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Abstract

Our long-term goal is to develop a trainable tool for
locating patterns of interest in large image databases. To-
ward this goal we have developed a prototype system,
based on classical filtering and statistical pattern recog-
nition techniques, for automatically locating volcanoes in
the Magellan SAR database of Venus. Training for the
specific volcano-detection task is obtained by synthesizing
feature templates (via normalization and principal compo-
nents analysis) from a small number of examples provided
by experts. Candidate regions identified by a focus of atten-
tion (FOA) algorithm are classified based on correlations
with the feature templates. Preliminary tests show perfor-
mance comparable to trained human observers.

1 Introduction

Many geological studies use surface features to deduce
processes that have occurred on a planet. The recent
JPL Magellan mission, which was successful in imaging
over 95% of the surface of Venus with synthetic aperture
radar (SAR), has provided planetary scientists with a virtual
treasure-trove for the analysis of Venusian geology. This is
especially true since all the scientific data from the mission
has been released by NASA in digital form on CD-ROMS
ensuring widespread, low-cost access.

Previous observations from Soviet Venera 15/16, U.S.
Pioneer Venus, and ground-based radar have revealed that
volcanism is a dominant geologic process on Venus. In-
deed, preliminary global surveys of the Magellan data show
there are approximately 1400 volcanic features larger than
20km in diameter [3], and scientists estimate the number
of small volcanoes (diameter � 15km) on the planet to be� 106 [1]. Generating a comprehensive catalog includ-
ing the size, location, and other relevant information about
each volcano is clearly a prerequisite for more advanced
studies such as cluster analysis of the volcano locations.
Such analysis could provide insight into eruption mechan-
ics, the relationship between volcanoes and local tectonic

structure, and the pattern of heat flow within the planet.
Automatically generating a volcano catalog from the

Magellan image database presents a significant challenge
to current pattern recognition and machine learning ca-
pabilities; however, the alternative approach of manually
locating volcanoes is simply not feasible: the estimated one
million small volcanoes visible in the Magellan dataset are
widely scattered throughout 30,000 1Mbyte images.

Our long-term goal is to develop a general system for
locating patterns of interest in image data. Toward this
goal we have developed a prototype system, based on clas-
sical filtering and statistical pattern recognition techniques,
for finding volcanoes. Training for the specific volcano-
detection task is obtained from examples provided by ex-
perts. The absence of absolute “ground truth” leads to some
practical problems for training and performance evaluation
that are discussed in Section 3. The system is described in
Section 4 with preliminary results on a small set of images
given in Section 5.

2 Magellan imagery

A fundamental objective of the Magellan mission was to
provide global mapping of the surface of Venus. The map-
ping was performed using synthetic aperture radar (SAR)
because of its ability to penetrate the dense cloud cover sur-
rounding Venus. A complete description of the Magellan
SAR imaging system is given in [6], so here only the most
important characteristics are summarized:

	 Wavelength: 12.6cm	 Frequency: 2.385 GHz - S band	 Incidence Angle: 15 
 - 45 
 (nominal)	 Range resolution: 120m - 360m	 Azimuth resolution: 120m	 Pixel-spacing: 75m (full resolution)	 Number of looks: 5 - 16

Figure 1 shows a 30km � 30km area imaged by Mag-
ellan (illumination from the left). This area located near
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Figure 1: Magellan SAR sub-image: A 30km � 30km re-
gion containing a number of small volcanoes. Illumination
is from the left; incidence angle � 40 
 .

(lat 30 
 N, lon 332 
 ) contains many small volcanoes. Ob-
serve that the larger volcanoes in this figure have the classic
radar signature one would expect based on the topography;
that is, the upward sloping surface of the volcano in near-
range (close to the radar) scatters more energy back to the
sensor than the surrounding flat plains and therefore ap-
pears bright. The downward sloping surface of the volcano
in far-range scatters energy away from the sensor and there-
fore appears dark. Together, these effects cause the volcano
to appear as a left-to-right bright-dark pair within a circular
planimetric outline. Near the center of the volcanoes, there
is usually a summit pit that appears as a dark-bright pair
because the radar energy backscatters strongly from the
far-range rim. Small pits, however, may not appear or may
appear as only a bright spot due to the image resolution.

The topography-induced features described above are
the primary visual cues that geologists report using to lo-
cate volcanoes. However, there are a number of other,
more subtle cues. The apparent brightness of an area in a
radar image depends not only on the macroscopic topogra-
phy but also on the surface roughness relative to the radar
wavelength. Thus, if the flanks of a volcano have different
roughness properties than the surrounding plains, the vol-
cano may appear as a bright or dark circular area instead of
as a bright-dark pair. Volcanoes may also appear as radial
flow patterns, texture differences, or disruptions of graben.
(Graben are ridges or grooves in the planet surface, which
appear as bright lines in the radar imagery — see Figure 1.)

3 Uncertain ground truth

In the volcano location problem, as in many remote-
sensing applications, real ground truth does not exist. No
one has ever been to the surface of Venus (apart from a
Russian robotic lander which melted within minutes), and
trained scientists cannot determine from the imagery with
100% certainty whether an arbitrary feature is indeed a
volcano (due to resolution, noise level, etc.). As a result,
training and evaluation of an automatic system for finding
volcanoes must be handled very carefully.

3.1 Collection of training examples

We have developed a graphical interface for harvesting
training examples from scientists. The scientists use a
mouse to identify image features that may be volcanoes
and then specify size information by fitting circles. The
scientists also provide a label indicating their subjective
confidence 
 that the selected object is in fact a volcano.
Based on discussions with the scientists, the confidence
labels were quantized into four categories:

Category 1: 
���� 0 � 95 � 1 � 0 � . Almost certainly a volcano,
with all primary visual cues present.

Category 2: 
���� 0 � 75 � 0 � 95 � . Probably a volcano, but a
non-essential visual cue is missing.

Category 3: 
���� 0 � 5 � 0 � 7� . Possibly a volcano, but some
primary visual cues are unclear or missing.

Category 4: 
�� 0 � 5. Only a pit is visible; could be a
volcano, but more evidence is needed.

Some typical volcanoes from each category are shown in
Figure 2.

The confidence labels may be incorporated into training
as described in [8] (see also [5, 7]). However, we have not
found a significant improvement in performance by doing
so. The results presented in the remainder of this paper
are, therefore, based on “label-free” training in which all
examples are treated as definite volcanoes.

3.2 Evaluation of performance

Given that the scientists cannot classify each object with
100% confidence, how can we assess how well our algo-
rithms are performing? The basic idea is to generate a
“consensus ground truth” from several scientists working
together and discussing the merits of each candidate vol-
cano. Typical consensus data is shown in Figure 3 (without
the confidence labels). An algorithm is considered satisfac-
tory if its performance is comparable to that of an individual
scientist.



Sample Volcanoes

Category 1:

Category 2:

Category 3:

Category 4:

Figure 2: Volcano confidence categories.

Figure 3: Magellan image with consensus ground truth
showing size and locations of small volcanoes.

Consensus
1 2 3 4 0

1 28 11 6 1 0
A 2 5 9 8 9 9

3 1 2 20 8 31
4 1 2 5 26 13
0 0 6 11 4 0

Consensus
1 2 3 4 0

1 19 6 6 3 1
B 2 9 5 9 4 6

3 4 13 18 6 37
4 0 3 3 25 18
0 3 3 14 10 0

Figure 4: The performance of two individual scientists (A
and B) compared to ‘consensus’ ground-truth.

We evaluated the individual performance of two scien-
tists (A and B) by asking each to independently label the
volcanoes in a set of images using the subjective probabil-
ity categories described above. Approximately one week
later, the two scientists jointly generated a consensus la-
beling of the same images. (Note: they did not directly
use their previous labelings.) Their confusion matrices are
given in Figure 4, where the ������� � entry is interpreted as the
number of volcanoes labeled � by an individual that were
labeled � in the consensus. Hence, off-diagonal elements
show errors between the individual and consensus. The last
row of the confusion matrix shows the number of misses
(volcanoes not labeled by the individual), while the last
column shows the number of false alarms. In Section 5 we
will compare the performance of our algorithm with that of
the scientists.

4 Algorithm description

In this section, we describe the prototype system we
have developed for finding small volcanoes on Venus. As
illustrated in Figure 5, the algorithm operates in two distinct
phases: learning and production.

The purpose of the learning phase is to develop models
of the objects of interest based on training examples (and
possibly counter-examples). Ideally, the learning phase
should be generic enough to enable the system to be ap-
plied to other detection tasks without reprogramming —
the user merely supplies the system with a new set of ex-
amples. (Note that the number of examples required from
the user should be as small as possible since labeling is
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Figure 5: System block diagram.

very labor-intensive). During the production phase, the
learned models are used to search through a database and
find all objects of interest. Both the learning and produc-
tion phases consist of three main components: focus of
attention (FOA), feature extraction, and classification.

4.1 Focus of attention

The FOA is designed to quickly screen an image and
output a list of candidate volcano locations. The FOA
provides significant computational savings by excluding
uninteresting areas of the planet (e.g., flat plains) from
further consideration. A drawback, however, is that any
volcanoes missed by the FOA will not be recovered.

Given the constraints of speed and low miss-rate, a rea-
sonable approach to FOA is to use a matchedfilter, i.e., a lin-
ear filter that matches the signal one is trying to find. It can
be shown that for detecting a known signal in white Gaus-
sian noise, the matched filtering approach is optimal. Of
course, the volcano problem does not satisfy these under-
lying assumptions. The set of observed volcanoes cannot
be described as a known signal plus white noise, because
there is structured variability due to size, type of volcano,
surface roughness, etc. Likewise, the clutter background
cannot be properly modeled as white noise. Nevertheless,
we have empirically found that a modified matched filtering
approach works well.

Let !#" denote a $%�&$ pixel region around the � -th training
volcano. Each region can be normalized with respect to the
local DC level and contrast as follows:

˜!#"(' !#"#)�*#",+.-/ " (1)

where *#" is the mean of the pixels in !#" and / " is the
standard deviation. We construct a modified matched filter0

by averaging the normalized examples.

Applying the matched filter to an image involves com-
puting the normalized cross-correlation of

0
with each $1�2$

image patch. The cross-correlation can be computed effi-
ciently using separable kernel methods to approximate the
2-D kernel

0
as a sum of 1-D outer products [9]. High

response values indicate that there is strong correlation be-
tween the filter and the image patch. Candidate volcano
locations are placed where the matched filter response ex-
ceeds a threshold that is determined from training images.
Any threshold crossings within a prescribed distance from
each other are attributed to the same object and grouped
together.

Although the matched filter can be justified on purely
empirical grounds, we also offer the following arguments.
First, the $3�4$ windowing eliminates some of the inherent
volcano variability, especially that due to size. Focusing on
the central area makes the volcano problem more like that
of finding a known signal. Second, normalizing each image
patch with respect to the DC level and contrast causes non-
descript clutter areas to resemble zero-mean, white noise.
Hence the filter

0
should be very suitable for discriminating

these non-descript regions from volcanoes — the primary
purpose of FOA. Of course, in places where the clutter has
features such as graben, the matched filter is not ideal and
will produce more false alarms.



4.2 Feature extraction

The ability to determine good features automatically
from examples is essential for developing a trainable pat-
tern recognition tool. Since the regions of interest (ROIs)
identified by the focus of attention are embedded in a high
dimensional pixel space, the set of possible features is im-
mense. We have therefore restricted our search to the fam-
ily of features defined by linear combinations of the ROI
pixel values. This strategy is equivalent to projecting the5 -dimensional pixel space onto a 6 -dimensional subspace
(feature space).

Projecting onto a subspace is a classical problem in pat-
tern recognition, from which two basic paradigms have
emerged [4]: linear discriminant analysis (LDA) and prin-
cipal components analysis (PCA). LDA attempts to maxi-
mize the separation of classes in the projected space, while
PCA attempts to best represent the original data. For the
volcano problem, the class ¯7 , consisting of all ROIs that
are not volcanoes, is extremely broad. This class remains
broad even after conditioning the ROIs upon acceptance by
the FOA. Hence, the usual LDA scatter criterion will not
provide a useful measure of the class separability, and the
resulting features will not be good. A better approach is to
use PCA to define features that encode the volcano class
and then accept or reject an ROI based on how similar it is
to the volcanoes.

The method of principal components has been used
extensively in statistics, signal processing (Karhunen-
Loeve transform), and pattern recognition (Turk and Pent-
land [10]). The basic problem formulation is to find a 6 -
dimensional subspace such that the projected data is closest
in 8 2 norm to the original data. The subspace we seek is
spanned by the highest-eigenvalue eigenvectors of the data
covariance matrix. Although the full covariance matrix
cannot be computed reliably from the number of examples
we typically have available, the approximate basis vectors
can be computed using the singular value decomposition
(SVD) as described below.

Each normalized training volcano is reshaped into a vec-
tor and placed as a column in an 5 �:9 matrix ; , where 5
is the number of pixels in an ROI and 9 is the number of
ROIs. With the SVD, ; can be factored as follows:

;<'>=@?BADC (2)

For notational convenience, we will assume 9 is less than5 . Then in Equation 2, = is an 5 �E9 matrix such that
= C =F'HG�IKJLI , ? is 9H�M9 and diagonal with the elements
on the diagonal (the singular values) in descending order,
and A is 9N�:9 with A C AF'OAPA C 'QGRISJTI . Notice that
any column of ; (equivalently, any ROI) can be written
exactly as a linear combination of the columns of = . Fur-
thermore, if the singular values decay quickly enough, then

the columns of ; can be closely approximated using linear
combinations of only the first few columns of = . That is,
the first few columns of = serve as an approximate basis
for the entire set of examples in ; .

The best 6 -D subspace on which to project is the one
spanned by the first 6 columns of = . The columns of = are
shown in Figure 6-b reshaped into ROIs; we refer to these
as features or templates. Notice that the first ten templates
exhibit structure while the remainder appear very random.
This suggests projecting onto a subspace of dimension U
10. The singular value decay shown in Figure 6-c also
indicates that 6 ) 10 features encode most of the information
in the examples.

Having determined 6 , we project an ROI into feature
space as follows:

V '<W2X 1 X 2 �Y�Z�[X]\�^ CP_ (3)

where _ is the ROI reshaped as an 5 -dimensional vector
of pixels, X(" is the � -th column of = , and V is the 6 -
dimensional vector of measured features. These feature
vectors will serve as input to the classification algorithm.

Despite its intuitive appeal, there are a number of argu-
ments against using such a simple template-based approach
for recognition: most notably it is not invariant with respect
to translation, rotation, scaling, and direction of illumina-
tion. A certain (hopefully small) number of templates will
be required in order to represent the inherent variability of
an object; any additional variability due to spatial shifting,
rotation, scaling, or noise will dramatically increase the
number of templates required to encode the object. Thus,
the template-based approach may not be feasible unless
appropriate normalization steps are taken prior to feature
learning. These invariance issues need to be resolved in or-
der to develop a general system; however, for the volcano
problem they are not critical since (1) the FOA algorithm
“centers” the volcanoes well, (2) the volcanoes have sig-
nificant rotational symmetry, (3) the central area of the
volcanoes (on which the templates are based) are relatively
insensitive to overall scale, and (4) the direction of illumi-
nation is known.

4.3 Classification

The goal of classification is to determine a mapping from
feature space to class label ( 7 or ¯7 ). Up to this point in the
processing, we have eschewed using counter-examples for
training. (The FOA filter and PCA features were deter-
mined solely based on volcanoes.) The classifier could
also be designed this way, but Fukunaga shows that such
an algorithm is subject to considerable error even in rela-
tively low dimensions because the location of the “other”
distribution is unknown [4]. To overcome this problem,
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Figure 6: (a) example volcanoes, (b) principal compo-
nents, (c) singular value decay

we have experimented with various supervised two-class
methods including quadratic classifiers, decision trees, and
kernel density estimation. Good results were obtained with
all these methods, but we currently favor the quadratic clas-
sifier due to its simplicity.

The quadratic classifier is optimal if the class-
conditional probability densities of the feature vector V
are multivariate Gaussian. Assuming V has the postulated
class-conditional densities, the posterior probability that an
ROI is a volcano can be estimated using Bayes rule:


#� 7a` V �B' 
#� V&` 7 �b
#� 7 �

c� V&` 7 �d
#� 7 �feg
c� V1` ¯7 �d
c� ¯7 � (4)

where 
c� 7 � and 
c� ¯7 � are the respective prior probabilities,
and


c� V&` 7 �h' ij� V ��*#kL� Σ kZ�

c� V&` ¯7 �h' ij� V ��* ¯k � Σ ¯k � (5)

with the notation i�� V �l*]� Σ � denoting the multivariate
Gaussian density with mean * and covariance Σ. One can
show that thresholding the posterior probability in Equa-
tion 4 is equivalent to partitioning the feature space with a
quadratic hypersurface.

5 Experimental performance results

Preliminary experiments were conducted using a cross-
validation paradigm on four images that contained 163
small volcanoes and covered a 150km � 150km area of
the planet. All results were scored relative to the scientists’
consensus labeling with confidence categories 1-4 treated
as true volcanoes. The figure of merit we measure is the
number of true volcanoes detected versus the number of
false alarms. Both quantities are expressed as percentages
relative to the total number of volcanoes. Hence, the detec-
tion rate is bounded above by 100%, while the false alarm
rate can be arbitrarily large.

The performance of the matched filter focus of atten-
tion algorithm is shown in Figure 7. The algorithm has a
free parameter (a threshold) that controls its aggressiveness
in declaring volcanoes, i.e., the trade-off between misses
and false alarms. Varying this parameter generates a curve
comparable to a standard ROC (receiver operating charac-
teristic) curve. Since the purpose of the FOA is to provide
a quick list of candidates to later stages of the algorithm
with a low miss rate, this threshold parameter was fixed
to provide a 90% detection rate; the resulting false alarm
rate was about 300%. At this operating point the matched
filter detected all the Category 1 and 2 volcanoes; the 10%
missed were from Category 3 and 4.
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Figure 7: Performance of our algorithm compared to
individual scientists.

Following the FOA, candidates are mapped from pixel
spaceto feature spaceand then classifiedusing the quadratic
classifier. The goal is to reject any false alarms generated
by the FOA while retaining as many true detections as pos-
sible. The performace of the end-to-end algorithm using a
six dimensional feature space ( 6M' 6) is shown in Figure 7.
As with the FOA, the classifier has a parameter that can be
varied to select aggressiveness (namely, the threshold ap-
plied to Equation 4). At maximum aggressiveness, every
candidate from the FOA is declared to be a volcano; hence,
the classifier performance curve is constrained to start from
the FOA operating point. Observe that the combination
of FOA and classification yields better performance than
using only a matched filter (as proposed in [11]).

As a basis for comparison, we evaluated the individual
labeling performance of three planetary scientists who are
all familiar with the Magellan data and with the appearance
of volcanoes in the data (see Section 3.2). Each scientist’s
performance is plotted as an asterisk in Figure 7. Note
that the algorithm detection rate is clearly within 10% of
Scientist B’s detection rate at the same false alarm rate.

We also performed an empirical study to investigate
the sensitivity of the algorithm to the number 5 of SVD
features used. Figure 8 shows the measured detection rate
versus 5 at a few selected false alarm rates. Since the
detection curves are quite flat versus 5 , we conclude that
the performanceis relatively insensitive to the exactnumber
of features, provided at least four are used.
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6 Discussion and conclusion

We have developed a trainable system, which is based
on classical filtering and pattern recognition techniques,
for locating small-scale patterns in large image databases.
The system is being applied to the problem of locating
small volcanoes in the Magellan SAR imagery of Venus.
Tests conducted on four images (containing 163 small vol-
canoes and covering an area 150km � 150km) show that
our system is performing nearly as well as trained human
observers. These results should, of course, be considered
preliminary being based on just four images (out of 30,000);
further experiments are underway.

As we mentioned at the outset, our long-term goal is
to develop a trainable pattern recognition tool that can be
applied to various remote-sensing and visual inspection
problems without reprogramming. The prototype system
described in this paper is trained completely from examples
and appears to work well for finding volcanoes. However,
there are a number of technical issues that remain to be
addressed. Achieving invariance to translation, scaling, ro-
tation, and illumination without renouncing the advantages
of filter-based processing is foremost. (Recall that these
issues were not critical for the volcano problem.) Effec-
tively using counter-examples and allowing the scientists
to enter “hints” such as “find this object at any scale” are
important open issues. Finally, we note that a general sys-
tem will likely incorporate a variety of pattern recognition
techniques, each more or less suited to particular types of
problems. Automatically deciding which technique(s) to
apply in a specific situation is a problem we are currently



investigating [2].
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