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Abstract

Real-world relational data sets, such as social
networks, often involve measurements over
time. We propose a Bayesian nonparamet-
ric latent feature model for such data, where
the latent features for each actor in the net-
work evolve according to a Markov process,
extending recent work on similar models for
static networks. We show how the number of
features and their trajectories for each actor
can be inferred simultaneously and demon-
strate the utility of this model on prediction
tasks using synthetic and real-world data.

1 Introduction

Statistical modeling of social networks and other rela-
tional data has a long history, dating back at least as
far as the 1930s. In the statistical framework, a static
network on N actors is typically represented by an
N ×N binary sociomatrix Y, where relations between
actors i and j are represented by binary random vari-
ables yij taking value 1 if a relationship exists and 0
otherwise. The sociomatrix can be interpreted as the
adjacency matrix of a graph, with each actor being
represented by a node. A useful feature of the statisti-
cal framework is that it readily allows for a variety of
extensions such as handling missing data and incorpo-
rating additional information such as weighted edges,
time-varying edges, or covariates for actors and edges.

Exponential-family random graph models, or ERGMs,
are the canonical approach for parametrizing statisti-
cal network models—but such models can be difficult
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to work with both from a computational and statisti-
cal estimation viewpoint [Handcock et al., 2003]. An
alternative approach is to use latent vectors zi as “co-
ordinates” to represent the characteristics of each net-
work actor i. The presence or absence of edges yij
are modeled as being conditionally independent given
the latent vectors zi and zj and given the parameters
of the model. Edge probabilities in these models can
often be cast in the following form,

P (yij = 1| . . .) = f(α0 + αTxi,j + g(zi, zj)),

where f is a link function (such as logistic); α0 is a
parameter controlling network density; xi,j is a vector
of observed covariates (if known) with weight vector α;
and g(zi, zj) is a function that models the interaction
of latent variables zi and zj .

We are often interested in modeling latent structure,
for example, when there are no observed covariates
xi,j or to complement such covariates. As discussed by
Hoff [2008] there are a number of options for modeling
the interaction term g(zi, zj), such as:

• additive sender and receiver effects with
g(zi, zj) = zi + zj ;

• latent class models where zi is a vector indicat-
ing if individual i belongs to one of K clusters
[Nowicki and Snijders, 2001, Kemp et al., 2006],
or allowing individuals to have probabilities of
membership in multiple groups as in the mixed-
membership blockmodel [Airoldi et al., 2008];

• distance models, e.g., where zi ∈ RK and g(zi, zj)
is negative Euclidean distance [Hoff et al., 2002];

• multiplicative models, such as eigendecomposi-
tions of Yij [Hoff, 2007]; relational topic mod-
els with multinomial probability zi’s [Chang and
Blei, 2009]; and infinite feature models with bi-
nary feature vector zi’s [Miller et al., 2009].
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Given the increasing availability of social network data
sets with a temporal component (email, online social
networks, instant messaging, etc.) there is consider-
able motivation to develop latent representations for
network data over time. Rather than a single observed
network Y we have a sequence of observed networks
Y(t) indexed by time t = 1, . . . , T , often referred to
as longitudinal network data. In this paper, we ex-
tend the infinite latent feature model of Miller et al.
[2009] by introducing temporal dependence in the la-
tent zi’s via a hidden Markov process. Consider first
the static model. Suppose individuals are character-
ized by latent features that represent their job-type
(e.g., dentist, graduate student, professor) and their
leisure interests (e.g., mountain biking, salsa dancing),
all represented by binary variables. The probability of
an edge between two individuals is modeled as a func-
tion of the interactions of the latent features that are
turned “on” for each of the individuals. For exam-
ple, graduate students that salsa dance might have a
much higher probability of having a link to professors
that mountain bike, rather than to dentists that salsa
dance. We extend this model to allow each individ-
ual’s latent features to change over time. Temporal
dependence at the feature level allows an individual’s

features z
(t)
i to change over time t as that individual’s

interests, group memberships, and behavior evolve. In
turn the relational patterns in the networks Y(t) will

change over time as a function of the z
(t)
i ’s.

The remainder of the paper begins with a brief dis-
cussion of related work in Section 2. Sections 3 and 4
discuss the generative model and inference algorithms
respectively. In Section 5 we evaluate the model (rel-
ative to baselines) on prediction tasks for both sim-
ulated and real-world network data sets. Section 6
contains discussion and conclusions.

2 Background and Related Work

The model proposed in this paper builds upon the
Indian buffet process (IBP) [Griffiths and Ghahra-
mani, 2006], a probability distribution on (equivalence
classes of) sparse binary matrices with a finite number
of rows but an unbounded number of columns. The
IBP is named after a metaphorical process that gives
rise to the probability distribution, where N customers
enter an Indian Buffet restaurant and sample some
subset of an infinitely long sequence of dishes. The
first customer samples the first Poisson(α) dishes, and
the kth customer then samples the previously sampled
dishes proportionately to their popularity, and samples
Poisson(α/k) new dishes. The matrix of dishes sam-
pled by customers is a draw from the IBP distribution.

A typical application of the IBP is to use it as a prior

on a matrix that specifies the presence or absence of
latent features which explain some observed data. The
motivation of such an infinite latent feature model in
this context is that the number of features can be au-
tomatically adjusted during inference, and hence does
not need to be specified ahead of time. Meeds et al.
[2007] introduced a probabilistic matrix decomposition
method for row and column-exchangeable binary ma-
trices using a generative model with IBP priors. This
model was subsequently adapted for modeling static
social networks by Miller et al. [2009].

The primary contribution of this paper is to build on
this work to develop a nonparametric Bayesian gener-
ative model for longitudinal social network data. The
model leverages ideas from the recently introduced in-
finite factorial HMM [Van Gael et al., 2009], an ap-
proach that modifies the IBP into a factorial HMM
with an unbounded number of hidden chains. Model-
ing temporal changes in latent variables, for actors in a
network, has been also proposed by Sarkar and Moore
[2005], Sarkar et al. [2007] and Fu et al. [2009]— a
major difference in our approach in that we model an
actor’s evolution by Markov switching rather than via
the Gaussian linear motion models used in these pa-
pers. Our approach explicitly models the dynamics
of the actors’ latent representations, unlike the model
of Fu et al. [2009], making it more suitable for fore-
casting. Other statistical models for dynamic network
data have been also proposed but typically deal only
with the observed graphs Y(t) (e.g. Snijders [2006],
Butts [2008]) and do not use latent representations.

3 Generative Process for the Dynamic
Relational Infinite Feature Model

We introduce a dynamic relational infinite feature
model (abbreviated as DRIFT) which extends the non-
parametric latent feature relational model (LFRM)
of Miller et al. [2009] to handle longitudinal network
data. In the LFRM model, each actor is described by
a vector of binary latent features, of unbounded di-
mension. These features (along with other covariates,
if desired) determine the probability of a link between
two actors. Although the features are not a priori as-
sociated with any specific semantics, the intuition is
that these features can correspond to an actor’s in-
terests, club memberships, location, social cliques and
other real-world features related to an actor. Latent
features can be understood as clusters or class mem-
berships that are allowed to overlap, in contrast to the
mutually exclusive classes of traditional blockmodels
[Fienberg and Wasserman, 1981] from the social net-
work literature. Unlike LFRM, our proposed model
allows the feature memberships to evolve over time—
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LFRM can be viewed as a special case of DRIFT with
only one time step.

We start with a finite version of the model with K la-
tent features. The final model is defined to be the limit
of this model as K approaches infinity. Let there be
N actors, and T discrete time steps. At time t, we ob-
serve Y(t), an N ×N binary sociomatrix representing
relationships between the actors at that time. We will
typically assume that Y(t) is constrained to be sym-
metric. At each time step t there is an N ×K binary

matrix of latent features Z(t), where z
(t)
ik = 1 if actor

i has feature k at that time step. The K ×K matrix
W is a real-valued matrix of weights, where entry wkk′

influences the probability of an edge between actors i
and j if i has feature k turned on and j has feature k′

turned on. The edges between actors at time t are as-
sumed to be conditionally independent given Z(t) and
W. The probability of each edge is:

Pr(y
(t)
ij = 1) = σ(z

(t)
i Wz

(t)ᵀ
j ) , (1)

where z
(t)
i is the ith row of Z(t), and σ(x) = 1

1+exp(−x)
is the logistic function. There are assumed to be null

states z
(0)
ik = 0, which means that each feature is ef-

fectively “off” before the process begins. Each feature
k for each actor i has independent Markov dynam-
ics, wherein if its current state is zero, the next value
is distributed Bernoulli with ak, otherwise it is dis-
tributed Bernoulli with the persistence parameter bk
for that feature. In other words, the transition matrix
for actor i’s kth feature is Q(ik) =

(
1−ak ak
1−bk bk

)
. These

Markov dynamics resemble the infinite factorial hid-
den Markov model [Van Gael et al., 2009]. Note that
W is not time-varying, unlike Z. This means that the
features themselves do not evolve over time; rather,
the network dynamics are determined by the changing
presence and absence of the features for each actor.

The ak’s have prior probability Beta( αK , 1), which is
the same prior as for the features in the IBP. Impor-
tantly, this choice of prior allows for the number of
introduced (i.e. “activated”) features to have finite ex-
pectation when K →∞, with the expected number of
“active” features being controlled by hyper-parameter
α. The bk’s are drawn from a beta distribution, and
the wkk′ ’s are drawn from a Gaussian with mean zero.
More formally, the complete generative model is

ak ∼ Beta(
α

K
, 1)

bk ∼ Beta(γ, δ)

z
(0)
ik = 0

z
(t)
ik ∼ Bernoulli(a

1−z(t−1)
ik

k b
z
(t−1)
ik

k )

wkk′ ∼ Normal(0, σw)

y
(t)
ij ∼ Bernoulli(σ(z

(t)
i Wz

(t)ᵀ
j )) .

Our proposed framework is illustrated with a graphi-
cal model in Figure 1. The model is a factorial hid-
den Markov model with a hidden chain for each actor-
feature pair, and with the observed variables being the
networks (Y’s). It is also possible to include additional
covariates as used in the social network literature (see
e.g. Hoff [2008]), inside the logistic function for Equa-
tion 1. In our experiments we only use an additional
intercept term α0 that determines the prior probabil-
ity of an edge when no features are present. Note that
this does not increase the generality of the model, as
the same effect could be achieved by introducing an
additional feature shared by all actors.

3.1 Taking the Infinite Limit

The full model is defined to be the limit of the above
model as the number of features approaches infinity.
Let c00k , c01k , c10k , c11k be the total number of transitions
from 0 → 0, 0 → 1, 1 → 0, 1 → 1 over all actors,
respectively, for feature k. In the finite case with K
features, we can write the prior probability of Z = z,
for z = (z(1), z(2), . . . , z(T )) in the following way:

Pr(Z = z|a, b) =

K∏
k=1

a
c01k
k (1− ak)c

00
k b

c11k
k (1− bk)c

10
k .

(2)

Before taking the infinite limit, we integrate out the
transition probabilities with respect to their priors,

Pr(Z = z|α, γ, δ) =

K∏
k=1

α
KΓ( αK + c01k )Γ(1 + c00k )Γ(γ + δ)Γ(δ + c10k )Γ(γ + c11k )

Γ( αK + c00k + c01k + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10k + c11k )

(3)

where Γ(x) is the gamma function. Similar to the con-
struction of the IBP and the iFHMM, we compute the
infinite limit for the probability distribution on equiv-
alence classes of the binary matrices, rather than on
the matrices directly. Consider the representation z̄
of z, an NT × K matrix where the chains of feature
values for each actor are concatenated to form a single
matrix, according to some fixed ordering of the actors.
The equivalence classes are on the left-ordered form
(lof) of z̄. Define the history of a column k to be the
binary number that it encodes when its entries are in-
terpreted to be binary digits. The lof of a matrix M is
a copy of M with the columns permuted so that their
histories are sorted in decreasing order. Note that the
model is column-exchangeable so transforming z̄ to lof
does not affect its probability. We denote [z] to be the
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z
(1)
ik z

(2)
ik

· · · z
(T )
ik

Y(1) Y(2) · · · Y(T )

ak

bk

W

α

γ

δ

σW

i = 1 : N

k = 1 : K

Figure 1: Graphical model for the finite version of DRIFT. The full model is defined to be the limit of this model
as K →∞.

set of Zs that have the same lof Z̄ as z. Let Kh be
the number of columns in z̄ whose history has decimal
value h. Then the number of elements of [z] equals

K!∏
h=0 2NT−1Kh!

, yielding the following:

Pr([Z] = [z]) =
∑
ẑ∈[z]

Pr(Z = ẑ|α, γ, δ)

=
K!∏

h=0 2NT−1Kh!
Pr(Z = z|α, γ, δ).

(4)

The limit of Pr([Z]) as K → ∞ can be derived simi-
larly to the iFHMM model [Van Gael et al., 2009]. Let
K+ be the number of features that have at least one
non-zero entry for at least one actor. Then we obtain

lim
K→∞

Pr([Z] = [z]) =
αK

+∏2NT−1
h=0 Kh!

exp(−αHNT )

K+∏
k=1

(c01k − 1)!c00k !Γ(γ + δ)Γ(δ + c10k )Γ(γ + c11k )

(c00k + c01k )!Γ(γ)Γ(δ)Γ(γ + δ + c10k + c11k )
,

(5)

where Hi =
∑i
k=1

1
k is the ith harmonic number. It

is also possible to derive Equation 5 as a stochastic
process with a culinary metaphor similar to the IBP,
but we omit this description for space. A restaurant
metaphor equivalent to Pr(Z) with one actor is pro-
vided in Van Gael et al. [2009].

For inference, we will make use of the stick-breaking
construction of the IBP portion of DRIFT [Teh et al.,
2007]. Since the distribution on the ak’s is identical to
the feature probabilities in the IBP model, the stick
breaking properties of these variables carry over to our
model. Specifically, if we order the features so that

they are strictly decreasing in ak, we can write them in
stick-breaking form as vk ∼ Beta(α, 1), ak = vkak−1 =∏k
l=1 vl.

4 MCMC Inference Algorithm

We now describe how to perform posterior inference for
DRIFT using a Markov chain Monte Carlo algorithm.
The algorithm performs blocked Gibbs sampling up-
dates on subsets of the variables in turn. We adapt
a slice sampling procedure for the IBP that allows for
correct sampling despite the existence of a potentially
infinite number of features, and also mixes better rel-
ative to naive Gibbs sampling [Teh et al., 2007]. The
technique is to introduce an auxiliary “slice” variable
s to adaptively truncate the represented portion of Z
while still performing correct inference on the infinite
model. The slice variable is distributed according to

s|Z, a ∼ Unif(0, min
k:∃t,i,Z(t)

ik =1

ak) . (6)

We first sample the slice variable s according to Equa-
tion 6. We condition on s for the remainder of the
MCMC iteration, which forces the features for which
ak < s to be inactive, allowing us to discard them from
the represented portion of Z. We now extend the rep-
resentation so that we have a and b parameters for all
features k such that ak ≥ s. Here we are using the
semi-ordered stick-breaking construction of the IBP
feature probabilities [Teh et al., 2007], so we view the
active features as being unordered, while the inactive
features are in decreasing order of their ak’s. Consider
the matrix whose columns each correspond to an in-
active feature and consist of the concatenation of each
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actor’s Z values at each time for that feature. Since
each entry in each column is distributed Bernoulli(ak),
we can view this as the inactive portion of an IBP with
M = NT rows. So we can follow Teh et al. [2007] to
sample the ak’s for each of these features:

Pr(ak|ak−1,Z:
:,>k = 0) ∝ exp(α

M∑
i=1

1

i
(1− ak)i)

aα−1k (1− ak)M I(0 ≤ ak ≤ ak−1) , (7)

where Z:
:,>k is the entries of Z for all timesteps and

all actors, with feature index greater than k. We do
this for each introduced feature k, until we find an
ak such that ak < s. The Zs for these features are
initially set to Z

(t)
ik = 0, and the other parameters

(W, bk) for these are sampled from their priors, e.g.
Pr(bk|γ, δ) ∼ Beta(γ, δ).

Having adaptively chosen the number of features to
consider, we can now sample the feature values. The
Zs are sampled one Zik chain at a time via the forward-
backward algorithm [Scott, 2002]. In the forward pass,
we create the dynamic programming cache, which con-
sists of the 2×2 matrices P2 . . .PT , where Pt = (ptrs).
Letting θik be all other parameters and hidden vari-
ables not in Zik, we have the following standard recur-
sive computation,

ptrs = Pr(Z
(t−1)
ik = r,Z

(t)
ik = s|Y(1) . . .Y(t), θik)

∝ πt−1(r|θ)Q(ik)(r, s)Pr(Y(t)|Z(t)
ik = s, θik), where

πt(s|θ) = Pr(Z
(t)
ik = s|Y(1) . . .Y(t), θik) =

∑
r

ptrs.

(8)

In the backward pass, we sample the states in back-

wards order via Z
(T )
ik ∼ πT (.|θik), and Pr(Z

(t)
ik = s) ∝

p
t+1,r,Z

(t+1)
ik

. We drop all inactive columns, as they are

relegated to the non-represented portion of Z. Next,
we sample α, for which we assume a Gamma(αa, αb)
hyper-prior, where αa is the shape parameter and αb
is the inverse scale parameter. After integrating out
the ak’s, Pr(Z|α) ∝ αK

+

e−αHNT from Equation 5.

By Bayes’ rule, Pr(α|Z) ∝ αK
++αa−1e−α(HNT+αb) is

a Gamma(K+ + αa, HNT + αb).

Next, we sample the a’s and b’s for non-empty
columns. Starting with the finite model, using Bayes’
rule and taking the limit as K → ∞, we find that
ak ∼ Beta(c01k , c

00
k + 1). It is straightforward to show

that bk ∼ Beta(c11k + γ, c10k + δ).

We next sample W, which proceeds similarly to
Miller et al. [2009]. Since it is non-conjugate, we
use Metropolis-Hastings updates on each of the en-
tries in W. For each entry wkk′ , we propose w∗kk′ ∼

Normal(wkk′ , σw). When calculating the acceptance
ratio, since the proposal distribution is symmetric, the
transition probabilities cancel, leaving the standard
acceptance probability

Pr(accept w∗kk′) = min{Pr(Y|w
∗
kk′ , . . .)Pr(w

∗
kk′)

Pr(Y|wkk′ , . . .)Pr(wkk′)
, 1} .

(9)
The intercept term α0 is also sampled using
Metropolis-Hastings updates with a Normal proposal
centered on the current location.

5 Experimental Analysis

We analyze the performance of DRIFT on synthetic
and real-world longitudinal networks. The evaluation
tasks considered are predicting the network at time
t given networks up to time t − 1, and prediction of
missing edges. For the forecasting task, we estimate
the posterior predictive distribution for DRIFT,

Pr(Yt|Yt−1) =
∑
Zt

∑
Z1:(t−1)

Pr(Yt|Zt)Pr(Zt|Zt−1)

Pr(Z1:(t−1)|Y1:(t−1)), (10)

in Monte Carlo fashion by obtaining samples for
Z1:(t−1) from the posterior, using the MCMC proce-
dure outlined in the previous section. For each sam-
ple, we then repeatedly draw Zt by incrementing the
Markov chains one step from Z(t−1), using the learned
transition matrix. Averaging the likelihoods of these
samples gives a Monte Carlo estimate of the predictive
distribution. This procedure also works in principle for
predicting more than one timestep into the future.

An alternative task is to predict the presence or ab-
sence of edges between pairs of actors when this infor-
mation is missing. Assuming that edge data are miss-
ing completely at random, we can extend the MCMC
sampler to perform Gibbs updates on missing edges
by sampling the value of each pair independently us-
ing Equation 1. To make predictions on the missing
entries, we estimate the posterior mean of the predic-
tive density of each pair by averaging the edge proba-
bilities of Equation 1 over the MCMC samples. This
was found to be more stable than estimating the edge
probabilities from the sample counts of the pairs.

In our experiments, we compare DRIFT to its static
counterpart, LFRM. Several variations of LFRM were
considered. LFRM (all) treats the networks at each
timestep as i.i.d samples. For forecasting, LFRM (last)
only uses the network at the last time step t − 1 to
predict timestep t, while for missing data prediction
LFRM (current) trains a LFRM model on the train-
ing entries for each timestep. The inference algorithm
for LFRM is the algorithm for DRIFT with one time
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Figure 2: Ground truth (top) versus Z’s learned by
DRIFT (bottom) on synthetic data. Each image
represents one feature, with rows corresponding to
timesteps and columns corresponding to actors.

step. For both DRIFT and LFRM, all variables were
initialized by sampling them from their priors. We
also consider a baseline method which has a poste-
rior predictive probability for each edge proportional
to the number of times that edge has appeared in the
training data (i.e. a multinomial), using a symmet-
ric Dirichlet prior with concentration parameter set to
the number of timesteps divided by 5 (so it increases
with the amount of training data). We also consider
a simpler method (“naive”) whose posterior predictive
probability for all edges is proportional to the mean
density of the network over the observed time steps. In
the experiments, hyperparameters were set to αa = 3,
αb = 1, γ = 3, δ = 1, and σW = .1. For the missing
data prediction tasks, twenty percent of the entries of
each dataset were randomly chosen as a test set, and
the algorithms were trained on the remaining entries.

5.1 Synthetic Data

We first evaluate DRIFT on synthetic data to demon-
strate its capabilities. Ten synthetic datasets were
each generated from a DRIFT model with 10 actors
and 100 timesteps, using a W matrix with 3 features
chosen such that the features were identifiable, and a
different Z sampled from its prior for each dataset.

Given this data, our MCMC sampler draws 20 sam-
ples from the posterior distribution, with each sample
generated from an independent chain with 100 burn in
iterations. Figure 2 shows the Zs from one scenario,
averaged over the 20 samples (with the number of fea-
tures constrained to be 3, and with the features aligned
so as to visualize the similarity with the true Z). This
figure suggests that the Zs can be correctly recovered
in this case, noting as in Miller et al. [2009] that the
Zs and Ws are not in general identifiable.

Table 1 shows the average AUC and log-likelihood
scores for forecasting an additional network at
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Figure 3: Held out Y, and posterior predictive distri-
butions for each method, on synthetic data.
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Figure 4: Test log-likelihood difference from baseline
on Enron dataset at each time t.

timestep 101, and for predicting missing edges (the
number of features was not constrained in these ex-
periments). DRIFT outperforms the other methods in
both log-likelihood and AUC on both tasks. Figure 3
illustrates this with the held-out Y and the posterior
predictive distributions for one forecasting task.

5.2 Enron Email Data

We also evaluate our approach on the widely-studied
Enron email corpus [Klimt and Yang, 2004]. The En-
ron data contains 34182 emails among 151 individuals
over 3 years. We aggregated the data into monthly
snapshots, creating a binary sociomatrix for each snap-
shot indicating the presence or absence of an email be-
tween each pair of actors during that month. In these
experiments, we take the subset involving interactions
among the 50 individuals with the most emails.

For each month t, we train LFRM (all), LFRM (last),
and DRIFT on all previous months 1 to t− 1. In the
MCMC sampler, we use 3 chains and a burnin length
of 100, which we found to be sufficient. To compute
predictions for month t for DRIFT, we draw 10 sam-
ples from each chain, and for each of these samples,
we draw 10 different instantiations of Zt by advancing
the Markov chains one step. For LFRM, we simply
use the sampled Z’s from the posterior for prediction.

Table 1 shows the test log-likelihoods and AUC scores,
averaged over the months from t = 3 to t = 37. Here,
we see that DRIFT achieves a higher test log-likelihood
and AUC than the LFRM models, the baseline and the
“naive” method. Figure 4 shows the test log-likelihood
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Table 1: Experimental Results

Synthetic Dataset Naive Baseline LFRM (last/current) LFRM (all) DRIFT
Forecast LL -31.6 -32.6 -28.4 -31.6 −11.6
Missing Data LL -575 -490 -533 -478 −219
Forecast AUC N/A 0.608 0.779 0.596 0.939
Missing Data AUC N/A 0.689 0.675 0.691 0.925

Enron Dataset Naive Baseline LFRM (last/current) LFRM (all) DRIFT
Forecast LL -141 -108 -119 -98.3 −83.5
Missing Data LL -1610 -1020 -1410 -981 −639
Forecast AUC N/A 0.874 0.777 0.891 0.910
Missing Data AUC N/A 0.921 0.803 0.933 0.979
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Figure 5: Held out Y at time t = 30 (top row) and t = 36 (bottom row) for Enron, and posterior predictive
distributions for each of the methods.
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Figure 6: Estimated edge probabilities vs timestep for four pairs of actors from the Enron dataset. Above each
plot the presence and absence of edges is shown, with black meaning that an edge is present.
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k Baseline LFRM (current) LFRM (all) DRIFT
10 10 5 10 10
20 19 6 19 20
50 36 12 36 48
100 60 22 62 90
500 192 78 197 301
1000 285 142 290 361

Table 2: Number of true positives for the k missing entries pre-
dicted most likely to be an edge on Enron. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7: ROC curves for Enron missing data.

for each time step t predicted (given 1 to t− 1). This
plot suggests that all of the probabilistic models have
difficulty beating the simple baseline early on (for t <
12). However, when t is larger, DRIFT performs better
than the baseline and the other methods. For the last
time step, LFRM (last) also does well relative to the
other methods, since the network has become sparse
at both that time step and the previous time step.

For the missing data prediction task, thirty MCMC
samples were drawn for LFRM and DRIFT by tak-
ing only the last sample from each of thirty chains,
with three hundred burn in iterations. AUC and log-
likelihood results are given in Table 1. Under both
metrics, DRIFT achieves the best performance of the
models considered. Receiver operating characteristic
curves are shown in Figure 7. Table 2 shows the num-
ber of true positives for the k most likely edges of the
missing entries predicted by each method, for several
values of k. As some pairs of actors almost always have
an edge between them in each timestep, the baseline
method is very competitive for small k, but DRIFT
becomes the clear winner as k increases.

We now look in more detail at the ability of DRIFT
to model the dynamic aspects of the network. Fig-
ure 5 shows the predictive distributions for each of the
methods, at times t = 30 and t = 36. At time t = 30,
the network is dense, while at t = 36, the network
has become sparse. While LFRM (all) and the base-
line method have trouble predicting a sparse network
at t = 36, DRIFT is able to scale back and predict a
sparser structure, since it takes into account the tem-
poral sequence of the networks and it has learned that
the network has started to sparsify before time t = 36.
Figure 6 shows the edge probabilities over time for four
pairs of actors. The pairs shown were hand picked
“interesting” cases from the fifty most frequent pairs,
although the performance on these pairs is fairly typi-
cal (with the exception of the bottom right plot). The
bottom right plot shows a rare case where the model

has arguably underfit, consistently predicting low edge
probabilities for all timesteps.

We note that for some networks there may be rela-
tively little difference in the predictive performance of
DRIFT, LFRM, and the baseline method. For exam-
ple, if a network is changing very slowly, it can be mod-
eled well by LFRM (all), which treats graphs at each
timestep as i.i.d. samples. However, DRIFT should
perform well in situations like the Enron data where
the network is systematically changing over time.

6 Conclusions

We have introduced a nonparametric Bayesian model
for longitudinal social network data that models actors
with latent features whose memberships change over
time. We have also detailed an MCMC inference pro-
cedure that makes use of the IBP stick-breaking con-
struction to adaptively select the number of features,
as well as a forward-backward algorithm to sample the
features for each actor at each time slice. Empirical
results suggest that the proposed dynamic model can
outperform static and baseline methods on both syn-
thetic and real-world network data.

There are various interesting avenues for future work.
Like the LFRM, the features of DRIFT are not di-
rectly interpretable due to the non-identifiability of Z
and W. We intend to address this in future work by
exploring constraints on W and extending the model
to take advantage of additional observed covariate in-
formation such as text. We also envision that one can
generate similar models that handle continuous-time
dynamic data and more complex temporal dynamics.
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