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Turbo Code: An Error-correcting code
Shannon limit

e Near-optimal performance (in terms of bit error rate)

e Theory not well understood

— Decoding is a special case of local message passing
algorithm in directed graphical models, which only

proven to work for graphs without loops.

— But the graphical model of Turbo Code has loops.

.




-

-

Turbo Code: The Graphical Model
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Counting Cycles: Motivation

e Loops/cycles in the graphical models introduces

“double-counting” of evidence.
e Conjecture: doubling-counting effect dies off in long c

e = How many cycles of length < k are there at a rana
chosen node in a typical graph for a Turbo Code?
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The Cycle Structure
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The Simplified Cycle Structure: dropping

e Fdges are labeled —, < (on the chains), — (across th
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One example cycle: S — S — Sz — S% — S

e : Label sequence: —, —, —, —, —.
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How to count the cycles of length < & :
randomly chosen node?

. Let n be the length of the chain in the graph, i.e. the

length of Turbo Code.

. Because the degree of the nodes is 3, there are ~ 2%~

label sequences of length k.

. For a given label sequence, the probability of the exis

the corresponding cycle at the node is ~ %, for k£ < n

. The probability of no cycle of length £ at a node is (1

. The probability of no cycle of length k£ or less at a no
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e Because the degree of the nodes is 3, there are ~ 2%~

label sequences of length k.
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e At a randomly chosen node S, for a given label seque
length k., the probability of the existence of the corres
cycle is %:

The last across-chains edge XY can go from X to an

the n nodes, instead of Y. So the probability is %
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At a randomly chosen node S, with prob:
2k—1_4
~e = ,there is no cycle of length <

e For a given label sequence of length k, with probabili
the corresponding cycle does not exist at the node S.

2k:—2

e With probability ~ (1 — &)
length k exist at the node S. (Independence assumpti

. none of the 272 cyc

e The probability of no cycle of length < k£ at at the no
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The approximate theoretical results are ve:

to simulation results.

Probability of no cycles of length k or less, as a functic
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Cycle lengths distribution for the grapl

models of Turbo Code

Probability of no cycles of length k or less, as a functic
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Conclusions and Other Results

For a randomly chosen node, the probability of a shoz
(length < 10) is very low (close to 0) and a long cycle
close to 1.

At a randomly chosen node S, for the same k, the pr
of no cycle of length < k increases with n.

oko.5—1_4

Let ko5 be such that p(kgs,n) =™~ = = 0.5. 1
ko5, n need to be increased to n?: p(2kg.5,n°) =~ 0.5.

S-random permutation: not much effect on this curve

Low-Density Parity Check (LDPC) codes: similar res
(similar curve shape), but the independence assumpti
accurate (simulation does not agree as well).
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