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Turbo Code: An Error-correcting code near

Shannon limit

• Near-optimal performance (in terms of bit error rate)

• Theory not well understood

– Decoding is a special case of local message passing

algorithm in directed graphical models, which only can be

proven to work for graphs without loops.

– But the graphical model of Turbo Code has loops.
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Turbo Code: The Graphical Model
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Counting Cycles: Motivation

• Loops/cycles in the graphical models introduces

“double-counting” of evidence.

• Conjecture: doubling-counting effect dies off in long cycles.

• ⇒ How many cycles of length ≤ k are there at a randomly

chosen node in a typical graph for a Turbo Code?
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The Cycle Structure
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The Simplified Cycle Structure: dropping U nodes

• Edges are labeled →, ← (on the chains), − (across the chains).
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One example cycle: S1
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• : Label sequence: →,→,−,→,−.
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How to count the cycles of length ≤ k at a

randomly chosen node?

1. Let n be the length of the chain in the graph, i.e. the block

length of Turbo Code.

2. Because the degree of the nodes is 3, there are ≈ 2k−2 different

label sequences of length k.

3. For a given label sequence, the probability of the existence of

the corresponding cycle at the node is ≈ 1

n
, for k ¿ n.

4. The probability of no cycle of length k at a node is (1− 1

n
)2

k−2

.

5. The probability of no cycle of length k or less at a node is

≈
∏

i≤k
(1− 1

n
)2

i−2

≈ e−
2

k−1
−4

n .
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• Because the degree of the nodes is 3, there are ≈ 2k−2 different

label sequences of length k.

Label Sequences

· · · → − ← · · ·

· · · → − → · · ·

· · · → → → · · ·

· · · → → − · · ·
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• At a randomly chosen node S, for a given label sequence of

length k, the probability of the existence of the corresponding

cycle is 1

n
:

The last across-chains edge XY can go from X to any one of

the n nodes, instead of Y . So the probability is 1

n
.
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At a randomly chosen node S, with probability

≈ e
−

2
k−1

−4

n , there is no cycle of length ≤ k.

• For a given label sequence of length k, with probability 1− 1

n
,

the corresponding cycle does not exist at the node S.

• With probability ≈
(

1− 1

n

)2
k−2

, none of the 2k−2 cycles of

length k exist at the node S. (Independence assumption #1.)

• The probability of no cycle of length ≤ k at at the node S is

≈
∏

i≤k
(1− 1

n
)2

i−2

≈ e−
2

k−1
−4

n .(Independence assumption #2.)
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The approximate theoretical results are very close

to simulation results.

Probability of no cycles of length k or less, as a function of k.
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Cycle lengths distribution for the graphical

models of Turbo Code

Probability of no cycles of length k or less, as a function of k.
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Conclusions and Other Results

• For a randomly chosen node, the probability of a short cycle

(length < 10) is very low (close to 0) and a long cycle (> 20) is

close to 1.

• At a randomly chosen node S, for the same k, the probability

of no cycle of length ≤ k increases with n.

• Let k0.5 be such that p(k0.5, n) = e−
2

k0.5−1
−4

n = 0.5. To double

k0.5, n need to be increased to n2: p(2k0.5, n
2) ≈ 0.5.

• S-random permutation: not much effect on this curve.

• Low-Density Parity Check (LDPC) codes: similar results

(similar curve shape), but the independence assumptions as not

accurate (simulation does not agree as well).
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