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Abstract This chapter is written for computer scientists, engineers, mathemati-

cians, and scientists who wish to gain a better understanding of the

role of statistical thinking in modern data mining. Data mining has at-

tracted considerable attention both in the research and commercial are-

nas in recent years, involving the application of a variety of techniques

from both computer science and statistics. The chapter discusses how

computer scientists and statisticians approach data from di�erent but

complementary viewpoints and highlights the fundamental di�erences

between statistical and computational views of data mining. In do-

ing so we review the historical importance of statistical contributions to

machine learning and data mining, including neural networks, graphical

models, and exible predictive modeling. The primary conclusion is that

closer integration of computational methods with statistical thinking is

likely to become increasingly important in data mining applications.

Keywords: Data mining, statistics, pattern recognition, transaction data, correla-

tion.

1. Introduction

The goal of this chapter is to explore the past, present, and potential
future relationship of statistics to data mining, and to further argue that

�Invited chapter, Data Mining for Scienti�c and Engineering Applications, to appear 2001.
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statistics should play a foundational role in any data mining endeavor.
The target audience of this chapter is intended to be computer scientists,
engineers, and scientists who are knowledgeable about the algorithmic
aspects of data mining but who would like to learn more about how
statistical ideas and concepts may help them in their work. Hopefully
this chapter will provide at least a few pointers for such readers.
The term \data mining" has been used in a variety of contexts in

data analysis in recent years. As a reader of this book it is likely that
you already think of data mining from the computer science viewpoint,
namely, as a broad set of techniques and algorithms for extracting useful
patterns and models from very large data sets. Since the early 1990's
there has been a broad surge of both research and commmercial ac-
tivity in this area, largely driven by computationally-e�cient massive
search for patterns in data (such as association rules) and by business
applications such as analysis of very large transactional data archives.
As evidenced by well-known business-oriented data mining texts (e.g.,
[BL00]), as well as various published proceedings of data mining research
conferences, much current work in data mining is focused on algorithmic
issues such as computational e�ciency and on data engineering issues
such as data representation. While these are important topics in their
own right, statistical considerations and analyses are often conspicuous
by their absence in data mining texts and papers. This is a natural
consequence of the fact that research in data mining is largely practiced
by computer scientists who naturally focus on algorithmic and computa-
tional issues rather than on statistical issues. In this chapter we explore
the interplay of computer science and statistics and how this has im-
pacted, and will impact, the development of data mining.

2. Is Data Mining Di�erent from Statistics?

Is data mining as currently practiced substantially di�erent from con-
ventional applied statistics? Certainly if one looks at the published com-
mercial applications of data mining, such as the case studies presented in
[BL00], one sees a heavy reliance on techniques that have their lineage
in applied statistics. For example, decision trees are perhaps the sin-
gle most widely-used modeling technique in commercial predictive data
mining applications [Joh99, Koh00]. They are particularly popular be-
cause of their ability to both deal with heterogenous data types (they
can easily handle both categorical and real-valued variables) and to �nd
relatively low-dimensional parsimonious predictors for high-dimensional
problems. Many other techniques that are popular in data mining also
have their roots in applied statistics, such as nearest neighbor models,
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naive Bayes models, and logistic regression for prediction, and k-means
and mixture models (using Expectation-Maximization (EM)) for clus-
tering and segmentation. Arguably it is association rules that are the
only main exception, i.e., association rules are a technique that have no
clear \ancestor" in the statistical literature. It is also debatable as to
how many successful real-world applications in data mining actually rely
on association rules for their success.
Thus, while the annual proceedings of conferences such as SIGKDD

and SIGMOD contain many novel and interesting techniques that are
not within the mainstream of conventional statistics, when one looks at
both current data mining software tools (from the likes of IBM, SAS,
SGI, and many others) and at industry-speci�c applications (such as
domain-speci�c applications developed in e-commerce) there is a heavy
reliance on the application of traditional statistical ideas. Indeed, a
statistician might argue that data mining is not much more than the
scaling up of conventional statistical methods to massive data sets, in
e�ect a large-scale \data engineering" e�ort.
While there is some truth to this viewpoint, a more accurate reection

of the state of a�airs is that data mining (and more generally, computer
science) has indeed introduced a number of new ideas within the general
realm of data analysis, ideas that are quite novel and distinct from any
prior work in statistics. We can identify several such contributions that
have arisen primarily from work within computer science (data min-
ing, machine learning, neural networks) rather than from conventional
statistics:

1 Flexible predictive modeling methods: from the early work
on decision trees and neural networks to more recent techniques for
combining models, there is a history of computer scientists intro-
ducing many new techniques for predictive modeling, particularly
for classi�cation problems. These techniques often start out with
strong algorithmic foundations but weaker formal statistical jus-
ti�cation. Over the past 20 years in machine learning and data
mining there has been a recurring pattern of exible models and
algorithms being introduced, developed, and applied by computer
scientists (e.g., the boosting framework of Freund and Schapire
[FS97]), with the supporting statistical theory being \�lled-in" at
a later date (e.g., the statistical justi�cation of boosting provided
by Friedman, Hastie, and Tibshirani [FHT00]).

2 The use of hidden variable models for large-scale clustering
and prediction problems. For example, hidden Markov models
are an excellent example of how complex non-stationary data (a
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speech signal for example) can be \compressed" into a relatively
simple hidden state representation that is often quite adequate for
classi�cation and prediction applications (see [Ben99] for a review).
The EM framework for training hidden variable models such as
HMMs is appealing to computer scientists since it is couched as
an algorithm, and its algorithmic basis has led to its widespread
adoption by computer scientists in a variety of applications (e.g.,
for model-based collaborative �ltering, Heckerman et al., 2000).

3 Finding patterns (data mining) rather than global models (statis-
tics): examples of pattern-�nding algorithms include association
rule algorithms [AIS93], sequential association algorithms [MTI95],
rule induction algorithms [WB86, SG92, FF99], and contrast set
algorithms [BP99]. These pattern-�nding algorithms di�er from
more conventional statistical modeling in that they do not attempt
to \cover" all of the observed data, but instead focus in a data-
driven manner on \local" pockets of information.

4 The engineering of scale, namely, the data engineering as-
pects of scaling traditional algorithms to handle massive data sets.
Work in this area involves both computationally-driven approaches
[ZRL97, ML98, BPR98, GGRL99, PK99] as well as statistically-
motivated techniques [DVJ99]. Worth mentioning in this con-
text is the fact that researchers in a variety of areas such as
speech, natural language modeling, human genome analysis, and so
forth, have all developed a variety of practical learning algorithms
and \tricks of the trade" for dealing with massive data sets, e.g.,
[LB97, WMB99].

5 Analyzing heterogenous structured data such as multimedia
data (images, audio, video) and Web and text documents. For
example, there is a signi�cant research within computer science
on using learning algorithms to improve our understanding of the
structure of the Web (e.g., [Kle98]) and in learning how topic
categories can be automatically extracted from documents (e.g.,
[Hof99]).

It is important to emphasize that statistics still plays a major role in each
of these areas. However, to a large extent it is not statisticians who are
leading the charge but rather computer scientists and engineers who are
adapting statistical methods to these new problems and opportunities.
There are other general distinctions between data mining and statis-

tics. For example, data mining is typically (indeed, in practice almost
always) concerned with observational retrospective data, i.e., data that
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has already been collected, often for some other purpose (e.g., records
of �nancial transactions recorded by a bank for accounting purposes).
Thus, issues such as experimental design (the construction of an ex-
periment to collect data to test a speci�c hypothesis) are not typically
within the vocabulary or tool-set of a data miner. For other general
discussions on statistical aspects of data mining see [EP96, GMPS96,
GMPS97, HPS97, Han98, Lam00, Smy00].

3. A Reductionist View of Data Mining

Let us consider a very high-level view of data mining and try to reduce
a generic data mining algorithm into its component parts. The partic-
ular reductionist viewpoint proposed here is not necessarily unique, but
it nonetheless does provide some insight into the di�erent and relatively
independent components that make up data mining algorithms. As dis-
cussed here this breakdown is focused on algorithms, rather than the
overall data mining process: the overall process involves numerous addi-
tional (and important) steps such as data selection, data preprocessing,
evaluation, and so forth, which we will not discuss in any detail.
In this proposed framework, we identify �ve primary components of

a data mining algorithm (see [HMS01] for further discussion):

1 The Task: In data mining we can consider our tasks to fall into
a few general categories: exploratory data analysis (e.g., visualiza-
tion of the data), pattern search (e.g., association rule discovery),
descriptive modeling (e.g., clustering or density estimation), and
predictive modeling (e.g., classi�cation or regression). This is not
perfect but it gives us a high-level categorization of common data
mining tasks. An important point is that the task should (if pos-
sible) be identi�ed explicitly in any data mining endeavor, since
the nature of the task will directly inuence the other components
described below.

2 The Model Structure: This is the speci�cation of the structural
form that we seek in the data. For descriptive tasks (e.g., cluster-
ing) the structure may be of paramount importance, while in pre-
dictive tasks the exact nature of the structure may be only of sec-
ondary importance compared to the predictive power of the model.
Examples of general structures include decision trees, Gaussian
mixtures, association rules, and linear regression models. For ex-
ample, for a regression problem with 2 input variables X1 and
X2 and a target variable Y we might propose as a simple linear
relationship:

Y = �0 + �1X1 + �2X2 + e (1.1)
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where e is random additive noise (e.g., Gaussian, zero mean). In
this case our model structure is a plane in the two-dimensional
X1;X2 space with noisy observations (Y values) distributed about
this plane. A speci�c model consists of the speci�cation of a par-
ticular plane parametrized by �0; �1; �3, the three unknown pa-
rameters of the structure. Once we specify a particular structural
form we e�ectively limit (for better or worse) our view of the data
to a view that is relative to that structure. Naturally, in practice,
it is common to specify multiple di�erent types of structures (e.g.,
both decision tree and logistic regression models for a classi�cation
problem) so as to allow the data to indicate which structure is best.
We do not need to assume that the true data-generating mecha-
nism is within our model family. Usually our model structures
represent convenient approximations to some unknown reality.

3 The Score Function: Loosely speaking this is how we evaluate
the quality of a particular �tted model or pattern on the basis of
observed data, e.g., squared error for regression, classi�cation error
for classi�cation, and so forth1. The score function provides a link
between the hypothesized model structure and the observed data.
Naturally, the form of the score function is highly dependent on the
nature of the data mining task being undertaken. It is typically
de�ned as a function of the unknown parameters of the model
given a particular observed data set. In practice it is customary to
choose a score function from a relatively small set of well-known
and easily analyzed functional forms, such as squared error for
prediction of real-valued quantities, e.g.,

S(�0; �1; �2) =
1

N

NX
i=1

�
yi � (�0 + �1x

i
1 + �2x

i
2)

�2
(1.2)

where (yi; xi1; x
i
2) is the ith training tuple, 1 � i � N . Thus, we

view our score function S as a one-dimensional function of the
three unknown � parameters and seek to minimize S given the
observed data. In fact we are free to choose a completely general
score function to reect the actual losses (or gains) that would be
incurred in practice when using the model, e.g., a general loss ma-
trix for classi�cation rather than simply counting errors. Note that
the score function may be used in di�erent ways, e.g., evaluated
both on the training data (to search for good parameters) and on
a validation or test data set (to search for a good model from a set
of �tted potential models, each of which had its parameters �tted
on a training data set).
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4 The Optimization Algorithm: Given a score function, a model
structure, and an observed data set, the problem of de�ning a data
mining algorithm can now be reduced to that of de�ning a compu-
tational procedure for �nding the extremum of the score function
(e.g., minimizing the squared error) over parameter space (and over
model space when model complexity is allowed to vary or multiple
model forms are present). In a few cases the problem can be solved
in closed form. For example, �nding the �'s that minimize S for
the regression problem above can be solved using linear algebra.
Similarly, determining the probabilities used in a naive Bayes clas-
si�er can be carried out by simply counting relative frequencies
of di�erent events. More typical, however, is the case where the
score function has a complicated surface as a function of the pa-
rameters, with multiple extrema (keep in mind that if we have k
parameters then the score function is a scalar function de�ned over
a k-dimensional space). In such cases �nding the global extremum
of the score function may be an NP-hard problem. Thus, we must
resort to some form of heuristic search, e.g., greedy search among
the space of all possible decision trees, gradient descent with multi-
ple random restarts in the space of neural network weights, and so
forth. This optimization/search component is the heart of the ac-
tual data mining algorithm. However, it is important to be aware
that a clever optimization algorithm for �tting a model is really
only as useful as the model structure, score function, and task that
it is based on. In other words, attention needs to be paid that we
are in fact asking the right questions of the data (see [Han94] for
further discussion in a statistical context).

5 The Data Management Strategy: Given an actual algorithm,
the �nal step concerns the implementation of speci�c mechanisms
for how the data are accessed, stored, and managed. In many re-
search papers no explicit data management strategy is speci�ed.
For example, most existing machine learning and statistical learn-
ing algorithms just assume that the data are read into main mem-
ory and reside in a at �le. Data miners are keenly aware that data
management can be extremely important in practical applications
involving very large data sets. Algorithms such as the A Priori
algorithm for association rules make the data management com-
ponent very explicit in the description of the overall algorithm (i.e.,
multiple linear scans of the data). Other work takes an existing
framework where the model/score function/optimization compo-
nents have been well-de�ned in the literature and are tried and
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tested in practice, and then embeds them in an explicit data man-
agement framework where e�ciency of data access is given priority.
Examples of this approach include the BOAT framework for e�-
cient decision tree �tting to massive data sets [GGRL99], and the
general ADTree data structures of Moore and colleagues for e�-
cient data access and caching for a variety of learning algorithms
[ML98, Moo99].

The �ve-component framework above provides us with a simple sys-
tematic language for understanding the \parts" that make up a data
mining algorithm. Typically the modeling is guided by concepts from
applied mathematics and probability, the score function is often driven
by general principles of statistical inference (i.e., how we want to con-
nect an abstract model to actual observed data), and the optimization
and data management components are heavily algorithmic in nature.
By describing a data mining algorithm within this framework we can
understand somewhat more clearly what the primary contribution of
each component of a speci�c algorithm is as well as providing a refer-
ence framework for systematically comparing di�erent algorithms and
synthesizing new ones.
As an example, data mining algorithms based on either regression

trees or neural networks di�er primarily in terms of their model structure
(hierarchical piecewise constant functions for trees, versus non-linear
combinations of weighted sums for networks), as well as in terms of how
the optimization is carried out (greedy \one variable at a time" structure
search for trees, versus gradient descent in continuous weight-space for
networks).
Similarly a general technique such as genetic algorithms is best viewed

as belonging to the optimization component of a data mining algorithm,
rather than being viewed as an algorithm or model representation unto
itself. The nature of the genetic optimization framework imposes rep-
resentational restrictions on the model structure being used (the model
representation must typically be de�ned as bit-strings in some form).
But the primary role of a genetic algorithm is to provide a non-local
search strategy in model-space, in contrast to the more traditional local
(e.g., gradient-based) search methods. By decoupling the model struc-
ture component from the optimization/search component we can mix
and match di�erent model structures and optimization techniques in
any manner we wish.
Within this framework, we can see that data miners typically place

much more emphasis than statisticians on the two primary computa-
tional components (optimization and data management). Conversely,
statisticians typically place much more emphasis on the model repre-
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sentation and score function components (modeling and inference) than
on the computational aspects of how the model is �t. To see exam-
ples of this one need only look at typical research papers from each
�eld (e.g., from the Journal of Data Mining and Knowledge Discovery

and the Journal of the American Statistical Association). While this
represents two extreme ends of a spectrum (computational issues at one
end, modeling/inference at the other) it is nonetheless a useful spectrum
along which to consider how data mining and statistics di�er. Each com-
munity is comfortable with what they know best: computer scientists
grow up on a basic diet of algorithms and data structures, while statis-
ticians grow up on a basic diet of mathematical models and principles
of statistical inference. Both aspects can play an important role in data
mining.

4. An Example: Modeling Transaction Data

Let us briey consider the problem of analyzing transaction (market-
basket) data within the general reductionist framework outlined in the
previous section. Association rules are a widely-used technique in data
mining for analyzing such data, and are primarily intended for the task
of pattern discovery (although one can also consider secondary uses of
association rules, such as clustering and prediction). The underlying
association rule \structure" is a set of rules, statements of the form \IF
A and B and C THEN D with probability 0.9" where A;B;C; and D

are all binary propositions (true or false). The emphasis in association
rule algorithms is not so much on the nature of the task or the model
representation, but more on the search and data management aspects
of the algorithm. The essence of the idea is to use fast counting and
breadth-�rst systematic search to �nd the set of association rules that
are above certain pre-de�ned constrains on support, p(A;B;C;D), and
con�dence, p(DjA;B;C). Papers on association rule algorithms tend to
emphasize computational e�ciency of the algorithm itself (the e�ciency
of the search and data management component) rather than interpreta-
tion or evaluation of the rule sets that are obtained.
Association rule algorithms are a good reection of the database-

oriented view of data mining, where the problem of �nding all asso-
ciation rules satisfying given con�dence and support thresholds can be
viewed as a general form of a database query. This contrasts sharply
with the statistical view, which places more emphasis on the question of
\what to compute," whereas the database researcher places emphasis on
the question of \how to compute." For very large data sets in particular,
both viewpoints can be thought of as equally valid and important.



10

As an example, for transaction data, a statistical modeller might pro-
pose a probabilistic model for how purchases are made. The arrivals
of an individual shopper to a store could be modeled as coming from
a Poisson distribution (a constant arrival rate � over time), where each
shopper might have their own individual Poisson rate �i. As an ex-
tension one might perhaps allow the �i's to vary seasonally and/or in
a non-stationary manner. Conditioned on the event of having arrived
at the store, a shopper's purchase choice of n speci�c items from the k
possible items could be modeled as n independent multinomial (k-way)
trials, where n is sampled from a distribution on how many items are in
a basket. The multinomials and market-basket size distributions could
be modeled as being di�erent for each individual, but where the distri-
bution of parameters across individuals is constrained in some manner.
For small numbers of items in a speci�c category (e.g., modeling in-

dividual purchasing patterns of a particular brand of co�ee) this type
of Poisson-multinomial model has in fact been well-studied in the mar-
keting literature (e.g., see [GEC84] for a seminal paper on this topic,
and [WK98] for a comprehensive recent review). While such models
inevitably are built conditioned on various assumptions (such as an as-
sumed independence of the items being purchased from one store visit to
the next), this \generative modeling" approach nonetheless can be quite
powerful. It provides a systematic framework for hypothesis testing,
clustering and segmentation, customer pro�ling, and forecasting (again
see [WK98] for numerous practical examples, and [CGS00] for a general
discussion of such generative models for clustering individuals).
In contrast to the association rule framework, this statistical approach

to modeling of transaction data focuses strongly on the construction of a
suitable data-generating model, with less emphasis on the computational
aspects of how the model is �t to the data. Another di�erence between
the two approaches is the fact that association rules look for patterns in
the data, whereas the statistical model tries to construct a global model
for the whole data set. Searching for patterns may be advantageous if
that is the primary goal and if constructing a global model is di�cult or
unreasonable.
The main point in comparing the statistical and association rule ap-

proach to transaction data is that statistical models provide a exible
and general language for modeling such data, allowing aspects such as
individual-level variations, temporal dependencies, and so forth, to be
incorporated in a natural and systematic manner. These statistical tech-
niques can be viewed as providing a useful and complementary set of
tools to the more computationally-motivated data mining techniques
such as association rules. For example, the statistical approach is based
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on certain modeling assumptions that may not hold in practice. In con-
trast, association rules are relatively \non-parametric" in the sense that
there are few or no constraints assumed about the functional form of the
data-generating process.

5. The Role of Statistical Education in Data
Mining

In order to appreciate the fundamental role of statistics in data anal-
ysis, a data miner needs at least some minimal exposure to statistical
concepts. Rather than learning a set of speci�c detailed models it is
probably more important to appreciate the general mindset of statisti-
cal thinking, such as the explicit recognition of uncertainty in a broad
data analysis context.
Many computer scientists and engineers engaged in data mining have

had only a limited exposure to statistical ideas in their undergraduate
curriculum (although engineers often receive more statistical education
than computer scientists in most countries). While the value of statis-
tical concepts are widely recognized, modern engineering and computer
science curricula tend to be very crowded, leaving little room for any-
thing other than a cursory introduction to statistics. For many graduates
their only exposure to statistics consists largely of a cookbook-style class
on how to use hypothesis tests (see [Lam00] for further elaboration on
this topic).
There are at least three fundamental and important ingredients that

are often missing from the statistical education of a typical data miner:

1 Modeling Languages: The �rst ingredient is actually not statis-
tics at all, but rather mathematical and probabilistic modeling,
languages for constructing explicit models for how the observed
data might be generated. For example in our modeling of transac-
tion data earlier, we proposed a constant arrival rate for shopper
arrivals (modeled as a Poisson distribution) and a multinomial
choice model for item choice. These are the types of basic building
blocks that allow a statistical modeller to construct a relatively
complex model from simpler functional forms. In terms of our
reductionist viewpoint, this mathematical modeling provides the
basis for determining the model structure component of an algo-
rithm. The models may of course be informed by prior knowledge
about the problem. A wide-ranging and widely used standard in-
troductory text for this form of stochastic modeling is [Ros00].
[ED96] also provide a very readable introduction to a broad range
of modeling methods in applied multivariate statistics, a topic of
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particular relevance to data mining. These are just two of many ex-
cellent texts on modeling: for example, there are many other more
specialized texts for speci�c classes of models, such as time-series
models and spatial models.

2 Inference from Data: The second primary ingredient provides
the foundations of inference: how to reason from the observed
data to make inferences about the hypothesized model structures.
In our reductionist framework, inference tells us (a) how to con-
struct speci�c score functions from general statistical and decision-
theoretic principles, (b) what the general and desirable properties
of these score functions are, and (c) what these score functions
can then tell us about generalization to new data. The score func-
tions connect the hypothesized model to the observed data. To
understand the principles of inference requires a foundation in the
basic principles of mathematical statistics: expectation, parame-
ter estimation, likelihood, su�cient statistics, and so forth. While
it can be argued that an excessive emphasis on mathematical for-
malisms may not be productive in the context of the practicalities
of data mining, these concepts and methods are essential if a data
miner is to be equipped to penetrate the dense jungles of research
publications and texts in statistics. In other words, some minimal
knowledge of the basic concepts is required so that a data miner
can access the many rich and foundational ideas on data analysis
that the statistical community has provided down through the ages
(and continues to provide). For readers interested in embarking on
this journey, [Kni00] provides and up-to-date and readable intro-
duction to mathematical statistics. Other well-known texts that
are widely used in academic courses on mathematical statistics
include [BD77, HC78, CB90].

3 The Practical Art of Statistics: While the �rst two educa-
tional components provide the raw mathematical tools of statis-
tics, the third component provides the art, i.e., the art and craft of
knowing how the analytical and modeling tools should be applied
in practice. This is a much more subtle issue. Indeed it is fair
to say that statisticians themselves are often not exposed to this
\art" during their undergraduate education but tend instead to
acquire it through years of experience. There are di�erent levels
to this \art." One level is the ability to know how to construct
analytical models for a problem, e.g., the problem of modeling the
time-dependent rate of arrival of customers at an e-commerce site
or predicting the rate at which customers buy a given product as
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a function of demographics. Typically this is done by having ac-
cess to a \toolbox" of basic functional forms and models. In the
e-commerce case we might model the \probability of buying" by
some form of logistic regression, i.e., where

log
p(buyjX1; : : : ;Xd)

1� p(buyjX1; : : : ;Xd)
= �o +

dX
i=1

�iXi; (1.3)

where the Xi's are di�erent demographic variables such as age,
income, etc., and the �s are again parameters of this logistic model
that are estimated from the available data.

It is fair to say that of the three basic educational ingredients above,
the most di�cult one to learn is (not surprisingly) the \art." For ex-
ample, the ability to successfully build complex models from basic func-
tional forms is deceptively simple, yet it is often glossed over in the
statistical literature, which provide little guidance to the uninitiated as
to why certain types of models are preferred over others for a given ap-
plication (with some notable exceptions such as [CS81, Cha95]). It is
important to realize that much of statistical analysis is predicated on
the use of an assumed model for how the data are generated. Even in
non-parametric analyses (i.e., modeling techniques such as trees which
rely on very few functional assumptions) there may nonetheless be var-
ious implicit assumptions present, such as assuming that the order in
which individual observations are presented is irrelevant from the point
of view of the model.
Another signi�cant aspect of the \art" is the ability to dissect a prob-

lem to obtain insight into why a particular method works well or how
it could be improved. Again, the techniques used are often relatively
straightforward, but it is often not so obvious to know which technique
to apply in which situation. For example, a well-known \dissection"
technique in statistics is that of diagnostics, namely, taking a model
apart to try to �nd out where its limitations are. In regression, for ex-
ample, the prediction errors (the residuals) may be plotted or analyzed
as function of a speci�c input variable Xi. If there is evidence of a sys-
tematic dependence (e.g., larger errors for larger values of Xi) then it
may suggest how the model can be improved. Statisticians traditionally
rely on a variety of such diagnostic techniques (including visualization)
to provide insight and feedback in an iterative manner: model, �t, eval-
uate, model, �t, evaluate, and so forth. In the \massive data world"
of data mining it is not always practical to apply such diagnostics, yet
there is clearly substantial room for improvement in developing tools
and techniques that allow a user to interact with both data and models
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in an iterative manner. In an ideal world this is certainly preferable to
treating each data mining algorithm as a stand-alone black-box where
the actions of the user are limited to tweaking various algorithmic pa-
rameters such as search options and so forth, rather than being allowed
to explore the interaction of the data and model more directly.

6. Success Stories from the Interface

There can be signi�cant di�erences between a typical computer sci-
entist's view of data and a typical statistician's view of the same data.
Despite this (or indeed perhaps because of this di�erence) there are nu-
merous well-known examples of symbiosis at computer science/statistics
interface. For example, there appears to be a common recurring pattern
where research on essentially the same idea is carried out independently
within statistics and within computer science, and both sets of ideas are
then subsequently integrated to form a much richer and broader frame-
work. We discuss briey below a few well-known recent examples of this
pattern in the general context of machine learning and data mining:

Early work on neural networks focused largely on representational
properties and biological plausibility of the models and details of
training algorithms [RM86]. A broader statistical view of neural
networks as highly exible non-linear regression models gradually
began to emerge, both from within the neural network commu-
nity (e.g., [Bis95]) and from members of the statistical community
who had taken an interest in this new form of regression model
[GBD92, CT94, Rip94]. For example, links to more established
statistical ideas such as generalized linear models and projection
pursuit regression led to new models and algorithms that are \hy-
brids" of statistical and neural network research (e.g., [JJ94]).

Graph-based models for e�cient representation of multivariate dis-
tributions had been known for some time in areas such as genet-
ics (e.g., [CTS78]). In the late 1980's more general and widely-
applicable frameworks were developed independently within statis-
tics (e.g., the acyclic directed graphical model framework of [LS88])
and the largely equivalent belief network framework pioneered by
Pearl [Pea88] within computer science. The last 10 years has seen
substantial research activity within both communities, particu-
larly in the area of learning such models directly from data (e.g.,
[Hec95, Jor98]). The recent work on learning graphical models
provides an excellent example of the symbiosis of computer science
and statistics: e�cient graph-based algorithms for computational
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inference (computer science) coupled with general principles for
parameter and structure estimation from data (statistics).

Latent (hidden) variable models have a long history in statistics
(e.g., see [DT99]). Work on this topic within computer science is
more recent, but has had a broad impact in the last 20 years in a va-
riety of applications: hidden Markov models in speech recognition,
latent variable models in language and text modeling, mixture-
models and clustering techniques, and neural networks with hid-
den variables [HS99]). The EM procedure, an inherently computa-
tional concept but one that is motivated by some very fundamental
principles in statistical inference, has played a pivotal role in all of
these computer science and engineering applications.

Decision trees were originally developed in applied statistics in the
1960's (e.g., [MS63]) but did not receive much attention within
statistics until the publication of the pioneering work on CART
[BFOS94]. Quinlan independently popularized the use of trees
in machine learning with his ID3 and C4.5 family of algorithms
[Qui87, Qui93]. Both the CART and ID3/C4.5 approaches share
many common ideas, resulting in quite similar tree-learning algo-
rithms. The statistical work on trees typically emphasizes param-
eter estimation and tree selection aspects of the problem, while
more recent work on trees in data mining has emphasized data
management issues (e.g., [GGRL99]). Decision trees are now a
cornerstone in the toolbox of every data miner, with many rela-
tively minor variants of tree algorithms, but all having much in
common with the original ideas from the CHAID, CART, and ID3
research.

Boosting algorithms are a class of techniques for iteratively con-
structing more complex predictive models by combining simpler
models. Boosting was originally proposed within the framework of
computational learning theory [FS97], a sub-�eld of machine learn-
ing concerned with theoretical analyses of learning algorithms.
(Although having much in common, computational learning the-
ory di�ers in many aspects from statistics, for example, emphasiz-
ing worst-case distribution-free learning models in contrast to the
more typical average-case learning models in statistics). Subse-
quent empirical work revealed that boosting was not only of theo-
retical interest, but that it provided a very useful practical tool for
improving the generalization performance of a wide variety of pre-
diction models [BK99]. Statisticians began to take an interest in
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boosting, resulting both in powerful new algorithms [Fri99, Rid00]
as well a general statistical theory that explains when and why the
method works [FHT00].

The point of the examples above is to show that there is a long and
successful tradition of \marrying" ideas, theories, and techniques devel-
oped relatively independently within computer science and within statis-
tics. Naturally since computer science is a much younger discipline than
statistics, the �eld of statistics has a much broader scope (in the context
of learning from data). For example, there are large areas of data anal-
ysis such as spatio-temporal modeling, repeated measures/longitudinal
data, and so forth, where data mining and machine learning have not
had any appreciable impact. On the other hand, there are areas where
a computational approach to learning has added concepts to data anal-
ysis that are relatively unrelated to anything in statistics. For example,
Vapnik's theory of generalization based on margins [Vap98], and the
subsequent development of support vector machines based on this the-
ory [SBS99] could be viewed as being quite distinct from conventional
statistical thinking on how to build predictive models. Despite these
di�erences, the two �elds nonetheless have much in common and data
mining can prosper by cultivating and harvesting ideas at the interface.

7. The Dark Side of the Interface

A chapter on data mining and statistics would not be complete with-
out reference to the original use of the term \data mining" within statis-
tics. For a statistician (and particularly one in an area such as economet-
rics) the term data mining may conjure up a very di�erent perspective
than the one that computer scientists are familiar with. Historically in
statistics the term \data mining" was used to describe the use of com-
putational search techniques to over�t data sets and uncover patterns of
spurious origin (e.g., [Arm67, Lov83]). Terms such as \data snooping,"
\data dredging," and \data �shing" are all used in the same general
context, with clearly negative connotations [SS66, Whi01], e.g., to quote
[STW99]:

Data snooping occurs when a given set of data is used more than once

for the purposes of inference or model selection. When such data reuse

occurs, there is always the possibility that any satisfactory results may

simply be due to chance rather than to any merit inherent in the method

yielding the results.

7.1. Variable Selection for Regression

A classic example of data mining in this context occurs in variable
selection for regression (e.g., [Mil90]), especially when applied to a rela-
tively small training data set with no data used for holdout testing. Lets
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say we are trying to �t a simple linear regression model of the form

Y = �0 + �1Xi + �2Xj + e; 1 � i; j � d; i 6= j; (1.4)

where Y is the real-valued variable we are trying to predict, the �'s are
(unknown) parameters of the model, e is additive noise, and Xi and
Xj are two particular variables from a set of d variables available to
us. So the problem is to �nd the \best" pair of variables from the set
of all possible pairs in the set of d variables. Here \best" is judged by
minimum squared error (or some such similar score function) between
the model's predictions and the observed Y 's. Let � be the empirical
linear correlation coe�cient between the model's predictions and the
actual observed Y values, i.e.,

� =
1
n

Pn
l=1(yl � ŷl)

2

�y�ŷ

where yl is the target value for the lth training data point and ŷl is the
model's prediction based on the lth set of input values, 1 � l � n, and
where �y and �ŷ are the standard deviations of the target values and the
predictions respectively. � close to 1 (or -1) indicates high positive (or
negative) linear correlation, and � close to 0 indicates little or no corre-
lation. We can rephrase our problem as that of �nding Xi and Xj with
the highest positive correlation, i.e., (i; j) = argmaxi;jf�ijg, where �ij
is the correlation between y and ŷ using the best-�tting linear predictor
with variables Xi and Xj . From a computational viewpoint searching
for the best pair is an interesting search problem and systematic search
strategies such as branch-and-bound can be quite useful.
However, ignoring the details of how the search would be performed,

consider the e�ect of the size of d, the total number of variables available.
As d increases, the chances of selecting a pair of variables that appear to
predict Y well, but in fact are not good predictors, also increases. To see
why this can happen, consider for example the case where none of the
possible pairs of X variables have any predictive power at all! i.e., all
predictions are essentially random noise or equivalently p(Y jXi;Xj) =
p(Y );8i; j. Of course as data analysts we do not actually know (or even
believe) that this is the case, since if we really believed there was no
dependence we would not be trying to �t a predictive model. Nonetheless
most data miners who have worked on real-world data sets are well aware
that we occasionally encounter applications where the available predictor
variables appear to have virtually no predictive power.
In the context of such a data set, a signi�cant problem lies in the fact

that �ij will vary across all (i; j) pairs and will vary from data sample
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to data sample. Thus, the maximum of the empirically observed �ij 's is
also a random quantity with its own distribution, given a particular data
set. Even if the true expected value across di�erent data sets of each
individual �ij is zero (i.e., the model has no predictive power for each
i and j), the expected value of the empirically observed maximum over
the set of �ij 's will be non-zero and positive (i.e., it will be optimistically
biased). As the size of this set increases (as the number of candidate
variables d is increased) the expected value of the maximum will also
increase, i.e., we will tend to �nd better and better-looking regressions
even though no real predictive power exists. This speci�c problem of
spurious correlations has received particular attention in the �elds of
social science and econometrics [Ein72, Lea78, Hen95].
Other related (but more subtle) versions of \data-dredging" also exist.

Imagine, for example, that we have multiple di�erent data sets available
to us, perhaps di�erent derived sets of features, sets of features derived
for di�erent time-windows (for time-dependent variables), and so forth.
Once again, imagine that none of these features have any predictive
power. By sequentially �tting models and performing model selection
on these di�erent sets of features, we gradually increase our chances of
accepting a model that happens to look like it has good predictive power,
when in fact it has none.

7.2. Model Selection using Validation Data Sets

Now of course most current data miners are well aware of these sorts
of problems. For example, the use of validation data sets and cross-
validation techniques are widely used in data mining to provide more ac-
curate estimates of a model's true generalization capabilities. Nonethe-
less, similar problems still lurk in the background, even with the use of
independent training and validation data sets. For example, consider
a simple binary classi�cation problem, with N examples, d binary in-
put variables (attributes) X1; : : : ;Xd, and a single binary (target) class
variable C. Say we train a variety of di�erent well-known classi�ca-
tion models M1; : : : ;Mm (e.g., decision trees, support vector machines,
naive Bayes) with all kinds of variations (boosted versions, di�erent fea-
ture subsets, combined models, etc)|modern data mining and statistical
packages make it relatively easy to train many di�erent models.
Naturally the models with more degrees of freedom will tend to �t

the training data better, so classi�cation error on the training data is
not a good guide to how well the model will perform on new data. Since
in many data mining applications we are fortunate to have large data
sets it is easy to keep aside a separate validation data set for model
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selection. We estimate the classi�cation error of each of our m models
on the validation data, e1; : : : ; em, and select the model with the lowest
error rate emin = minfe1; : : : ; emg as the model we will use for future
predictions.
Now let us assume that there is no predictive power at all in any of the

d input variables, so that one can do no better than random predictions
with any classi�er using these same variables as inputs, i.e., the error
rate = 0.5 (assuming the two classes are equally likely). This \best
achievable" error rate is known as the Bayes error rate for a given set of
input variables. Note again that emin is a random quantity in the sense
that from one data set to the next it will vary. emin for a particular
pair of training/validation data sets and a particular set of m classi�ers
will typically be less than 0.5, and perhaps signi�cantly less than 0.5
depending on how many models we try and how many data points are
available. We can think of each of the m classi�ers as simply adding
in a column of predicted Y values for the validation data set. These
columns are not independent since they all are based on models built
on the same training data, but to a �rst approximation can be thought
of as being independent if the true underlying relationship between the
inputs X and the class variable C is random. We can imagine sorting
the observed class values in the validation data set into two subsets
of rows, subset A where C takes value 0 and subset B where C takes
value 1. Keeping in mind that each of our trained classi�ers will be no
better than black boxes that randomly produce 0's and 1's (with about
equal probability), the validation error rate for each model is simply the
number of 1's produced in subset A and the number of 0's produced in
subset B, divided by the total number of rows Nv. Essentially we can
view this as a version of a binomial random process, no di�erent that
tossing a coin Nv times and counting the occurrence of 0's and 1's in
certain locations. As Nv goes to in�nity, we know by the law of large
numbers that indeed the empirically-observed error rate for each column
will get closer to the true value of 0.5. But keep in mind that (a) we
only have a �nite amount of data Nv for validation, and (b) that we
are in fact selecting the column with the minimum empirical error rate.
Clearly, this minimum error rate will tend to be less than 0.5 (i.e., it
is optimistically biased) and the expected value of this negative bias (if
we repeated this experiment many times) will be a function of both Nv

and m, the number of models being used. In extreme cases (small Nv

and large m) it could be very biased, e.g., we might �nd a model with
validation error of only 0.3 when the true error rate of all models is 0.5.
Now of course in practice the inputs will usually have some predic-

tive power. However, the validation estimate will still be optimistically
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biased, precisely because it is de�ned as the minimum over a set of ran-
dom quantities. The point here is that while validation data and holdout
data provide useful \insurance policies" that usually provide much bet-
ter guidance than performance on training data alone, the element of
chance and variability is nonetheless still always present. A useful ex-
ercise is to always imagine what your data mining algorithm might do
if it were presented with truly random data (as in the examples above).
For example, imagine what might happen if a standard association rule
algorithm were run on data where all the items (columns) were gener-
ated in an independent manner, i.e., there are truly no rules relating
any of the items. The exact number of rules found and their strengths
will depend on how many items p and how many transactions n there
are, but the general e�ect is the same: even on purely random data, the
e�ect of massive search will be to �nd spurious associations. Note that
although we might use hypothesis testing techniques to guard against
such \noise," repeated application of multiple hypothesis tests on a mas-
sive scale will eventually lead to acceptance of false hypotheses. It is the
massive search (the massive systematic search through itemsets) that
is the root cause of this fundamental inability to distinguish pure noise
from real structure in the data.
In practice we know that real structure often does exist (i.e., we are

not dealing with random data) and that this will tend to dominate the
random noise. Nonetheless the general point is that the use of unfet-
tered search techniques can in theory get a data miner into trouble. It
is the wise data miner that is aware of these risks and conveys a similar
note of caution to the user of his/her algorithms, such as the unsus-
pecting business person or scientist who uses a data mining algorithm in
\black box" fashion. Data miners need to be aware of the fundamental
statistical aspects of inference from data (see [Jen91, Sal97, JC00] for
further discussion). Data mining algorithms should not be a substitute
for statistical common sense.

8. Conclusions

This chapter has argued that statistical and algorithmic issues are
both important in the context of data mining. We have seen that there
is a substantial history of successful research at the interface of com-
puter science and statistics, despite the fact that computer scientists
and statisticians have substantially di�erent \cultural biases" in terms
of how they think about data. For data miners the message is clear:
statistics is an essential and valuable component for any data mining
exercise. The future success of data mining will depend critically on our
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ability to integrate techniques for modeling and inference from statistics
into the mainstream of data mining practice.
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Notes

1. Note that \score" is used in statistics in a much more speci�c sense, namely, the

derivative of the log-likelihood: here we purposely use \score" in a much broader sense.

Readers familiar with this usage might wish to replace \score function" with \loss function"

throughout
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