versa.

Consider the case where two processors meet again. The processors should not simply swap and add
their local counts again; rather, each processor should first remove fromN¬p

wk the previous influence
of the other processor during their previous encounter, in order to prevent processors that frequently
meet from over-influencing each other. We assume in the general case that a processor does not
store in memory the previous counts of all the other processors that processorp has already met.

2We don’t discuss in general the details of how processors might identify other processors that have finished
their iteration, but we imagine that a standard protocol could be used, like P2P.

3

Since the previous local counts of the other processor were already absorbed intoN¬p
wk and are thus

not retrievable, we must take a different approach. In Async-LDA, the processors exchange their
Np

wk’s, from which the count of words on each processor,Np
w can be derived. Using processorg’s

Ng
w, processorp createsÑg

wk by samplingNg
w topic values randomly without replacement from

collection{N¬p
wk}. We can imagine that there are

∑

k N¬p
wk colored balls, withN¬p

wk balls of colork,
from which we pickNg

w balls uniformly at random without replacement. This process is equivalent
to sampling from a multivariate hypergeometric distribution. Ñg

wk acts as a substitute for theNg
wk

that processorp received during their previous encounter. Since all knowledge of the previous
Ng

wk is lost, this method can be justified by Laplace’s principle of indifference (or the principle of
maximum entropy). Finally, we updateN¬p

wk by subtractingÑg
wk and adding the currentNg

wk:

N¬p
wk ← N¬p

wk − Ñg
wk + Ng

wk where Ñg
w,k ∼ MH [Ng

w; N¬p
w,1, .., N

¬p
w,K] (3)

Pseudocode for Async-LDA is provided in the display box for Algorithm 1. The assumption of
limited memory can be relaxed by allowing processors to cache previous counts of other processors
– the cachedNg

wk would replaceÑg
wk. We can also relax the assumption of limited bandwidth.

Processorp could forward its individual cached counts (from other processors) tog, and vice versa,
to quicken the dissemination of information. In fixed topologies where the network is not fully
connected, forwarding is necessary to propagate the countsacross the network. Our approach can
be applied to a wide variety of scenarios with varying memory, bandwidth, and topology constraints.

4 Synchronous and asynchronous distributed learning for the HDP model
Inference for HDP can be performed in a distributed manner aswell. Before discussing our asyn-
chronous HDP algorithm, we first describe a synchronous parallel inference algorithm for HDP.

We begin with necessary notation for HDPs:γ is the concentration parameter for the top level
Dirichlet Process (DP),α is the concentration parameter for the document level DP,βk ’s are top-
level topic probabilities, andη is the Dirichlet parameter for the base distribution. The graphical
model for HDP is shown in Figure 1.

We introduce Parallel-HDP, which is analogous to Parallel-LDA except that new topics may be
added during the Gibbs sweep. Documents are again distributed across the processors. Each proces-
sor maintains localβp

k parameters which are augmented when a new topic is locally created. During
the Gibbs sampling step, each processor locally samples thezp topic assignments. In the synchro-
nization step, the local word-topic countsNp

wk are aggregated into a single matrix of global counts
Nwk, and the localβp

k ’s are averaged to form a globalβk. Theα, βk andγ hyperparameters are
also globally resampled during the synchronization step – see Teh et al. [2] for details. We fixη to
be a small constant. Whileα andγ can also be fixed, sampling these parameters improves the rate
of convergence. To facilitate sampling, relatively flat gamma priors are placed onα andγ. Finally,
these parameters and the global count matrix are distributed back to the processors.

Algorithm 2 Parallel-HDP

repeat
for each processorp in paralleldo

Samplezp locally
SendNp

wk, β
p

k to master node
end for
Nwk ←

P

p
N

p

wk

βk ← (
P

p β
p

k) / P
Resampleα, βk, γ globally
DistributeNwk, α, βk, γ to all processors

until convergence

Algorithm 3 Async-HDP

for each processorp in paralleldo
repeat

Samplezp and thenαp, β
p

k , γp locally
ReceiveNg

wk, αg, β
g

k from random procg
SendNp

wk, αp, β
p

k to procg
if p has metg beforethen

N
¬p

wk ← N
¬p

wk − Ñ
g

wk + N
g

wk

else
N
¬p

wk ← N
¬p

wk + N
g

wk

end if
αp ← (αp + αg) / 2 and β

p

k ← (βp

k + β
g

k) / 2
until convergence

end for

Motivated again by the advantages of local asynchronous communication between processors, we
propose an Async-HDP algorithm. It is very similar in spiritto Async-LDA, and so we focus on the
differences in our description. First, the sampling equation forzp is different to that of Async-LDA,

4

KOS NIPS NYT PUBMED
Total number of documents in training set 3,000 1,500 300,000 8,200,000
Size of vocabulary 6,906 12,419 102,660 141,043
Total number of words 410,000 1,900,000 100,000,000 730,000,000
Total number of documents in test set 430 184 – –

Table 1:Data sets used for perplexity and speedup experiments

since some probability mass is reserved for new topics:

P (zpij = k|z¬ij
p , wp) ∝

(N¬p+Np)¬ij

wk
+η

P

w(N¬p+Np)¬ij

wk
+Wη

(

N¬ij
pjk + αpβp

k

)

, if k ≤ Kp

αpβp
new

W
, if k is new

We also resample the hyperparametersαp, βp
k , γp locally during the inference step, and keepη fixed.

In Async-HDP, a processor can add new topics to its collection during the inference step. Thus,
when two processors communicate, the number of topics on each processor might be different. One
way to merge topics is to perform bipartite matching across the two topic sets, using the Hungarian
algorithm. However, performing this topic matching step imposes a computational penalty as the
number of topics increase. In our experiments for Async-LDA, Parallel-HDP, and Async-HDP, we
do not perform topic matching, but we simply combine the topics on different processors based their
topic ids and (somewhat surprisingly) the topics graduallyself-organize and align. Newman et al.
[5] also observed this same behavior occurring in Parallel-LDA.

During the communication step, the countsNp
wk and the parametersαp andβp

k values are exchanged
and merged. Async-HDP removes a processor’s previous influence through the same MH technique
used in Async-LDA. Pseudocode for Async-HDP is provided in the display box for Algorithm 3.

5 Experiments
We use four text data sets for evaluation: KOS, a data set derived from blog entries (dailykos.com);
NIPS, a data set derived from NIPS papers (books.nips.cc); NYT, a collection of news articles
from the New York Times (nytimes.com); and PUBMED, a large collection of PubMed abstracts
(ncbi.nlm.nih.gov/pubmed/). The characteristics of these four data sets are summarized in Table 1.

For our perplexity experiments, parallel processors were simulated in software and run on smaller
data sets (KOS, NIPS), to enable us to test the statistical limits of our algorithms. Actual parallel
hardware is used to measure speedup on larger data sets (NYT,PUBMED). Our simulation features
a gossip scheme over a fully connected network that lets eachprocessor communicate with one other
random processor at the end of every iteration, e.g., withP=100, there are 50 pairs at each iteration.

In our perplexity experiments, the data set is separated into a training set and a test set. We learn our
models on the training set, and then we measure the performance of our algorithms on the test set
using perplexity, a widely-used metric in the topic modeling community.

We briefly describe how perplexity is computed for our models. Perplexity is simply the exponen-
tiated average per-word log-likelihood. For each of our experiments, we performS = 5 different
Gibbs runs, with each run lasting 1500 iterations (unless otherwise noted), and we obtain a sample
at the end of each of those runs. The 5 samples are then averaged when computing perplexity. For
Parallel-HDP, perplexity is calculated in the same way as instandard HDP:

log p(xtest) =
∑

jw

log
1

S

∑

s

∑

k

θ̂s
jkφ̂s

wk where θ̂s
jk =

αβk + Ns
jk

∑

k (αβk) + Ns
j

, φ̂s
wk =

η + Ns
wk

Wη + Ns
k

(4)

After the model is run on the training data,φ̂s
wk is available in samples. To obtainθ̂s

jk, one must

resample the topic assignments on the first half of each document in the test set while holdinĝφs
wk

fixed. Perplexity is evaluated on the second half of each document in the test set, given̂φs
wk andθ̂s

jk.

The perplexity calculation for Async-LDA and Async-HDP uses the same formula. Since each pro-
cessor effectively learns a separate local topic model, we can directly compute the perplexity for

5

1 10 100
1400

1500

1600

1700

1800

P
er

pl
ex

ity

Processors

KOS
K=8

K=16

K=32

K=64

1 10 100
1400

1600

1800

2000

P
er

pl
ex

ity

Processors

NIPS
K=10

K=20

K=40

K=80

1 10 100 500 10001500
1400

1600

1800

2000

Processors

P
er

pl
ex

ity

KOS
K=16

LDA
Async−LDA

Figure 2:(a) Left: Async-LDA perplexities on KOS. (b) Middle: Async-LDA perplexities on NIPS. (c) Right:
Async-LDA perplexities on KOS with many procs. Cache=5 whenP≥100. 3000 iterations run when P≥500.

each processor’s local model. In our experiments, we reportthe average perplexity among proces-
sors, and we show error bars denoting the minimum and maximumperplexity among all processors.
The variance of perplexities between processors is usuallyquite small, which suggests that the local
topic models learned on each processor are equally accurate.

For KOS and NIPS, we used the same settings for priors and hyperpriors: α = 0.1, η = 0.01 for
LDA and Async-LDA, andη = 0.01, γ ∼Gam(10, 1), andα ∼ Gam(2, 1) for the HDP algorithms.

5.1 Async-LDA perplexity and speedup results
Figures 2(a,b) show the perplexities for Async-LDA on KOS and NIPS data sets for varying numbers
of topics. The variation in perplexities between LDA and Async-LDA is slight and is significantly
less than the variation in perplexities as the number of topicsK is changed. These numbers suggest
that Async-LDA converges to solutions of the same quality asstandard LDA. While these results are
based on a single test/train split of the corpus, we have alsoperformed cross-validation experiments
(results not shown) which give virtually the same results across different test/train splits.

We also stretched the limits of our algorithm by increasingP (e.g. forP=1500, there are only
two documents on each processor), and we found that performance was virtually unchanged (figure
2(c)). As a baseline we ran an experiment where processors never communicate. As the number of
processorsP was increased from 10 to 1500 the corresponding perplexities increased from 2600 to
5700, dramatically higher than our Async-LDA algorithm, indicating (unsurprisingly) that processor
communication is essential to obtain good quality models. Figure 3(a) shows the rate of convergence
of Async-LDA. As the number of processors increases, the rate of convergence slows, since it takes
more iterations for information to propagate to all the processors. However, it is important to note
that one iteration in real time of Async-LDA is up toP times faster than one iteration of LDA. We
show the same curve in terms of estimated real time in figure 3(b) , assuming a parallel efficiency of
0.5, and one can see that Async-LDA converges much more quickly than LDA. Figure 3(c) shows
actual speedup results for Async-LDA on NYT and PUBMED, and the speedups are competitive
to those reported for Parallel-LDA [5]. As the data set size grows, the parallel efficiency increases,
since communication overhead is dwarfed by the sampling time.

In Figure 3(a), we also show the performance of a baseline asynchronous averaging scheme, where
global counts are averaged together:N¬p

wk ← (N¬p
wk +N¬g

wk)/2+Ng
wk. While this averaging scheme

initially converges quickly, it converges to a final solution that much worse than Async-LDA. Note

0 100 200 300 400 500
1500

2000

2500

Iteration

P
er

pl
ex

ity

LDA
Async−LDA P=10
Async−LDA P=100
Async−LDA P=100 C=5
Averaging P=100

0 50 100
1500

2000

2500

Relative Time

P
er

pl
ex

ity

LDA
Async−LDA P=10
Async−LDA P=100
Async−LDA P=100 C=5

1 8 16 24 32

5

10

15

20

25

30

Processors (MPI)

S
pe

ed
up

Perfect
Async−LDA (PUBMED)
Async−LDA (NYT)

Figure 3: (a) Left: Convergence plot for Async-LDA on KOS, K=16. (b) Middle: Same plot with x-axis as
relative time. (c) Right: Speedup results for NYT and PUBMEDon a cluster, using Message Passing Interface.

6

1 10 100

1200
1300
1400

1300
1400
1500

Processors

P
er

pl
ex

ity KOS

NIPS

HDP
Parallel−HDP
Async−HDP

0 500 1000
0

1000

2000

3000

No. of Topics

Perplexity

Iteration

N
o.

 o
f T

op
ic

s
 ||

 P
er

pl
ex

ity

HDP
Parallel−HDP P=10
Parallel−HDP P=100

0 500 1000
0

1000

2000

3000

Iteration

N
o.

 o
f T

op
ic

s
 ||

 P
er

pl
ex

ity

No. of Topics

Perplexity

HDP
Async−HDP P=10
Async−HDP P=100 C=5

Figure 4:(a) Left: Perplexities for Parallel-HDP and Async-HDP. Cache=5 used for Async-HDP P=100. (b)
Middle: Convergence plot for Parallel-HDP on KOS. (c) Right: Convergence plot for Async-HDP on KOS.

that dividing by 2 causes the counts to eventually grow without bound; however, this baseline update
still converges to an inferior solution even when using other denominators.

The rate of convergence for Async-LDAP=100 can be dramatically improved by letting each pro-
cessor maintain a cache of previousNg

wk counts of other processors. Figure 3(b),C=5, shows the
improvement made by letting each processor cache the five most recently seenNg

wk’s. Note that we
still assume a limited bandwidth – processors do not forwardindividual cached counts, but instead
share a single matrix of combined cache counts that helps theprocessors to achieve faster burn-in
time. In this manner, one can elegantly make a tradeoff between time and memory.

5.2 Parallel-HDP and Async-HDP results
We now discuss the results of Parallel-HDP. The perplexities for Parallel-HDP after 1500 iterations
are shown in Figure 4(a), and they suggest that the model generated by Parallel-HDP has nearly
the same predictive power as standard HDP. Figure 4(b) showsthat Parallel-HDP converges at es-
sentially the same rate as standard HDP on the KOS data set, even though topics are generated at
a slower rate. Topics grow at a slower rate in Parallel-HDP since new topics that are generated lo-
cally on each processor are merged together during each synchronization step. In this experiment,
even though the number of topics is still growing, the perplexity has clearly converged, because the
newest topics are smaller and they do not significantly affect the predictive power of the model. The
number of topics does stabilize after thousands of iterations.

The perplexities for Async-HDP are shown in Figures 4(a,c) as well. Topics are generated at a
slightly faster rate for Async-HDP than for Parallel-HDP because Async-HDP take a less aggressive
approach on pruning small topics, since processors need to be careful when pruning topics locally.
Like Parallel-HDP, Async-HDP converges rapidly to the samequality of solution as standard HDP.

5.3 Extended experiments for realistic scenarios
In certain applications, it is desirable to learn a topic model incrementally as new data arrives. In
our framework, if new data arrives, we simply assign the new data to a new processor, and then
let that new processor enter the “world” of processors with which it can begin to communicate.
Our asynchronous approach requires no global initialization or global synchronization step. We
do assume a fixed global vocabulary, but one can imagine schemes which allow the vocabulary to
grow as well. We performed an experiment for Async-LDA wherewe introduced 10 new processors
(each carrying new data) every 100 iterations. In the first 100 iterations, only 10% of the KOS data
is known, and every 100 iterations, an additional 10% of the data is added to the system through

0 200 400 600 800 1000
1500

2000

2500

3000

Iteration

P
er

pl
ex

ity

10%

20%

30%

40% of data seen, etc.

LDA
Async−LDA P=100
Async−LDA P=100 (Online)

0 100 200 300 400 500
1500

2000

2500

3000

Iteration

P
er

pl
ex

ity

LDA
Async−LDA P=10 Random
Async−LDA P=10 Non−Random

0 200 400 600 800 1000
1500

2000

2500

3000

Iteration

P
er

pl
ex

ity

LDA
Async−LDA P=100
Async−LDA P=10 (Imbalanced)

Figure 5:(a) Left: Online learning for Async-LDA (K=16) on KOS. (b) Middle: Comparing random vs. non-
random distribution of documents for Async-LDA on NIPS, K=20. (c) Right: Async-LDA on KOS, K=16,
where processors have varying amounts of data. In all 3 cases, Async-LDA converges to a good solution.

7

new processors. Figure 5(a) shows that perplexity decreases as more processors and data are added.
After 1000 iterations, the perplexity of Async-LDA has converged to the standard LDA perplexity.
Thus, in this experiment, learning in an online fashion doesnot adversely affect the final model.

In the experiments previously described, documents were randomly distributed across processors. In
reality, a processor may have a document set that is specialized to only a few topics. We investigated
the behavior of Async-LDA on a non-random distribution of documents over processors. After
running LDA (with 20 topics) on NIPS, we used the inferred document mixturesθjk to separate the
corpus into 20 different sets of documents corresponding tothe 20 topics. We assigned two sets
of documents to each of 10 processors, so that each processorcontains documents that are highly
specialized to 2 topics. Figure 5(b) shows that Async-LDA performs just as well on this non-random
distribution of documents as on a random distribution. We also found (results not shown) that Async-
LDA can learn an accurate topic model on a synthetic data set designed to be adversarial, in which
processors contain documents with words and topics not found in documents of other processors

Another situation of interest is the case where the amount ofdata on each processor varies. KOS was
divided into 30 blocks of 100 documents and these blocks wereassigned to 10 processors according
to a distribution:{7, 6, 4, 3, 3, 2, 2, 1, 1, 1}. We assume that if a processor hask blocks of documents
then it will takek units of time to complete one Gibbs sampling sweep. Figure 5(c) shows that this
load imbalance does not affect the final perplexity achieved. More generally, the timeT p that each
processorp takes to perform Gibbs sampling dictates the communicationgraph that will ensue.
There exist pathological cases where the graph may be disconnected due to phase-locking (e.g. 5
processors with timesT = {10, 12, 14, 19, 20}where P1, P2, P3 enter the network at time 0 and P4,
P5 enter the network at time 34). However, the graph is guaranteed to be connected over time ifTp

has a stochastic component (e.g. due to network delays), a reasonable assumption in practice.

In our experiments, we assumed a fully connected network of processors and did not focus on other
network topologies. After running Async-LDA on both a 10x10fixed grid network and a 100 node
chain network on KOSK=16, we have verified that Async-LDA achieves the same perplexity as
LDA as long as caching and forwarding of cached counts occursbetween processors.

6 Discussion and Conclusions
The work that is most closely related to that in this paper is that of Mimno and McCallum [3]
and Newman et al. [5], who each propose parallel algorithms for the collapsed sampler for LDA.
In other work, Nallapati et al. [4] parallelize the variational EM algorithm for LDA. The primary
distinctions between our work and other work on distributedLDA are that (a) our algorithms use
purely asynchronous communication rather than a global synchronous scheme, and (b) we have also
extended these ideas (synchronous and asynchronous) to HDP. More generally, exact parallel Gibbs
sampling is difficult to perform due to the sequential natureof MCMC. Brockwell [8] presents a pre-
fetching parallel algorithm for MCMC, but this technique isnot applicable to the collapsed sampler
for LDA. There is also a large body of prior work on gossip algorithms (e.g., [6]), such as Newscast
EM, a gossip algorithm for performing EM on Gaussian mixturelearning [9].

Although processors perform local Gibbs sampling based on inexact global counts, our algorithms
nonetheless produce solutions that are nearly the same as that of standard single-processor samplers.
One can think of our asychronous algorithms as being EM- like, in that thez’s are chosen based on
the underlying counts during the sampling distributed topic model algorithms is still an open area
of research. Another possible extension of this work is to study the effects of imposing different
communication patterns between processors.

In conclusion, we have proposed a new set of algorithms for distributed learning of LDA and HDP
models. Our perplexity and speedup results suggest that robust topic models can be learned in a
scalable asynchronous fashion for a wide variety of situations. One can imagine (for example) our
algorithms being performed by a large network of idle desktop machines, in a collective effort to
mine the terabytes of information available on the Internet.

Acknowledgments
This material is based upon work supported in part by the National Science Foundation under Award
Number IIS-0083489 (PS and AA), IIS-0447903 and IIS-0535278 (MW), and an NSF graduate
fellowship (AA). MW was also supported by ONR under Grant No.00014-06-1-073, and PS was
also supported by a Google Research Award.

8

References

[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.

[2] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes.JASA, 101(476), 2006.

[3] D. Mimno and A. McCallum. Organizing the OCA: learning faceted subjects from a library of digital
books. InJCDL ’07, pages 376–385, New York, NY, USA, 2007. ACM.

[4] R. Nallapati, W. Cohen, and J. Lafferty. Parallelized variational EM for latent Dirichlet allocation: An
experimental evaluation of speed and scalability. InICDM Workshop On High Perf. Data Mining, 2007.

[5] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for latent Dirichlet allocation.
In NIPS 20. MIT Press, Cambridge, MA, 2008.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: design, analysis and applications. In
INFOCOM, pages 1653–1664, 2005.

[7] T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101 Suppl 1:5228–5235, April 2004.

[8] A. Brockwell. Parallel Markov chain Monte Carlo simulation by pre-fetching.JCGS, 15, No. 1, 2006.

[9] W. Kowalczyk and N. Vlassis. Newscast EM. InNIPS 17. MIT Press, Cambridge, MA, 2005.

9

