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ABSTRACT
Motivation: Cyclical biological processes such as cell division and
circadian regulation produce coordinated periodic expression of
thousands of genes. Identification of such genes and their expression
patterns is a crucial step in discovering underlying regulatory
mechanisms. Existing computational methods are biased towards
discovering genes that follow sine-wave patterns.
Results: We present an ANOVA periodicity detector and its Bayesian
extension that can be used to discover periodic transcripts of arbitrary
shapes from replicated gene expression profiles. The models are
applicable when the profiles are collected at comparable time points
for at least two cycles. We provide an empirical Bayes procedure for
estimating parameters of the prior distributions and derive closed-
form expressions for the posterior probability of periodicity, enabling
efficient computation. The model is applied to two data sets profiling
circadian regulation in murine liver and skeletal muscle, revealing a
substantial number of previously undetected non-sinusoidal periodic
transcripts in each. We also apply quantitative real-time PCR to several
highly ranked non-sinusoidal transcripts in liver tissue found by the
model, providing independent evidence of circadian regulation of
these genes.
Availability : Matlab software for estimating prior distributions and
performing inference is available for download from
ftp://ftp.ics.uci.edu/pub/dchudova/periodicity.
Contact: dchudova@gmail.com

INTRODUCTION
Identifying periodic transcripts in large time-course gene expression
experiments is an important step in studying diverse biological
systems, including the cell cycle, hair growth cycle, mammary
cycle, and circadian rhythms. The data from these studies are often
characterized by a large number of genes with relatively coarse
sampling in time (for example, a few time points per cycle) and
only a few measurements at each time point. The objective is to
identify or rank which of these genes are most likely to be periodically
regulated. In this paper, we propose a simple probabilistic mixture
model for identifying periodic expression in cyclic processes where
cycle length is known a prior and expression levels can be profiled
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at comparable time points in multiple cycles1. Such data sets are
generated, for example, in experiments profiling circadian regulation
in peripheral tissues (see Storch et al. (2002); Rudic et al. (2005);
Miller et al. (2007) among others).

Existing techniques for detecting periodic expression patterns
fall into two major categories: time domain and frequency domain
analyses. Typical frequency domain methods compute the spectrum
of the average expression profile for each probe, and test the
significance of the dominant frequency against a suitable null
hypothesis such as uncorrelated noise. However, frequency domain
analysis is most effective on long time series and is not well suited
for short time-courses (Tai and Speed, 2007).

In time domain analysis, most methods rely on the identification
of sinusoidal expression patterns (Straume, 2004; Andersson et al.,
2006; Wijnen et al., 2006). These detectors are popular due to
their simplicity and computational efficiency, but are not effective
at finding periodic signals which violate the sinusoidal assumption.
While this assumption can be appropriate for some data (such as
the cell cycle), a significant number of profiles with non-sinusoidal
shapes have been identified in the control of hair cycling (Lin et al.,
2004) and in the circadian rhythms of Drosophila (Keegan et al.,
2007). More general shapes could be modeled using, for example,
B-spline representations (Luan and Li, 2004), but such approaches
require a set of “guide genes” to define the possible shapes of periodic
patterns, which in practice may be unavailable or incomplete.

In this paper we propose a general statistical framework for
detecting periodic profiles from time-course microarray data by
analyzing the similarity of observed profiles across the cycles. Using
this framework, we identify a significant number of previously
undetected circadially-regulated genes with non-sinusoidal profiles
in peripheral mouse tissues. For example, Fig. 1 shows profiles
of several probe sets that were among those ranked most likely to
be periodically expressed (in the top 25 profiles) by our proposed
approach but were ranked much lower by a more traditional sine-
wave detection algorithm (Miller et al., 2007). Notably, two of
these probe sets (Nr1d1 and Arntl) correspond to well established
clock-control genes. In addition, circadian regulation of Cyp2a4 in
liver has been established in Lavery et al. (1999), and Mknk2 has
been identified as circadially-regulated in liver in an independent

1 In systems where it is only possible to profile a single synchronous cycle,
more domain-specific methods are required for identifying periodic profiles
(Lin et al., 2004; Rudolph et al., 2003).
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Fig. 1. Examples of non-sinusoidal periodic patterns in the circadian profiling of liver tissues. Shown are the profiles of 9 probe sets that are ranked among the
top 25 probe sets by the proposed approach but ranked below 400 by a sine wave detector. Rank ’n/a’ indicates ranking below the 848 published probe sets in
Miller et al. (2007) based on the sine wave detector. The dots indicate individual replicate observations, and the line shows the empirical means at each time
point. The measurements have been log-transformed and normalized to zero mean across time for each probe set. The x-axis shows circadian time, and the
light/dark bands underneath the bar plot denote the light/dark experimental conditions.

microarray study by Oishi et al. (2003). Our quantitative PCR
experiments validate circadian cycling for seven out of eight tested
genes in this figure2, demonstrating that these are likely true positives
missed by previous analyses (see the Experimental Results section).
Overall we detect significant numbers of non-sinusoidal patterns
that were missed by the original analyses using existing detection
algorithms.

The rest of the paper is organized as follows. In the next section,
we describe our probabilistic model in detail and describe how
it can be used to infer, for each probe set, the probability of its
observed expression pattern being periodic. We also describe two
simplified versions of the model, a (non-Bayesian) ANOVA test
and a simplified Bayesian model which can be implemented using
the Bioconductor timecourse package (Tai and Speed, 2007). We
then provide experimental validation by analysing two data sets
profiling circadian regulation in different peripheral tissues, and
using independent experiments to confirm our findings. Finally,
we discuss potential extensions of the model and present our
conclusions.

METHODOLOGY
Our model for detecting periodicity is similar to existing methods for
detecting differential expression. These methods typically assume
that observed data can be described by a mixture distribution with
two components: one component corresponds to genes that change
their expression levels in response to changes in experimental
conditions (differentially expressed genes), the other corresponds to
genes that remain constant throughout the experiment (background
genes). To model periodic phenomena, we include an additional
third component that encodes coordinated expression across multiple
cycles, see Fig. 2. Our task of identifying periodicity then reduces
to a probabilistic inference problem: given the observed expression

2 The annotation information for the Tubb2 probe set was not available at the
time of our experiments and so was not included in the PCR evaluation.

profiles, compute the posterior probability that a given probe set was
generated by the periodic component.

A Probabilistic Model for Periodicity
Consider a time course experiment that profiles expression of N
probe sets over C cycles of known length. Each cycle is represented
by the same grid of T time points, indexed from 1 to T . Profiling
is typically done using multiple observations or replicates at a given
time point (for example, 2 or 3) using a cross-sectional study design,
i.e., all of the replicates at all of the time points originate from
different biological subjects. We denote the number of replicate
observations for probe set i ∈ {1 . . . N} at time point j ∈ {1 . . . T}
of cycle c ∈ {1 . . . C} by nc

ij . Note that this number may be zero; for
example, we may not make any observations at time j in some cycle
c, in which case nc

ij will be zero for all i. We use Y c
ijk to denote the

expression intensity value for a particular probe set i, time point j,
and replicate k for cycle c, and let Yi be the entire set of observations
for probe set i. We assume that the intensity values Y c

ijk have been
estimated from raw data using a standard approach such as that of
Wu et al. (2004), log-transformed and shifted to zero mean for each
probe set’s profile.

Our probabilistic model for expression, then, consists of three
components: background (b), differentially expressed but aperiodic
(d), and periodically expressed profiles (p). Let Zi ∈ {b, d, p}denote
the component associated with probe set i. The forward or generative
model is simple: to simulate an expression profile, one selects one
of the three components according to their respective probabilities
[πb, πd, πp], then samples a collection of observations according
to the associated component model. Each of the three component
models consists of a Normal/Inverse Gamma (NIG) prior distribution
(Gelman et al., 1995) on the latent profile and additional Normal (i.e.,
Gaussian) noise on the observations. The components differ in the
structure of latent profiles and in the parameters of their (NIG) model.

The NIG prior is a flexible and computationally convenient
distribution commonly used as a prior model for latent expression
levels and replicate variability (e.g., Smyth, 2004; Tai and Speed,
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Fig. 2. We model the data using a mixture of three components for
background, differentially, and periodically expressed profiles, with
probabilities [πb , πd , πp ] respectively.

2006, 2007). In general, scalar variables (µ, σ) are distributed as
NIG with parameters (ν, η ; a, b) if

P (µ, σ) = N(µ | ν, σ/η) Γ−1(σ | a, b)

where N(x | ν, s) denotes a Gaussian distribution with mean ν and
variance s and Γ−1(x | a, b) denotes an inverse Gamma distribution
with a degrees of freedom and scale parameter b, evaluated at x.

Note that in what follows, we refer to three types of unknown
quantities. The first are the prior parameters, denoted Θ, which we
determine via an empirical Bayesian procedure (details later) and
are subsequently treated as known and fixed. The other two types are
probe set specific hidden variables: the latent profiles (consisting of a
mean and variance) for each component, and the component identity
Zi, indicating from which component the data were generated.

Components of the Mixture Model
Our model is shown as a graphical model using plate notation in Fig. 3
(Jordan, 2004). The plates, or rectangles, are used to group together
variables that are repeated in the model as many times as shown
in the right-bottom corner of the plate. For example, the outermost
plate corresponds to a single probe set and all variables within it are
repeated N times, once for each of the N probe sets (indexed by i
in the text). This structure implies conditional independence of the
probe sets given fixed prior parameters Θ, since there are no shared
dependencies. While in reality periodic or differentially expressed
genes may share similar profiles, the assumption of conditional
independence of probe sets is a reasonable first-order approximation
and is computationally convenient. More realistic alternatives to this
assumption are briefly described in the Discussion section.

The Background Component Model We model “background” probe
sets as having a constant expression over the experiment (denoted by
µb

i ), with small fluctuations in the actual observations due to technical
errors (variance σb

i ). These variables are given a NIG prior shared by
all background probe sets and parameterized by four scalars Θb =
{νb, ηb ; ab, bb}.

Since µb
i and σb

i are shared across time, they are shown outside
the cycle and time plates in Fig. 3. The observations Yi are modeled
as independent samples from a Gaussian distribution with mean and

µd, σd

µp, σp

µb, σbYZ

n

(cycle) C
(time)

T
(probe)

N

Fig. 3. A graphical model describing the observed profiles Y and latent
(unobserved) variables Z (component identity) and {µ, σ} for each
component using plate notation.

variance (µb
i , σ

b
i ):

P (Yi|µb
i , σ

b
i , Zi = b) =

C∏
c=1

T∏
j=1

nc
ij∏

k=1

N(Y c
ijk |µb

i , σ
b
i )

where the products are over the C cycles, the T time-points within
cycle c, and the observed replicate expression measurements for time
point t in cycle c, respectively.

The Differentially Expressed Component Model For differentially
expressed genes, the true expression levels vary as a function of
time. Accordingly, we let µd

i and σd
i be (C × T )-dimensional

vectors characterizing the expression value and replicate variance
at each of the time points. These variables are shown inside the
cycle and time plates in Fig. 3. We let the expression at each
time point vary independently from the other time points, so that
the prior distribution for this component is defined by four (C ×
T )-dimensional parameters, Θd = {νd, ηd ; ad, bd}:

P (µd
i , σd

i |Θd) =

C∏
c=1

T∏
j=1

NIG(µd,c
ij , σd,c

ij | νd,c
j , ηd,c

j , ad,c
j , bd,c

j )

The independence assumption works well for relatively sparse
sampling of the time axis, a common situation with expression
data measurements in practice3. Since the replicates are assumed to
originate from different experimental units (cross-sectional design),
we model observations as being independent given (µd

i , σd
i ) :

P (Yi|µd
i , σd

i , Zi = d) =

C∏
c=1

T∏
j=1

nc
ij∏

k=1

N(Y c
ijk |µd,c

ij , σd,c
ij )

The Periodic Component Model The periodic component assumes
repeated expression of the same pattern across multiple cycles. The
true, latent expression level at a single time point gives rise to the
observed intensities in cycles 1 through C. We let µp

i and σp
i be

T -dimensional variables encoding expression levels and replicate
variability in the “ideal” cycle. These variables are shown inside the

3 For more densely-sampled data, one could extend this approach by adding
dependency between the means, for example by introducing covariance
structure into the prior.
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time plate but outside the cycle plate in Fig. 3. Assuming sparsity of
the time grid, we use independent NIG priors for each time point:

P (µp
i , σp

i |Θp) =

T∏
j=1

NIG(µp
ij , σ

p
ij | νp

j , ηp
j | ap

j , bp
j )

The periodic component is parameterized by four T -dimensional
parameters Θp = {νp, ηp ; ap, bp}. Due to the cross-sectional study
design we again assume conditional independence of observations:

P (Yi|µp
i , σp

i , Zi = p) =

C∏
c=1

T∏
j=1

nc
ij∏

k=1

N(Y c
ijk |µp

ij , σ
p
ij)

The complete set of prior parameters Θ includes the prior component
probabilities πz (corresponding to the relative frequencies of
background, differentially expressed, and periodic probe sets),
and prior parameters for each of the component models: Θ =
{(πz, Θz), z ∈ {b, d, p}}.

Inference
Given the model, we can detect periodic expression by computing
the posterior probability of the periodic component p(Zi = p|Yi, Θ)
conditioned on the prior parameters Θ and the observed profile Yi:

P (Zi = p|Yi, Θ) =
πpP (Yi|Θp, Zi = p)∑
z πzP (Yi|Θz, Zi = z)

(1)

Each of the three marginal likelihood terms in the denominator, for
z ∈ {b, d, p}, is computed by averaging over our uncertainty about
the latent profiles µ and replicate variances σ. Since the priors for
(µ, σ) are conjugate to the Gaussian likelihood of Yi, the marginal
likelihood can be computed in closed form as shown in Appendix 1.

An ANOVA Periodicity Detector
Our Gaussian mixture model, and its resulting inferential test for
periodicity, is quite close to a simplified, non-Bayesian test based on
analysis of variance (ANOVA). We can construct a one-way ANOVA
test for periodicity by dividing the data into groups, or factor levels,
by their associated time point regardless of cycle number, so that
all replicates Y c

ijk for c = 1 . . . C and k = 1 . . . nc
ij fall into the

same group. We then test whether the data support separation into
these groups, i.e., whether the amount of variation between groups
is significantly larger than the variation found within the groups.
High values of the ratio of these quantities indicates that most of the
variability in observations can be explained using a time-dependent,
cycle-independent profile, i.e., that the profile appears periodic.

Like our Bayesian test, the ANOVA test has a number of desirable
properties; for example, it considers both similarity among the raw
replicate observations and the magnitude of overall changes (the
average profile) over time. Both quantities are important – replicate
variability is useful in assessing similarity among cycles relative to
inherent biological variability, while the magnitude of change helps
differentiate signals from random noise. The ANOVA test is also
easy to implement using any standard statistical package.

However, there are also a number of disadvantages to the ANOVA
test. For it to work as expected, we require a balanced experiment
design in which the number of replicates is unchanged over time
(nc

ij = ni). It implicitly assumes that the data are Gaussian, with

equal variance among the groups (i.e., over time). One can view our
model as a Bayesian extension of the ANOVA test: both discriminate
based on the amount of variance in the data under models of different
complexity, but the Bayesian model relaxes the assumption of equal
variances over time and adds a prior term which regularizes the
variance estimates when there are few data. Moreover, it can handle
a variable number of replicates at each time – an important feature
when the data may suffer from missing observations or insufficient
replication at certain time points.

Estimating Parameters of the Prior Distribution
Following Newton et al. (2004), Smyth (2004), and Tai and Speed
(2006, 2007), we develop an empirical Bayes procedure to determine
the prior parameters Θ for our model. We first determine a tentative
assignment of probe sets to each component, then use this assignment
to find approximate maximum likelihood estimates of the location
scale η and parameters of the inverse Gamma distribution (a, b); we
set the location mean ν to 0 in all three components.

To find a tentative initial assignment of probe sets for estimating
prior parameters, we run one-way ANOVA detectors of differential
expression and periodicity. Probe sets that vary significantly over
time according to the first test (p-value less than 0.01) are used
to define parameters of the component for differential expression,
while probe sets which fail this test (p-value above 0.1) are used
to define the parameters of the background component. Similarly,
we use the described ANOVA periodicity detector to identify probe
sets for estimating the prior parameters of the periodic component.
Choosing those probe sets with p-value less than 0.001 results in
a number of probe sets similar to that previously identified in the
literature (Miller et al., 2007). The prior component probabilities
π are set to the fraction of probe sets that were assigned to each
component using this procedure.

The other parameters are then determined using a greedy
maximum likelihood method. Briefly, the inverse Gamma parameters
(a, b) are chosen to maximize the likelihood of the observed sums
of squared deviations under an F-distribution. After the parameters
a and b are fixed, η is chosen to maximize the likelihood of the
observations Y under a Normal-inverse Gamma prior. While the
resulting estimates do not necessarily maximize the joint likelihood
with respect to η, a, and b, due to the two-step nature of the procedure,
these estimates are fast to compute and we have found them to work
well in practice. More details on this estimation process can be found
in Appendices 2 and 3.

Implementation via Tai and Speed’s Framework
We note in passing that a Bayesian model similar to our own can be
implemented using the framework of Tai and Speed (2007) and the
timecourse package in Bioconductor. Like the ANOVA test, we use
only two hypotheses: periodic versus background, and again group
together all replicates from the same relative time point regardless of
cycle. We then apply the test from Tai and Speed (2007) for analysis
of differential expression in one-sample cross-sectional experiments
to the grouped data. Any aperiodic yet differentially expressed
signals should have high “in-group” variation due to combining data
across cycles, causing only periodic profiles to be ranked highly.

We believe this technique is less intellectually satisfying than
our three-component Bayesian model, since it groups two sets of
apparently different behaviors (background and aperiodic differential
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expression) under a single Gaussian model. However, in empirical
comparisons the methods often behaved similarly, and both models
provide useful alternatives to traditional analyses that rely on
identifying sinusoidal expression changes.

EXPERIMENTAL RESULTS
In this section we demonstrate that our model can effectively
identify both sinusoidal and non-sinusoidal periodic expression
patterns in data sets profiling circadian expression in peripheral
tissues, including the automatic discovery of genes which were
not previously known to exhibit circadian patterns. It is widely
believed that 5 − 10% of transcribed genes in these tissues may be
under circadian regulation (Storch et al., 2002), with some studies
suggesting a higher proportion - up to 50% in murine liver (Ptitsyn
et al., 2006). Different studies and computational methods are not
consistent in identifying the exact set of such genes, with the
exception of a few core clock control genes.

The data sets analyzed in this paper contain gene expression
profiles of liver and skeletal muscle tissues in mice (Miller
et al., 2007). The data are available through GEO repository,
accession GSE3751. The microarray experiments used a custom-
made Affymetrix platform with 33143 probe sets representing 20110
different genes. This study profiled wild-type male C57BL/6J mice
and age-matched Clock/Clock homozygous mutants with the goal
of studying the effects of disrupting the circadian clock. Two
independent biological replicates were sampled every 4 hours for
2 complete circadian cycles in wild-type mice, and every 4 hours
for a single circadian cycle (7 time points) in the Clock mutant. The
raw intensity values were pre-processed using gcRMA software (Wu
et al., 2004), log-transformed and normalized to zero-mean for each
of the wild-type profiles.

Sine-wave detection The original analysis of this data (Miller et al.,
2007) used the sine-wave matching algorithm of Straume (2004).
They identified 848 distinct rhythmic probe sets in liver and 383
such probe sets in skeletal muscle. The authors filtered out probe
sets below a threshold value of intensity, resulting in a final ranked
list of 714 probe sets in the liver and 252 probe sets in the skeletal
muscle. A subsequent analysis of the skeletal muscle data using the
same sine-wave matching algorithm but with a more stringent cut-off
threshold resulted in 215 probe sets (McCarthy et al., 2007).

Model-based detection Using our model we ranked the probe sets
by their posterior probability of belonging to the periodic component
(see Appendix 1). The posterior probabilities inferred for each of the
probe sets are available in the Supplement. Among the top 25 probe
sets there are 9 that were not among the top 400 ranked by sine-
wave matching. Many of their profiles (Fig. 1) peak or drop at a
single time point, and are poorly matched to a sinusoid shape. The
fact that two of these are known core clock genes (Arntl and Nr1d1)
suggests that such non-smooth measurements may be observed in
true circadian genes due to the sparse sampling in time. The reverse
list of probe sets, those ranked above 25 by the sine wave method
but below 400 by the model, contains just the single probe set Tns3.
The profile conforms to the sine-wave pattern but possesses a very
small amplitude, and is assigned to the background component by
the model. All of the other probe sets that were so highly ranked by

the sine-wave method received posterior probabilities of periodicity
above 0.9 from our model.

PCR Validation We used quantitative real-time PCR to estimate fold
changes over time of the nine probe sets with known gene identities
from the combined difference sets. Eight of these genes correspond
to probe sets ranked highly by our model but not by the sine-wave
method, and the ninth (Tns3) was the gene ranked highly by the sine-
wave method but not by our method. Details of the PCR experiment
are described in Appendix 4.

Fig. 4 shows estimated log-fold change at each of the 12 time
points covering 2 complete circadian cycles. The ordering of genes
in the panels is the same as in Fig. 1, except that the gene Tubb2
(which was unidentified at the time we performed PCR) is replaced
with the Tns3 gene. The PCR results for Tns3 indicate that the signal-
to-noise ratio is smaller than 1: the variance of its mean profile over
time (0.014) is smaller than the average replicate variability (0.0192)
and thus quantitative PCR does not support circadian changes in this
gene. This example illustrates how an explicit background model can
use replicate variability to filter out noisy profiles that may appear
periodic to methods that do not weigh the magnitude of changes in
the averaged profiles against the variability of the replicates.

In contrast, all of the genes identified by the model except for
Zfp929 show profiles consistent with circadian regulation. They
change significantly over time and the changes are consistent across
the cycles. P-values (from an ANOVA periodicity detector) for these
7 profiles are below 2.13 × 10−6; the largest value corresponds to
Rnase4. The profile of Zfp929 shows substantially smaller variation
over time than the other 7 genes, and little similarity across the cycles
(p-value 0.082). In the microarray experiment, this gene peaks at a
single time point within each cycle (see Fig. 1) and may be an example
of a false positive arising from the random background process.

FDR analysis We estimate the false discovery rate (FDR) to
characterize the number of false positive probe sets that exceed
a particular threshold on the posterior probability of periodicity.
Assuming a correct model, the FDR for a given threshold can be
estimated directly as the average of the posterior probability of non-
periodicity, taken over probe sets above the threshold (Newton et al.,
2004). A threshold of 0.9 selects 468 probe sets in the liver and 97
in the skeletal muscle corresponding to an estimated FDR of 2.28%
and 2.23% respectively.

However, this estimate of the FDR is likely to be optimistic, since
it assumes a correct model. As an alternative, we can estimate the
FDR using a permutation test. We simulate data from the background
distribution by permuting the time labels of our original data within
each cycle. This permutation removes correlations in time but
preserves the overall magnitude and observed replicate variability.
Both the original and permuted data are then scored under the model.
The FDR estimate is defined as the ratio of the number of permuted
probe sets that exceed the posterior threshold to the number of the
original probe sets that exceed the same threshold (Keegan et al.,
2007); see Appendix 5. As expected, the FDR estimates based on
time-permuted data are higher than those computed directly using
the posterior probabilities, and suggests that for our threshold of
0.9 we can expect an FDR of approximately 14% (liver) and 17%
(skeletal muscle). These rates are consistent with the PCR findings
in the previous section, where there is evidence that one out of eight
detections from our model is a false positive and the other seven are
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Fig. 4. Quantitative real-time PCR analysis of genes in mouse liver tissue, for eight genes ranked highly by the model and one (gray) ranked highly by a sine
detector. PCR results support periodicity in all but two (Zfp292 and Tns3).
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Fig. 5. Number of probe sets differentially expressed between the wild-type
and the Clock mutant among those identified as rhythmic by the model and
the sine-wave approach.

likely to be true positives. That these rates are not closer to zero may
be due to the short and sparse nature of the time course data sets.

Comparison with mutant time series data To further validate the
rankings from our model we evaluate the influence of the Clock
mutation on the top ranking profiles. Our hypothesis is that a
large fraction of genes under circadian regulation will change their
expression patterns in response to the mutation. We perform a two-
sample comparison between wild-type and mutant time series, using
the Bioconductor timecourse package (Tai and Speed, 2007) and
comparing mutant time points 1 through 7 to their corresponding
circadian times in the wild type (time points 2 through 8). In this
analysis we do not normalize the individual time courses to zero
mean, so that a shift in absolute intensity can be detected as well.

Each plot in Fig. 5 shows how many probe sets ranked in the
top k by periodicity are also in the top 5% ranked according to
differential expression in mutants, in the liver (left) and skeletal
muscle (right). Our model consistently selects more probe sets with
altered expression patterns between the wild type and the mutant
than the sine-wave method. Since temporal profiles of non-rhythmic
genes are also affected by the mutation (Miller et al., 2007; McCarthy
et al., 2007), this evaluation should be interpreted with caution.

Nonetheless, in the absence of ground truth, these results provide
additional (albeit indirect) evidence to indicate that the Bayesian
model is able to consistently extract more relevant information from
the data than a sine-wave approach.

DISCUSSION
Our Bayesian model for detecting periodic expression has a number
of inherent simplifying assumptions which ensure a fast estimation
process. Primarily, these assumptions are:
• All probe sets are independent
• Latent expression profiles (µ, σ) are Gaussian and independent

across time, except as constrained by the component type.
• Replicate measurements are Gaussian given the latent profile

However, there are a number of possible extensions to the model
which could lead to more robust detection, at the expense of increased
computational costs.

Distributional assumptions. Conjugate prior distributions such
as the Normal-inverse Gamma form assumed here ensure closed-
form computation. However, some authors have suggested that
non-Gaussian forms such as Gamma-Gamma models are more
appropriate for expression data (Newton et al., 2004; Lewin et al.,
2007). Our model can be easily re-cast with alternative priors,
but may require numerical approximations in the computation of
posterior probabilities.

Dependence across time. The assumption of a sinusoidal shape
regularizes (or smooths) the estimated true profiles of periodic
patterns. In contrast, the periodic component in our model
does not have any such regularization (it treats sequential time
points independently). Adding a non-diagonal covariance structure
(correlation in time) such as that in Tai and Speed (2007) might
increase the specificity of the model in detecting periodic probe sets
with lower magnitude changes. For very sparsely sampled time points
such as those in our data sets, however, this seems to be unnecessary.

Shared expression patterns. Computation is greatly simplified by
assuming that all genes are independent, but many genes share similar
patterns of expression (Do et al., 2005). Including a higher-level
mixture model which groups similar periodic profiles together could
help identify weak patterns that appear in many expression profiles
by sharing information across genes. Although this change is easy
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in principle, it greatly complicates the inference process. In this
case, the estimates of periodicity for each gene become coupled and
must be computed jointly rather than individually, and requires more
complex methods such as Markov chain Monte Carlo.

CONCLUSIONS
In this paper we present an alternative to sinusoid or frequency-based
testing for identifying periodic patterns in gene expression time series
data. We argue that in typical experiments with only a small number
of samples per cycle, we should test for arbitrary patterns which
are repeated between cycles, rather than parametric shapes. To this
end, we propose a Bayesian mixture model for identifying patterns
of unconstrained shape, which stand out as both differentially and
periodically expressed. The algorithm is computationally fast and
easy to implement due to the conjugate nature of the underlying
Bayesian model.

Using two experimental data sets we showed that our proposed
method identifies a number of patterns, many with sharp transitions
compared to the sampling rate that would be missed by a conventional
sine-wave detector. Moreover, the Bayesian model identifications are
supported by subsequent real-time PCR experiments and comparison
to Clock-mutant expression profiles. This suggests that these
detections are true positives missed by the analysis methods in
common use.
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1 COMPUTING MARGINAL LIKELIHOOD UNDER
THREE MODEL COMPONENTS

To compute the posterior probability of periodicity for a particular
probe set i using Equation (1) we need to evaluate the three marginal
likelihood terms P (Yi|Θz, Zi = z), z ∈ {b, d, p} where the latent
mean profile and replicate variance are each integrated out. These
marginal likelihood terms can be computed in closed form using
Bayes rule and the formula for the posterior probability under the
Normal-inverse Gamma prior. In Section A.1 below we describe
the computation of marginal likelihood assuming a series of one-
dimensional observations X and scalar (µ, σ), and then extend this
in section 1.2 to compute the marginal likelihoods under the three
model components in our model.

1.1 Marginal likelihood under the Normal-inverse
Gamma prior

Let X = {Xk, 1 ≤ k ≤ n} be a series of one-dimensional
observations generated by a Gaussian distribution with a Normal-
inverse Gamma prior for scalar mean and variance (µ, σ):

P (σ) = Γ−1(σ | a, b)

P (µ|σ) = N(µ | ν, σ/η)

P (Xk|µ, σ) = N(Xk|µ, σ)

Here (ν, η) are the mean and the scale of the location µ and (a, b)
are the degrees of freedom and the scale of the inverse Gamma
distribution for variance σ. Let Θ denote the four parameters of
the prior Θ = {ν, η, a, b).

To evaluate the marginal likelihood of observations X , we use
the following Bayesian identity, evaluated at some arbitrary values
(µ∗, σ∗):

P (X |Θ) =
P (X|µ∗, σ∗, Θ)P (µ∗, σ∗|Θ)

P (µ∗, σ∗|X, Θ)
(2)

The likelihood is a product of Gaussian densities,

P (X|µ∗, σ∗, Θ) =

n∏

k=1

N(Xk|µ∗, σ∗) (3)

while the prior is a product of an inverse Gamma for σ∗ and a
Gaussian distribution for µ∗:

P (µ∗, σ∗|Θ) = Γ−1(σ∗|a, b)N(µ∗|ν, σ∗/η) (4)

The posterior also has a Normal-inverse Gamma structure (Gelman
et al., 1995),

P (µ∗, σ∗|X, Θ) = Γ−1(σ∗|ã, b̃)N(µ∗|ν̃, σ∗/η̃) (5)

where the posterior parameters (ν̃, η̃ ; ã, b̃) are given by

η̃ = η + n ν̃ =
η

η + n
ν +

n

η + n
X̄ (6)

ã = a +
1

2
n b̃ = b +

1

2
S +

1

2

kη

η + n

(
X̄ − ν

)2 (7)

and the empirical means and sum of squares are

X̄ =
1

n

n∑

k=1

Xk S =

n∑

k=1

(Xk − X̄)
2 (8)

Substituting equations (3) through (8) into the Bayesian identity in
Equation (2), and using µ∗ = ν and σ∗ = 1, provides the marginal
likelihood P (X |Θ).

1.2 Marginal likelihood for model components
The background component assumes a scalar mean and replicate
variance per probe set, and the marginal likelihood is computed
directly as in Equation (2) for Xb

i = {Y c
ijk, 1 ≤ T, 1 ≤ c ≤ C, 1 ≤

k ≤ nc
ij}:

P (Yi|Θb, Zi = b) = P (Xb
i | νb, ηb, ab, bb)

The component for differential expression assumes an independent
scalar mean and variance for each time point within each of the
individual cycles, so the marginal likelihood is a product of likelihood
terms for the corresponding observations Xd,c

ij = {Y c
ijk, 1 ≤ k ≤

nc
ij}:

P (Yi|Θd, Zi = d) =

C∏
c=1

T∏
j=1

P (Xd,c
ij | νd,c

j , ηd,c
j , ad,c

j , bd,c
j )

Finally, the periodic component assumes scalar mean and variance
for each time point within a single cycle, and the marginal likelihood
is a product of likelihood terms corresponding to observations Xp

ij =
{Y c

ijk, 1 ≤ c ≤ C, 1 ≤ k ≤ nc
ij}:

P (Yi|Θp, Zi = p) =

T∏
j=1

P (Xp
ij | νp

j , ηp
j , ap

j , bp
j )

The three equations above for the marginal likelihood under
individual components can be combined as in Equation (1) to provide
a closed-form estimate of the posterior probability of periodicity for
each of the probe sets.

2 ESTIMATING INVERSE GAMMA PARAMETERS
IN THE NORMAL-INVERSE GAMMA PRIOR

In this section we describe a maximum likelihood approach for
estimating the parameters of the inverse Gamma distribution for
variance. Assume that we have a collection of N replicated
observations {Yik, 1 ≤ i ≤ N, 1 ≤ k ≤ ni} generated by
a Normal-inverse Gamma model with parameters NIG(ν, k, a, b).
To estimate parameters (a, b) of the inverse Gamma distribution,
we first derive the F-distribution of the sum of squared errors S
under this prior, denoted by P (S|a, b). Once this distribution is
known, we can evaluate the likelihood of the observed values of
the statistic P (S1...N |a, b) as a function of parameters (a, b) and
find the maximum likelihood solution.

Formally, let X̄i and Si be the empirical mean and sum of squares
for set i, given as in (8). For a given mean and variance (µi, σi), the
observations Yik have a Gaussian distribution N(µi, σi) and the sum
of squared errors Si follows a Gamma distribution with parameters
(qi, θi). Defining

qi = (ni − 1)/2 θi = 2σi

we have

P (Si|σi) = Γ(Si|qi, θi) =
1

θqi
i Γ(qi)

Sqi−1
i exp

(
−Si

θi

)
.
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To obtain the distribution of S given (a, b), we analytically integrate
out the replicate variance and obtain the functional form of an F-
distribution:

P (S|a, b) =

∫

σ

P (S|σ)P (σ|a, b)dσ

=
baΓ(a + q)

2qΓ(a)Γ(q)

Sq−1

(b + S/2)(a+q)

(9)

The values of each statistic Si for different observations i are
conditionally independent given (a, b), and the likelihood of the
entire sample is thus the product

P (S1...N ) =

N∏
i=1

baΓ(a + qi)

2qΓ(a)Γ(qi)

Sqi−1
i

(b + Si/2)(a+qi)

To find the maximum likelihood solution, we take derivatives of the
log-likelihood with respect to (a, b) and set them to zero:

N∑
i=1

[
a

b
− a + qi

b + Si/2

]
= 0

N∑
i=1

[ψ(a + q)− ψ(a) + log (b)− log (b + Si/2)] = 0

Here ψ(x) denotes the derivative of the logarithm of the Gamma
function. The first equation is linear in a, and we solve for a in
terms of b and substitute into the second equation, obtaining a single
non-linear equation that defines the scale parameter b of the inverse
Gamma distribution. Solving this equation for b using any zero-
finding algorithm provides maximum likelihood estimates of both
parameters.

3 ESTIMATING LOCATION SCALE IN THE
NORMAL-INVERSE GAMMA PRIOR

In this section we derive maximum likelihood estimates of the
location scale η in the Normal-inverse Gamma prior NIG(ν, η ; a, b),
when all other parameters (ν, a, b) are fixed. We begin by writing
out the likelihood of the data Y = {Yik, 1 ≤ i ≤ N, 1 ≤ k ≤ ni}
as a function of η. Using the Bayesian identity as in Equation (2),
we have that for arbitrary (µ∗, σ∗),

P (Y |η) =

N∏
i=1

P (Yi|µ∗, σ∗)P (µ∗, σ∗|η)

P (µ∗, σ∗|Yi, η)

Let us denote the parameters of the posterior Normal-inverse Gamma
distribution in (6) and (7) given observations Yi and location scale
η by (ν̃i(η), η̃i(η) ; ãi(η), b̃i(η)), making their dependence on η
explicit. The posterior probability in the denominator is then

P (µ∗, σ∗|Yi, η) = Γ−1(σ∗|ãi(η), b̃i(η))N(µ∗|ν̃i(η), σ∗/η̃i(η))

Taking the log of P (Y |η) and grouping terms which do not depend
on η, we have

log(P (Y |η)) =

N∑
n=1

(
log(N(µ∗|ν, σ∗/η))

− log(Γ−1(σ∗|ãi(η), b̃i(η)))

− log(N(µ∗|ν̃i(η), σ∗/η̃i(η)))
)

+ C1

which equals

log(P (Y |η)) =

N∑
n=1

(1

2
log(η)− η

(µ∗ − ν̃i(η))2

2σ∗

− (a +
1

2
R) log(b̃i(η)) +

1

σ∗
b̃i(η)

− 1

2
log(η + R) + (η + R)

(µ∗ − ν̃i(η))2

2σ∗

)
+ C2

where C1 and C2 are constants independent of η. Taking the
derivative with respect to η and setting it to zero, we obtain a
non-linear equation for the maximum likelihood estimate of η:

N∑
n=1

( 1

2η
− (µ∗ − ν̃i(η))2

2σ∗

−
(

a +
1

2
R

)
b̃′i(η)

b̃i(η)
+

1

σ∗
b̃′i(η)− 1

2(η + R)

+
(µ∗ − ν̃i(η))2

2σ∗
− (η + R)

(µ∗ − ν̃i(η))ν̃′i(η)

σ∗

)
= 0 (10)

Here ν̃′i(η) and b̃′i(η) denote the derivatives of ν̃i(η) and ν̃i(η) with
respect to η:

ν̃′i(η) =
R(ν − Ȳi)

(η + R)2
b̃′i(η) =

1

2
(Ȳi − ν)2

R2

(η + R)2

Non-linear zero-finding for the left hand side of Equation (10)
provides an estimate of η. Each iteration of the method requires
recalculating the parameters of the posterior for each observation i
given the new value of η. The time complexity is thus linear in the
number of observations, and for a few thousand genes the process of
estimating k takes at most a few minutes on a single modern CPU.

4 PCR VALIDATION
To validate circadian cycling of the genes identified as periodic
by the proposed approach but not the sine-wave model, we
performed quantitative real-time PCR. The validation experiments
were conducted on the genes that ranked above 25 according to one
of the methods (either the proposed model model or the sine-wave
detector (Straume, 2004)), but below 400 using the other method.
Mice (strain: C57BL/6, age: 30 days old) were carefully housed
under an alternating 12 hours light/dark cycle, and four mice were
sacrificed every four hours over the course of 48 hours (52 mice total).
Total RNA was extracted from the same region of the liver using the
TRIzol method (Invitrogen) and synthesis of cDNA from extracted
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RNA (1mg as input) was done using High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) as previously described (Lin
et al., 2004). Quantitative real-time PCR was performed using the
following TaqMan Gene Expression Assays (Applied Biosystems):
Arntl (Mm00500226_m1), Camk1d (Mm00616508_m1), Cyp2a4
(Mm00487248_g1), Gale (Mm00617772_g1), Mknk2 (Mm00458-
026_m1), Nr1d1 (Mm00520708_m1), Rnase4 (Mm00491347_m1),
Tns3 (Mm01192797_g1), and Zfp292 (Mm00497043_s1). For
quantitative real-time PCR, three measurement replicates were
used to determine the expression level (critical threshold value)
per biological sample, and the expression for each sample
was normalized to the endogenous control gene, Gapdh
(Mm99999915_g1).

5 ESTIMATING FDR
For completeness, we briefly derive the estimate of Keegan et al.
(2007). Suppose that we have run a classification test on N data,
with N1 data passing the threshold (predict class 1). Furthermore,
we have some means of obtaining new data samples from the null
hypothesis (class 0); in our case, this is by permuting data to remove
time dependency. If we draw M data from class 0, and find that M1

pass the threshold, we can estimate the probability of false detection
as pFD ≈ M1

M
. Since fewer than our total N probe sets come from

class 0, we should have fewer than approximately M1
M

N probe sets
which correspond to false detections. Then,

FDR . M1

M

N

N1

and if M = N , this is simply M1
N1

.
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