Cycle Length Distributions in Graphical Models for Iterative De

Xianping Ge, David Eppstein, Padhraic Sm
Information and Computer Science University of California, Irvine \{xge, eppstein,smyth\}@ics.uci.edu

Talk given by Igor V. Cadez

0-0

Turbo Code: An Error-correcting code Shannon limit

- Near-optimal performance (in terms of bit error rate)
- Theory not well understood
- Decoding is a special case of local message passing algorithm in directed graphical models, which only proven to work for graphs without loops.
- But the graphical model of Turbo Code has loops.

Turbo Code: The Graphical Model

Counting Cycles: Motivation

- Loops/cycles in the graphical models introduces "double-counting" of evidence.
- Conjecture: doubling-counting effect dies off in long c
- \Rightarrow How many cycles of length $\leq k$ are there at a rand chosen node in a typical graph for a Turbo Code?

The Simplified Cycle Structure: dropping

- Edges are labeled \rightarrow, \leftarrow (on the chains), - (across th

One example cycle: $S_{1}^{1} \rightarrow S_{2}^{1} \rightarrow S_{3}^{1}-S_{1}^{2} \rightarrow S$

- : Label sequence: $\rightarrow, \rightarrow,-, \rightarrow,-$.

How to count the cycles of length $\leq k$ randomly chosen node?

1. Let n be the length of the chain in the graph, i.e. the length of Turbo Code.
2. Because the degree of the nodes is 3 , there are $\approx 2^{k-2}$ label sequences of length k.
3. For a given label sequence, the probability of the exis the corresponding cycle at the node is $\approx \frac{1}{n}$, for $k \ll n$
4. The probability of no cycle of length k at a node is (1
5. The probability of no cycle of length k or less at a no $\approx \prod_{i \leq k}\left(1-\frac{1}{n}\right)^{2^{i-2}} \approx e^{-\frac{2^{k-1}-4}{n}}$.

- Because the degree of the nodes is 3 , there are $\approx 2^{k-}$ label sequences of length k.

	Label Sequence		
\ldots	\longrightarrow	-	\leftarrow
\ldots	\longrightarrow	-	\longrightarrow
\ldots	\longrightarrow	\longrightarrow	\longrightarrow
\ldots	\longrightarrow	\longrightarrow	-

- At a randomly chosen node S, for a given label seque length k, the probability of the existence of the corres cycle is $\frac{1}{n}$:
The last across-chains edge $X Y$ can go from X to an the n nodes, instead of Y. So the probability is $\frac{1}{n}$.

At a randomly chosen node S, with prob:

 $\approx e^{-\frac{2^{k-1}-4}{n}}$, there is no cycle of length \leq- For a given label sequence of length k, with probabili the corresponding cycle does not exist at the node S.
- With probability $\approx\left(1-\frac{1}{n}\right)^{2^{k-2}}$, none of the 2^{k-2} cyc length k exist at the node S. (Independence assumpti
- The probability of no cycle of length $\leq k$ at at the no $\approx \prod_{i \leq k}\left(1-\frac{1}{n}\right)^{2^{i-2}} \approx e^{-\frac{2^{k-1}-4}{n}}$. (Independence assump

The approximate theoretical results are ve to simulation results.

Probability of no cycles of length k or less, as a functic

Cycle lengths distribution for the grapl models of Turbo Code

Probability of no cycles of length k or less, as a functic

Conclusions and Other Results

- For a randomly chosen node, the probability of a sho (length <10) is very low (close to 0) and a long cycle close to 1 .
- At a randomly chosen node S, for the same k, the pr of no cycle of length $\leq k$ increases with n.
- Let $k_{0.5}$ be such that $p\left(k_{0.5}, n\right)=e^{-\frac{2^{k_{0.5}-1}-4}{n}}=0.5$. $k_{0.5}, n$ need to be increased to $n^{2}: p\left(2 k_{0.5}, n^{2}\right) \approx 0.5$.
- S-random permutation: not much effect on this curve
- Low-Density Parity Check (LDPC) codes: similar res (similar curve shape), but the independence assumpti accurate (simulation does not agree as well).

References

1. C. Berrou, A. Glavieux, and P. Thitimajshima (1993) Shannon limit error-correcting coding and decoding: codes. In Proceedings of the IEEE International Conf Communications. pp. 1064-1070.
2. B. J. Frey and D. J. C. MacKay 1998. 'A revolution: propagation in graphs with cycles'. In Advances in Ne Information Processing Systems 10. MIT Press: Cam MA.
3. X. Ge, D. Eppstein, P. Smyth, 1999. 'The Distributio Lengths in Graphical Models for Turbo Decoding', UC Technical Report.
4. J. Pearl, 1988. Probabilistic Reasoning in Intelligent Networks of Plausible Inference. Morgan Kaufmann F Inc., San Mateo, CA.
