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A Bayesian Mixture Approach to Modeling Spatial
Activation Patterns in Multi-site fMRI Data
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Abstract—We propose a probabilistic model for analyzing
spatial activation patterns in multiple fMRI activation im ages
such as repeated observations on an individual or images from
different individuals in a clinical study. Instead of taking the
traditional approach of voxel-by-voxel analysis, we directly model
the shape of activation patterns by representing each activation
cluster in an image as a Gaussian-shaped surface. We assume
that there is an unknown true template pattern and that each
observed image is a noisy realization of this template. We model
an individual image using a mixture of experts model with each
component representing a spatial activation cluster. Taking a
nonparametric Bayesian approach, we use a hierarchical Dirich-
let process to extract common activation clusters from multiple
images and estimate the number of such clusters automatically.
We further extend the model by adding random effects to the
shape parameters to allow for image-specific variation in the
activation patterns. Using a Bayesian framework, we learn the
shape parameters for both image-level activation patternsand the
template for the set of images by sampling from the posterior
distribution of the parameters. We demonstrate our model ona
dataset collected in a large multi-site fMRI study.

Index Terms—Functional magnetic resonance imaging, brain
activation, hierarchical model.

I. I NTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is
widely used to study how the brain functions in response

to external stimuli. In each run of an fMRI scan, data are
collected as a time-series of 3-dimensional voxel images while
a subject is responding to external stimuli or performing a
specific cognitive task. The temporal aspect of the time-series
data for a run is often summarized as aβ-map, a 3-dimensional
image ofβ coefficients that estimate the amount of activation
at each voxel. An experiment often comprises multiple runs
within a visit, and may also include multiple visits, and
multiple subjects. There is also increasing interest in analyzing
data taken at multiple different fMRI sites (machines) [1],[2].

In a typical approach to analysis of fMRI data, the activation
maps are analyzed using voxel-by-voxel hypothesis testing.
The set of voxels that are found to be statistically significant
(e.g., based ont-statistics) are then used to define the activated
region in the brain [3]. This approach assumes that the
activation at each voxel is independent of the activation in
neighboring voxels, and ignores the spatial information in

S. Kim is with Machine Learning Department, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA15213. E-mail:
sssykim@cs.cmu.edu.

P. Smyth is with the Department of Computer Science, University of
California, Irvine, CA 92697-3435. E-mail: smyth@ics.uci.edu.

H. Stern is with the Department of Statistics, University ofCalifornia,
Irvine, CA 92697-1250. E-mail: sternh@uci.edu.

Manuscript received December 19, 2007; revised December 23, 2009.

the overall activation pattern. While spatial statistics that are
derived from multiple neighboring voxels have been used to
test significance of activations [4], [5], more recent approaches
propose to directly take into account the spatial information in
the activation pattern by modeling the shape of local activation
regions explicitly. For example, Hartvig [6] represented the
activation surface in fMRI as a parametric function consisting
of a superposition of Gaussian-shaped bumps and a constant
background level, and used a stochastic geometry model to
find the number of bumps automatically. Penny and Friston [7]
proposed a mixture model with each mixture component repre-
senting a local activation cluster. In earlier work we proposed
a response surface model that represents an activation pattern
as a superposition of Gaussian shaped parametric surfaces and
demonstrated how the model could be used to characterize and
quantify inter-machine variability in multi-site fMRI studies
[8].

The methods discussed above on modeling spatial activation
shape in fMRI data can handle only a single image. The prob-
lem of extracting spatial patterns from multiple images hasnot
been addressed, even though detection and characterization
of such patterns can in principle provide richer information
(than voxel-level information) about cognitive activity and its
variation across individuals, across time, and across machines.
Previous approaches for spatial modeling in multiple images
were based on first extracting spatial statistics from individual
images, finding correspondences of those statistics across
multiple images, and finding brain regions with significant
activations in terms of the statistics matched across images
[9]–[13]. Although the spatial statistics were extracted from
multiple correlated voxels in the neighborhood of an activation
region, their representation did not explicitly capture the
activation shape information, and the overall approach didnot
provide a mechanism to systematically learn the variability
across different images. A Bayesian hierarchial model has
been proposed to account for spatial variability in activation
across multiple images [14], but the spatial correlation was
modeled through a covariance parameter between each pair of
voxels, instead of using an explicit representation of activation
shapes.

In this paper we propose a new statistical approach that can
characterize spatial fMRI activation patterns across multiple
images1, where the multiple images could be repeated obser-
vations on an individual (as in a recent fMRI reliability study
[1], [16]) or could be different individuals from a group in a

1This paper extends results that were presented earlier in preliminary form
as a short conference paper [15].
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Fig. 1. Illustration of image-level variations from the template model.

clinical study. We model each activation cluster in an imageas
a Gaussian-shaped surface with parameters for (a) its height
or peak value, representing the amount of activation, (b) the
location of the cluster, modeling the center of activation in
voxel-space, and (c) the width of the cluster. Given multi-
ple activation images, we extract common activation clusters
across images and learn the image-specific variation in the
activation shape in each image. The general idea is illustrated
in Figure 1. At the bottom of Figure 1 are fMRI activation
images in the right motor region of the brain over four runs
from the same subject performing a sensorimotor task. There
are three activation clusters that appear in all or some of the
four images, with image-specific variation in intensity and
location. These types of variation are common in multi-image
fMRI experiments, due to a variety of factors such as head
motion and variation in the physiological and cognitive states
of the subject. The underlying assumption in the model that we
propose in this paper is that there is an unknown true activation
pattern (as shown at the top of Figure 1) in a subject’s brain
given a particular stimulus, and that the activation patterns in
the observed images (as shown in the middle row of Figure
1) are noisy realizations of this true activation template,with
variability in the activation patterns due to various sources.
Our goal is to build a probabilistic model that infers both the
overall template and image-specific activation patterns given
multiple observed images.

We base our probabilistic model for multiple images on a
mixture of experts model with a Dirichlet process prior for
a single image [8]. We model spatial activation patterns in a
single activation image as a mixture of experts [17]–[19] with
a constant background component and one or more activation
components. Each local activation cluster is modeled usinga
parametric surface model with parameters for its peak value,
the location of the cluster, and the width. The problem of es-
timating the number of such activation components is handled
by combining this mixture of experts model with a Dirichlet
process prior. A Dirichlet process prior is a nonparametric
Bayesian prior that has been shown to be useful in learning the
number of components in a mixture model from data without
having to specify ita priori [20].

To model multiple activation images in a single probabilistic
framework, we link the common components in multiple
single-image models by introducing a hierarchy in the Dirich-
let process prior. The hierarchical Dirichlet process is a model
developed for handling multiple related mixture models with

shared mixture components [21]. At the top of the hierarchy
is a template mixture model with a set of components that
are common across bottom-level mixture models. All of the
bottom-level mixture models have components with the same
fixed component parameters but are allowed to have their own
mixing proportions. When we apply the hierarchical Dirichlet
process to the specific problem of fMRI activation modeling,
we can simultaneously infer both the top-level template and
the image-level activation patterns from observed images,as
well as the number of components at each level.

The hierarchical Dirichlet process assumes that the mixture
component parameters (e.g, the intensities and locations of
the Gaussian-shaped surface models we wish to use for fMRI
activation modeling) are fixed across images. However, as can
be seen in Figure 1, there is image-specific local variation in
the shape of activation clusters. In this paper we introduce
additional flexibility to the hierarchical Dirichlet process as
follows: each image is allowed to have its own shape parame-
ter, with a common prior distribution across images that hasa
mean shape in the activation template, and with a variance
controlling the amount of image-specific random variation.
This image-specific random variation added to the template
shape parameters is sometimes referred to asrandom effects
in the statistical literature [22]. By introducing random effects
to the component parameters in the hierarchical Dirichlet
process and estimating the random effects parameters, we can
learn both the template activation shape and the image-specific
random variation. In our experiments using data from a large
multi-site fMRI study, we demonstrate that the hierarchical
Dirichlet process with random effects leads to systematically
better results when compared to alternative approaches.

The rest of the paper is organized as follows. In Section
II, we introduce a mixture of experts model with a Dirichlet
process prior for a single image. In Section III, we pro-
pose a model for multiple images that uses a hierarchical
Dirichlet process. In Section IV, we further extend this model
by introducing random effects to the shape parameters in
activation components. Section V provides a demonstrationof
the proposed models using multi-site fMRI data. We conclude
in Section VI with a brief discussion of future work.

II. A M IXTURE OF EXPERTSMODEL WITH DIRICHLET

PROCESSPRIOR FOR ASINGLE IMAGE

We begin by discussing the mixture of experts model for
activation patterns in a single image, which we then generalize
to multiple images in later sections.

A. The Model

We develop the model for the case of 2-dimensional slices
of β maps—the 3-dimensional case can be derived as an
extension of the 2-dimensional case, but is not pursued in this
paper. We assume that theβ valuesyi, i = 1, . . . , N (where
N is the number of voxels) are conditionally independent of
each other given the voxel positionxi = (xi1, xi2) and the
model parameters. We then model the activationyi at voxel
xi with a mixture of experts model [18], [23]:

p(yi|xi,θ) =
∑

zi∈C

p(yi|zi,xi,θ)P (zi|xi,θ), (1)
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whereC = {cbg, cm,m = 1, . . . ,M} is a set of component
labels for the backgroundcbg and theM activation components
(thecm’s), zi is the component label for theith voxel, andθ =
{θbg, θm,m = 1, . . . ,M, σ2

bg, σ
2
act} represents the component

parameters. Theθbg andσ2
bg are parameters for the background

component, and theθm’s andσ2
act are used to model activation

components as described below.
The first term on the right hand side of (1) defines the spatial

model or expert for a given mixture component. We model the
activation component as a normal distribution having a mean
that is a Gaussian-shaped surface centered atbm with width
Σm and heightkm,

E[yi|xi, zi = cm, θm, σ
2
act]

= kmexp
(

−(xi − bm)′(Σm)
−1

(xi − bm)
)

, (2)

where θm = {km,bm,Σm}, and a varianceσ2
act. The back-

ground component is modeled as a normal distribution with
mean

E[yi|xi, zi = cbg, θbg, σ
2
bg] = µ,

whereθbg = {µ}, and varianceσ2
bg.

The second term in (1) is known as a gate function in the
mixture of experts framework—it decides which model should
be used to make a prediction for the activation level at position
xi. Using Bayes’ rule we write this term as

P (zi|xi,θ) =
p(xi|zi,θ)πzi

∑

c∈C
p(xi|c,θ)πc

, (3)

where πzi
is a class prior probabilityP (zi) [19], [24].

p(xi|zi,θ) is defined as follows. For the activation components
with zi = cm, p(xi|zi,θ) is a normal density with meanbm

and covarianceΣm. The bm and Σm are shared with the
Gaussian surface model in (2). This implies that the probability
of activating themth model or expert is highest at the center of
the activation and gradually decays asxi moves away from the
center.p(xi|zi,θ) for the background component is modeled
as having a uniform distribution of1/N for all positions in
the brain, whereN is the number of voxels in the image. Ifxi

is not close to the center of any activations, the gate function
selects the background expert for the voxel. The denominator
of (3) provides an expression for the distribution of the input
space asp(xi|θ) =

∑

c∈C
p(xi|c,θ)πc.

Combining the pieces results in a full generative-model
specification [18], [24],

p(yi,xi|θ) = p(yi|xi,θ)p(xi|θ)

=
∑

zi∈C

p(yi|zi,xi,θ)P (zi|xi,θ)p(xi|θ)

=
∑

zi∈C

p(yi|zi,xi,θ)p(xi|zi,θ)πzi
. (4)

The second line in the above equation follows from (1) and
the third line is obtained by applying (3).

Using a Bayesian modeling framework, we place prior
distributions on the parameters as follows. We let the center
of activationbm be a priori uniformly distributed inside or
a half voxel away from the brain region in the image. We

let the height parameterkm be a priori uniformly distributed
between 0 and a pre-defined valueKmax. TheKmax is set to
a value about 15-20% higher than the maximumβ value in
the image. For the width parameterΣm, we use a half-normal
distribution with mean 0 and varianceσ2

0 as a prior for the
variance terms inΣm and place a uniform prior over [-0.5, 0.5]
on the correlation coefficients. This ensures thatΣm always
stays positive-definite. A normal distributionN (0, τ0

2) is used
as a prior on the background meanµ. The variancesσ2

act and
σ2

bg are given half-normal prior distributions with mean 0 and
varianceσ2

act0 andσ2
bg0 respectively.

B. Dirichlet Process as a Prior

A practical issue with the finite mixture model approach
is how to determine the number of components in the model
[25], [26]. Nonparametric Bayesian approaches address this
problem by assuming an infinite number of componentsa
priori and then letting the data determine how many compo-
nents exist in the posterior. In particular, Dirichlet processes
are well-suited as a nonparametric Bayesian prior for mixture
models [20], [27]. Using this approach, we can infer a pos-
terior distribution over the number of components given the
observed data.

A Dirichlet process [28] is a measure over probability mea-
sures denoted asDP (α,G0) with a concentration parameter
α > 0 and a base distributionG0 as its two parameters. The
Dirichlet process is most easily described by associating a
component parameter vectorφi with each voxel(xi, yi). We
reserve the notationθc for a distinct component parameters;
severalφi’s may be equal to the sameθc. We place a Dirichlet
process priorDP (α,G0) on the parametersπ = {πc’s, c ∈
C } andθ as follows:

φi|G ∼ G, G|α,G0 ∼ DP (α,G0), (5)

whereG itself is a discrete probability measure in the form
of

G =

∞
∑

c=1

πcδθc
,

generated fromDP (α,G0). The prior has an infinite number
of components, but conditioned on the observed data, only a fi-
nite number of components exist in the posterior. We designate
the first component as the only background component. All of
the remaining components are activation components, and the
model can have an arbitrary number of such components. A
stick-breaking representation describes the construction of G
from DP (α,G0) [29] as follows:

π|α ∼ Stick(α), θc|G0 ∼ G0, (6)

whereπ is constructed from a stick-breaking process Stick(α)
as described below [29]:

πc = π′

c

c−1
∏

i=1

(1 − π′

i), π′

c ∼ Beta(1, α). (7)

We can understand the process of generatingπc’s via (7)
as breaking a unit-length stick sequentially as follows. We
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sampleπ′

1 from Beta(1, α), break the stick atπ′

1, and set
π1 = π′

1. We take the remainder of the stick of length
(1 − π′

1), select the second break-point by samplingπ′

2 from
Beta(1, α), and setπ2 = π′

2(1 − π′

1), and so on. It is
straightforward to show thatπc’s generated using (7) sum to
1. The component parameterθc associated with eachπc is
drawn from the base distributionG0, which is made up of the
prior distributions defined in Section II-A for the activation
component parameters{bm, km,Σm} and the background
component parameterµ. We use a Gamma(a, b) distribution
as a prior for the concentration parameterα.

If we integrate outG from the model described in (5), it
can be shown that the labels (thezi’s) have the following
clustering property [30]:

zi|z1, . . . , z(i−1), α ∼
K

∑

c=1

n−i
c

i− 1 + α
δc +

α

i− 1 + α
δcnew, (8)

where n−i
c represents the number ofzi′ variables,i′ < i,

that are assigned to componentc, andK is the number of
components that have one or more voxels inz1, . . . , zi−1

associated with them. The probability thatzi is assigned to a
new component is proportional toα. Note that the component
with more observations already assigned to it has a higher
probability of attracting the next observation. It can be shown
that z1, . . . , zN are exchangeable under (8) [31].

C. Markov Chain Monte Carlo (MCMC) Sampling for Learn-
ing

Because of the nonlinearity of the model and non-conjugacy
in the base distribution of the Dirichlet process prior, we
rely on MCMC simulation methods to obtain samples from
the posterior probability distribution of the parameters given
the data. In a Bayesian mixture model framework it is com-
mon to augment the unknown parameters with the unknown
component labels for observations and consider the joint
posterior distributionp(θ, z|y,X) wherey, X andz represent
a collection of yi’s, xi’s and zi’s for i = 1, . . . , N and,
θ = {µ, σ2

bg, σ
2
act, {bm,Σm, km},m = 1, . . . ,M, α}. During

each sampling iteration the component labelsz and parameters
θ are sampled alternately.

1) Sampling Component Labels: For eachi we samplezi

from its conditional posterior given as

p(zi|z−i,θ,y,X, α)

∝ p(yi|zi,xi,θ)p(xi|zi,θ, α)P (zi|z−i, α), (9)

where the first two terms on the right-hand side of the equation
are data likelihoods, and the last term is given by (8), assuming
that zi is given by (8), acting as ifzi is the last item in a
sequence like (8) that contains allN voxels.

Because of the non-conjugacy of the base distribution in
the Dirichlet process prior, it is not possible to analytically
compute the conditional posterior in (9), so we use a sam-
pling method based on the Metropolis-Hastings algorithm for
Dirichlet process mixtures with a non-conjugate prior [31]. We
briefly describe the sampling algorithm as follows. Ifzi = zj

for somej 6= i (i.e., zi is a non-singleton), we propose to

re-assignzi to a newly created component. Ifzi 6= zj for
all j 6= i (i.e., zi is a singleton), we propose to re-assign
zi to one of the existing components with some other data
points assigned to it. We accept the proposal based on the
Metropolis-Hastings acceptance rule. To improve the mixing
in the sampling algorithm, we use an additional partial Gibbs
sampling step for non-singletons [31].

As we sample from the conditional posterior in (9), thezi’s
are associated with a finite number of components. Note that
the number of components represented by thezi’s can change
from one sampling iteration to the next. New components
can get generated, and existing components can disappear if
they become empty with nozi’s assigned to them. We are
interested only in which observations are associated with the
same component, regardless of the ordering of the components
in the labeling scheme. From a Bayesian viewpoint, at the end
of the sampling iterations, we obtain a posterior distribution
of the number of components as a histogram of the sampled
values over iterations. If we wish to report one fixed value
for the number of components, we can (for example) select
the sample with the highest posterior probability and use the
associated assignments and components.

2) Sampling Component Parameters: Given the component
labels z, we use a Gibbs sampling algorithm with some
Metropolis steps to sample the component parameters. For
the background meanµ and the concentration parameterα,
it is possible to use the full conditional distribution of the
parameter given all others. For the remaining parameters,
we use a Metropolis algorithm with Gaussian random walk
proposal distributions.

3) Initialization Methods: At the start of the MCMC sam-
pling the model is initialized to one background component
and one or more activation components. To initialize the
model, we use a heuristic algorithm to find candidate voxels
for local activation centers and assign a mixture componentto
each of the candidates. The heuristic procedure is as follows.
To find candidate voxels, we take all of the positive voxels
in an image, and repeatedly select the largest voxel among
the voxels that have not been chosen and are at least several
voxels apart from the previously selected voxels until there
are no voxels left. The location and height parameters of
the component are set to the position and theβ-value of the
candidate voxel respectively.

III. H IERARCHICAL DIRICHLET PROCESSES FOR

MULTIPLE FMRI I MAGES

To generalize the method of Section II so that it can learn
common activation patterns from multiple images, we model
each image as a mixture of experts model as described in
Section II and let the components be shared among images by
combining image-level models using a hierarchical Dirichlet
process. A hierarchical Dirichlet process combines Dirichlet
processes in a hierarchical manner to model multiple related
mixture models with shared mixture components but different
mixing proportions [21].
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A. The Models

Assume that we haveJ images and that each image is mod-
eled with a mixture of experts with a Dirichlet process prior
as in Section II-A. To allow for the sharing of components
across images, we combine Dirichlet processes hierarchically
and model the base distributionG0 as coming from an upper-
level Dirichlet processDP (γ,H). Let yji be the ith voxel
(i = 1, . . . , Nj) in imagej (j = 1, . . . , J). Then the complete
model for a hierarchical Dirichlet process is given as

φji ∼ Gj , Gj |α,G0 ∼ DP (α,G0),

G0|γ,H ∼ DP (γ,H), (10)

whereH is a base distribution for the component parameters
as defined in Section II-A,φji is the component parameter
associated with theith voxel in thejth image, andγ andα
are concentration parameters for Dirichlet processes. TheG0

in the above equation takes the following form

G0 =

∞
∑

c=1

βcδθc
, (11)

whereβc’s are generated from Stick(γ) and θc’s are distinct
values in φji’s representing distinct component parameters
sampled from the base distributionH . The Gj ’s are given
as

Gj =

∞
∑

c=1

πjcδθc
, (12)

whereπjc’s are mixing proportions for the mixture model of
the jth image. It is important to notice thatGj comes from
the Dirichlet process with a discrete distributionG0 as its
base distribution. Thus, the components represented in the
Gj ’s are the ones present inG0, forcing theJ images to have
components with the same parameters.

We can derive a similar clustering property to (8) for
hierarchical Dirichlet processes at each level of the hierarchy.
At the bottom level, voxelsyji for i = 1, . . . , Nj are assigned
to one of theTj local clusters within imagej. When we
integrate outGj in (10), we obtain

p(hji|h−ji, α) ∼

Tj
∑

t=1

n−ji
t

Nj − 1 + α
δt +

α

Nj − 1 + α
δtnew, (13)

where hji represents the label assignment ofyji to one of
theTj local clusters,h−ji is all of thehji’s in the jth image
excludinghji, andn−ji

t is the number of voxels assigned to
the tth local cluster excludingyji.

At the top-level Dirichlet process, the local clusters are
assigned to one of the global clusters with parametersθk. This
assignment can be seen by integrating outG0 in (10):

p(ljt|l−jt, γ) ∼
K

∑

k=1

m−jt
k

∑

u mu − 1 + γ
δk

+
γ

∑

umu − 1 + γ
δknew, (14)

whereljt maps thetth local cluster in imagej to one of theK
global clusters shared by all of theJ images,l−jt represents
the label assignments for all of the local clusters acrossJ

images excludingljt, m
−jt
k is the number of local clusters in

imagej assigned to thekth global cluster excludingljt, and
mk is the number of local clusters assigned to thekth global
cluster.

According to (13) the probability that a new local cluster
is generated within imagej is proportional toα. This new
cluster is generated according to (14). If a new component
is selected in (14) the corresponding component parameter is
drawn from the base distributionH .

Notice that more than one local cluster in imagej can be
linked to the same global cluster. It is the assignment of voxels
to one of theK global clusters via local cluster labels that is
of interest.

B. MCMC Sampling for Learning

To learn the model from a set of activation images we use
an MCMC sampling algorithm to sample from the posterior
distribution of the component labels and unknown parameters
given a set of images. The quantities of interest are the local
cluster labelshji’s, the global cluster labelsljt’s, and the
component parametersθ = {µ, σ2

bg, σ
2
act, {bm,Σm, km},m =

1, . . . ,M, α, γ}. We sample each of these in turn from its
conditional posterior distribution in each iteration of Gibbs
sampling. See Appendix A for more details.

IV. H IERARCHICAL DIRICHLET PROCESSES WITH

RANDOM EFFECTS FORMULTIPLE FMRI I MAGES

To achieve the flexibility required to model the type of
image-specific variation illustrated in Figure 1, we further
extend the model described in Section III by introducing
random effects on component parameters.

A. The Models

We take the model in Section III-A and let thejth image
have its own component parametersbmj ’s, kmj ’s, Σmj ’s, and
µj ’s as follows. Letzji be the label assignment of theith voxel
in the jth image to one of the global clusters throughhji’s
and ljt’s. Then, the observation(yji,xji) in the jth image is
modeled as

E[yji|xji, zji = cm, θmj , σ
2
act]

= kmjexp
(

−(xji − bmj)
′(Σmj)

−1
(xji − bmj)

)

, (15)

and if zji is a background component, the observation
(yji,xji) in the jth image is modeled as

E[yji|xji, zji = cbg, θj,bg, σ
2
bg] = µj .

The image-specific parametersbmj ’s and kmj ’s, for each of
the M activation components, and theµj ’s are modeled as
coming from a common prior distribution given by

bmj ∼ N (bm,Ψbm
)

kmj ∼ N (km, ψ
2
km

) (16)

µj ∼ N (µ, ψ2
µ),

where thebm’s andkm’s define the unknown template activa-
tion shape for themth component, andµ defines the overall
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background mean across images. The variance parameters
Ψbm

, ψ2
km

, and ψ2
µ represent the amount of variation in

parametersbmj , kmj , and µj for each component across
images. Thus, thebm’s, km’s, andµ can be viewed as defining
templates, and thebmj ’s, kmj ’s, andµj ’s as noisy observa-
tions of the template for imagej with variancesΨbm

’s, ψ2
km

’s,
andψ2

µ respectively. The width parametersΣmj ’s are modeled
as coming from a prior of a half-normal distribution for the
variance elements and a uniform distribution over[−0.5, 0.5]
for the correlations. We do not constrainΣmj ’s across images
through a population-level distribution. Forψ2

km
’s andψ2

µ in
(16), we use half-normal distributions with mean 0 and pre-
defined values for variances as priors. ForΨbm

’s, we set
the covariance elements to 0, assuming thatbm1

and bm2
in

bm = (bm1
, bm2

) are independent of each other, and use a
half-normal prior on the variance elements.

We extend the clustering properties in (13) and (14) for
hierarchical Dirichlet processes to describe the generative
process of the model described above. The only difference is
that if a global cluster selected using (14) (for the assignment
of ljt) is a component that has not been used in thejth image,
the image-specific shape parameters for thejth image needs
to be generated from its prior.

B. Learning with MCMC Sampling

For inference we use an MCMC sampling scheme that
is based on the clustering property of the model described
in the previous section. In each iteration of the sampling
algorithm we alternately sample labelsh = {hji for all j, i},
l = {ljt for all j, t} and component parametersθ =
{µ, µj, σ

2
bg, σ

2
act, {bm,bmj , km, kmj ,Σmj ,Ψbm

, ψ2
km
, ψ2

µ},m
= 1, . . . ,M, j = 1, . . . , J, α, γ} from their conditional
posterior distributions. Details are given in Appendix B.

C. Demonstration of the Model on Simulated Data

We demonstrate the performance of the hierarchical Dirich-
let process with random effects on simulated data, and com-
pare the results with what we obtain from a simple threshold-
ing scheme for a voxel-wise analysis. We assume a template
activation pattern of three activation clusters of the same
intensity located atb1=(7,7), b2=(7,19), andb3=(15,15) in
a 20-by-25 region, and generate 10 observed images from this
template, using 0.3, 0.8, and 1.2 as the variance element of
Ψbm

’s, and 0.3, 0.2, and 0.1 asψkm
’s for m = 1, 2, 3. We

further assume that the first three observed images contain
all of the three activation clusters, the next three images
contain two clusters,m = 1 and 2, and the remaining four
images have a different subset of clusters,m = 2 and 3.
Given the true parameters, the intensity value at each voxelof
an image is determined by computing the intensity level for
each of the activation and background components and taking
the maximum value. The corresponding component with the
maximum value is considered as the true cluster label for the
voxel. Finally, we add noise generated fromN(0, σ2

act) and
N(0, σ2

bg) to the intensity level of each voxel.
Illustrations demonstrating the fit of the hierarchical Dirich-

let process with random effects to two sets of sample images

are provided in Figures 2(a) and (b). Figure 2(a) shows the
single MCMC draw with the highest posterior probability
when the model is fit to data with low activation intensities
and high noise levels (km=1.0 andσ2

act = σ2
bg = 1.0). Figure

2(b) shows the single MCMC draw with the highest posterior
probability when the model is fit to data with high activation
intensities and low noise levels (km=2.0 andσ2

act = σ2
bg = 0.2).

The left-most panel in Figures 2(a) and (b) shows the true
locations of the template activation clusters as ‘+’s and the
region within one standard deviation as measured by the
estimatedΨm’s is indicated by ellipses around each location.
In the remaining panels of Figures 2(a) and (b), we show the
estimated image-specific activation clusters for seven (out of
the ten) images in the image set as ellipses marking the region
within one standard deviations (as measured by the estimated
Σmj ’s) of the image-specific location; the ellipses are overlaid
on the images. In the high-noise case, Figure 2(a), our model
is able to determine the approximate locations of the two
out of the three true activation components by combining the
information across multiple images, even when the activation
areas are not clear from individual images. When there is clear
evidence for activation with low noise as in Figure 2(b), our
model is able to correctly identify the three true activation
clusters.

In order to systematically compare the performance of
our method for detecting activated voxels and a benchmark
threshholding approach, we simulate 20 sets of 10 images
(each set of 10 generated as described above), and plot
receiver operating characteristic (ROC) curves averaged over
the 20 datasets. To obtain an ROC curve from the hierarchical
Dirichlet process with random effects, we fit the model to each
dataset, and use the following scheme to rank the voxels. Using
the posterior samples for cluster labelshji’s from the MCMC
sampling algorithm, we estimate the posterior probabilityof
each voxel belonging to either background component or any
of the activation components. We aggregate these probabilities
so that we obtain for each voxel a single posterior probability
of that voxel being part of an activation cluster (without regard
to which cluster). We rank the voxels according these posterior
probabilities of belonging to any of the activation components,
compare the sorted list with the set of truly activated voxels,
and plot type I errors and powers as an ROC curve. For the
thresholding method, we simply rank the voxels according to
their intensities to obtain ROC curves.

We compute ROC curves for varying values of the parame-
ter defining activation heights (km=1.0, 1.5, 2.0) in Figure 2(c)
with the width fixed (Σmj = 32), and then for varying values
of the parameter defining activation widths (Σmj = 22, 32, 42)
in Figure 2(d) with the height fixed (km = 1.5). The three sets
of ROC curves from the left to the right in Figures 2(c) and
(d) correspond to different levels of noise,σ2

bg = σ2
act = 0.2,

0.6, and 1.0, respectively. The results show that across different
values of shape parameters and noise levels our method outper-
forms the thresholding method that treats voxels independently
of each other.
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Fig. 2. Results on simulated data comparing the hierarchical Dirichlet process with random effects and a thresholding approach. The activation clusters
estimated from hierarchical Dirichlet process with randomeffects are shown for datasets simulated with (a) low activation intensities with high noise level
(km=1.0 andσ

2
act = σ

2

bg = 1.0), and (b) high activation intensities with low noise level (km=2.0 andσ
2
act = σ

2

bg = 0.2). The results are based on the single
MCMC sample with the highest posterior probability. The left-most images in Panels (a) and (b) show the true locations ofthe template activation clusters as
‘+’s, and estimated regions within one standard deviation (as measured by theΨm’s) as ellipses. In the next seven images in Panels (a) and (b), the estimated
image-specific activation clusters are overlaid over the raw images as ellipses of width one standard deviations (as estimated by theΣmj ’s). ROC curves for
detecting the true activation voxels averaged over 20 simulated datasets are shown for (c) varying heightskm ’s (with fixed Σmj ), and (d) varying widths, the
variance elements ofΣmj ’s, of the activation clusters (for fixedkm). In Panels (c) and (d), the three sets of ROC curves from the left to the right correspond
to the noise levelsσ2

bg = σ2
act = 0.2, 0.6, and 1.0, respectively.

V. EXPERIMENTS

Using data from a multi-site fMRI study we experimentally
compare the different models described in Sections II-IV,
namely, the mixture of experts model with a Dirichlet process
prior, the hierarchical Dirichlet process, and the hierarchical
Dirichlet process with random effects.

A. Multi-Site Data Collection and Preprocessing

FMRI scans for the same five control subjects were col-
lected from 10 different scanners as part of a multi-site
study of functional brain images, known as FIRST BIRN or
fBIRN (Functional Imaging Research on Schizophrenia Test-
bed Biomedical Informatics Research Network) [1], [32]. For
each subject there were two visits to each site, and at each visit
fMRI data were collected for four runs of a sensorimotor task
and two runs of each of breathholding, resting, and cognitive
recognition tasks, using a common protocol. The primary
goal of this study is to better understand the variability of
fMRI response patterns across runs, visits, scanners (sites) and

subjects, so that future data collected across sites and subjects
can be analyzed collectively and consistently (e.g., [16]). In
the experiments below we use the data from the sensorimotor
task, and focus on activation within specific regions of interest
that are relevant to this task such as the left and right precentral
gyri, the left and right superior temporal gyri, and the leftand
right occipital lobes. During the sensorimotor task subjects
were presented with auditory and visual stimuli and were
asked to tap fingers on each hand periodically. The brain
regions analyzed correspond to areas expected to reflect visual,
auditory and motor activity.

Each run of the sensorimotor task produces a series of
85 scans that can be thought of as a time-series of voxel
images. The set of scans for each run is preprocessed in a
standard manner using SPM99 [33] with the default settings.
The preprocessing steps include correction of head motion,
normalization to a common brain shape, and spatial smooth-
ing. Using the motion correction algorithm as implemented
in SPM99 all of the four runs in each visit are realigned to
the first image of the first run. The head motion correction
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is followed by a co-registration and normalization step that
transforms the images into a standard space defined by the
SPM eco-planar imaging (EPI) canonical template (Montreal
Neurological Institute template, or MNI template). The nor-
malized images are interpolated using bilinear interpolation
and resliced to2×2×2mm voxels before being smoothed with
an8mm FWHM (Full Width at Half-Maximum) 3D Gaussian
kernel.

A general linear model is then fit to the time-series data for
each voxel, yielding a regression coefficientβ that estimates
the amount of activation at each voxel. The design matrix used
in the analysis includes the on/off timing of the sensorimotor
stimuli measured as a boxcar convolved with the canonical
hemodynamic response function. Aβ-map is a voxel image of
the regression coefficients (β’s) that summarizes the activation
across time as an activation map. Binary masks for regions of
interest from the normalized atlas were then used to extractthe
β values for all voxels within a region. Theseβ values serve as
our data. The approach can be easily applied to other summary
measures, e.g., t-statistics. We focus here on detecting areas
of increased activation during the sensorimotor task relative to
rest periods; the models outlined above could be modified to
address expected decreases in activation as well.

B. Experimental Setup

In this section we describe the setup for our application
of the models to the FBIRN data, including specification of
the prior distributions for the models used in our experiments
and initialization methods for our algorithms. We selecteda
2-dimensional cross-section from each of the six regions of
interest to fit the models. In all of the experiments we ran the
sampling algorithm for 4000 iterations and used the samples
over the last 3000 iterations after 1000 burn-in iterationsto
present the results. After a few initial runs of the sampling
algorithm, we found that 4000 iterations with 1000 burn-in
iterations were sufficient for convergence.

1) Single-image Models: We set the prior distributions for
the model as follows. Wea priori assumed a small value
of the concentration paramaterα that tends to encourage a
relatively small number of components, and hence set the prior
for α to Gamma(0.1, 1) in order to keep the mean of the
gamma relatively small at 0.1. For the activation components,
the priors for the width parametersΣm were set to a half-
normal distribution with mean 0 and variance 100. We used
a large variance in the half-normal prior to make the prior
nearly uninformative within a fairly large range of values.We
assumed an uninformative prior for the height parameterskm,
and used a uniform distribution over[0,Kmax] with Kmax set to
a value 25% larger than the maximum intensity in the image.
The initialization scheme described in Section II-C was used
to initialize the model.

2) Multiple-image Models: For our experiments with the
two hierarchical Dirichlet process models (with and without
random effects), we analyzed a single subject at a time, using
a collection of 80 images (10 sites× 8 runs per site) of each
region of interest for the given subject. Thus, the model has
three layers of Dirichlet processes, corresponding to (from

the top) the global template, the site-specific template, and
the image-specific (or run-specific) activation model. At the
bottom level of the hierarchy are the eight images from the
eight runs at a specific site. In the previous analysis of the
same dataset [16], it was shown that the visit variability is
much smaller than the run variability. Thus, in our analysis,
we combined the four runs from each of the two visits, and
modeled them as if they were eight runs from one visit,
although a simple extension of our model with an addition
of another hierarchy would allow us to explicitly model the
visit variability. The model with random effects hadbm’s
and km’s as global templates, andbmj ’s and kmj ’s as site-
specific parameters for thej-th site, modeled as coming from
the distributionsN (bm,Ψbm

) andN (km, ψ
2
km

), respectively.
The activation component parametersbmjr ’s and kmjr ’s for
an individual image of therth run in the jth site were
modeled as coming from the distributionsN (bmj ,Ψbmj

)
andN (kmj , ψ

2
kmj

), respectively. The model without random
effects hadbm’s and km’s in a global template fixed across
all of the images.

In all of our experiments, the prior distributions were set as
follows. The priors for the concentration parameters at each
of the three levels of Dirichlet processes were set, from the
top level, to Gamma(0.1, 1), Gamma(2, 2), and Gamma(2,
2), respectively. For the activation components, the priorfor
the width parameters and the height parameters in the global
template were set in the same manner as in the single-image
model. For the variance parameters in the random effects
model, we used a half-normal(0,4) and a half-normal(0,0.4)
as priors forΨbm

’s andψ2
km

’s, respectively, at the top-level,
and a half-normal(0,2) and a half-normal(0,0.2) as priors for
Ψbmj

’s andψ2
kmj

’s, respectively, at the site-level. Wea priori
allowed the shape parameters to vary more at the top level
than at the site-level by using a larger value for the variance
in the half-normal priors for the top-level variance parameters.
This is a reasonable assumption because intuitively we expect
to see a larger variability in the activation patterns across sites,
compared to across runs within a site.

We ran the heuristic clustering algorithm for initialization
of the single-image model described in Section II-C on one
of the 80 images (10 sites× 8 runs), and used the results as
initial values for the number of components and component
parameters. The output of this heuristic algorithm for the
component labels of the single image was used to initialize
the labels for all of the other images.

C. Illustrative Results for a Single Subject

To illustrate the methodology, we fit the two multiple-image
models to the right precentral gyrus of subject 5. Using the
single sample with the highest posterior probability, we show
the estimated image-level (or run-level) activation patterns for
the 8 runs in site 3 in Figure 3 for the non-random effects
model and the random effects model. In the first column
of Figure 3, we include the raw images, and in the second
column in Figure 3, we highlight the top 15 % voxels with
the highest intensities in each image, which would correspond
to the results of single-voxel analyses. Ellipses are drawnto
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Raw images Top 15% voxels Single image
model

Hierarchical
Dirichlet process

Hierarchical
Dirichlet process
with
random effects

Fig. 3. Results for the right precentral gyrus for subject 5.Each row corresponds to an image from one of 8 runs for the sameindividual. In column 2, the
top 15% voxels with the highest intensity levels are highlighted. In columns 3-5, estimated activation components are overlaid on the images. In column 3, a
single-image model is fit to each of the 8 runs separately. In the case of multiple-image models (columns 4 and 5), we fit the models to all of the 80 images
for subject 5 and show the run-level activation patterns, using the single sample with the highest posterior probability.

show a region of width standard deviation centered around the
location parameters with the height parameters represented by
the thicknesses of the ellipses. Ellipses with the same color
across all sites and runs correspond to the same activation
component.

For comparison, we fit the single-image model to each of the
8 images separately and show the results in the third column
of figure 3. This single-image model correctly recognizes
the high intensity areas as activation components, and finds
other activation components with lower intensities. However,
since this model analyzes each image separately it cannot link
information across the eight runs even though the activation
patterns are quite consistent among the images.

In the last two columns of Figure 3 we see that the
hierarchical Dirichlet process with random effects captures

common activation clusters better than the model without
random effects, in the presence of run-specific variations in
activation shapes. For example, the random effects model
recognizes the activation components with a relatively high
intensity in the middle of the images as realizations of the
same component shared among those images, whereas the
non-random effects model fits the same activation clusters with
different combinations of multiple components in the different
images. This shows that having a fixed set of parameters for
all of the images does not give the model enough flexibility to
model the variability due to sites and runs. The random effects
model found a more compact summary of the site-specific
activation pattern than the model without random effects.

Histograms of the number of components over the last
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Fig. 4. Histograms of the number of components over the last 3000 iterations for the right precentral gyrus for subject 5.For the single-image model, the
histogram for run 1 in visit 1 is shown.

3000 iterations are shown in Figure 4. The posterior mass
is peaked around a larger number of components for the
hierarchical Dirichlet process without random effects than for
the model with random effects. This is because the hierarchical
Dirichlet process generates a larger number of components to
summarize the activation pattern in the same set of images,
compared to the model with random effects. Since the hierar-
chical Dirichlet process has one set of fixed parameters shared
across all of the images, it tries to explain the local variability
in activation shape through additional activation components.

Using the same sample, we show the estimated top-level
and site-level template activation patterns in Figure 5(a)for the
hierarchical Dirichlet process and in Figure 5(b) for the model
with random effects. For the model without random effects in
Figure 5(a), the activation components are drawn as ellipses
with size proportional to one standard deviation of the width
parametersΣm’s centered around the location parameters
bm’s, and with the thickness of the ellipses proportional to the
height parameterskm. In Figure 5(a), the site-specific images
on the right contain a subset of exact copies of components
from the global template on the left. For the model with
random effects in Figure 5(b), the global template shows the
template activation components as ellipses centered around
the location parametersbm’s with the height parameterskm’s
as thicknesses. For the same model, we show the site-level
templates on the right, using the site-specific shape parameters,
bmj ’s and kmj ’s, to draw the ellipses. Note that the radii
of the dotted-lined ellipses for the model in Figure 5(b)
are proportional to 1.5 times the standard deviation of the
covariance parametersΨbm

’s andΨbmj
that in turn represent

the variation in the locations of activation components.
As we can see in Figure 5, once again, the random effects

model finds a more compact summary of the activation pattern
than the model without random effects by using a smaller
number of components to explain the activation pattern.

We notice that the across-run variability represented as
Ψbmj

’s in Figure 5(b) (on the right) is generally smaller than
the across-site variability represented asΨbm

’s (on the left).
The frequencies of each activation component appearing in
any of the ten sites for the subject are shown as numbers next
to each ellipse in the global template in Figure 5. Similarly,
the frequencies of each activation component appearing in any
of the eight runs in each site for the subject are shown in
the site-level templates. Most of the components are common
across all of the eight runs within a site. This again shows

that activation patterns are fairly consistent across runswithin
a site.

As for the computation time, it took 71 minutes to run
the MCMC sampling algorithm for the hierarchical Dirichlet
process model on the 80 images used in Figures 3 and 5, and
101 minutes for the model with random effects on the same
set of images. These computation times could be consider-
ably shortened by code optimization and/or by parallelizing
the algorithms for execution on multi-core machines or grid
architectures.

D. Comparison of Models across Subjects

We fit the model with random effects to the fMRI data for
each subject for the left precentral gyrus and right superior
temporal gyrus and show the estimated global activation
templates in Figure 6. The estimated activation componentsare
shown as ellipses that correspond to 1.5 times the covariance
Ψbm

in the component location parameters, centered around
the location parametersbm, with the height parameterskm as
thicknesses. The number of times that each component appears
in the 10 site-specific templates is shown next to the ellipses.
We show only those components that appear in 5 or more
sites.

Even though each subject is analyzed separately, there are
several activation clusters in the results shown in Figure 6
that appear consistently across subjects within a region of
interest. For example, in the left precentral gyrus in Figure
6, the models found an activation cluster in the upper left of
the image in all of the subjects. For the right superior temporal
gyrus all of the subjects show two activation clusters on the
right of the images.

E. Analysis of Variability in Activation Patterns

The model with random effects can be used to estimate
how much variability in the activation patterns is due to
different sources, e.g., run-to-run versus site-to-site variability.
The results from Figure 5(b) suggest that site variability is
larger than run variability in terms of the locations of activation
clusters, since for most of the clusters, theΨbm

’s are larger
than theΨbmj

’s. Here we quantify more precisely the overall
variation in the height and location parameters due to sitesand
runs on a per-subject basis. Given the estimated parameters
for each region of interest (from the sample with the highest
posterior probability from the model) we compute the overall
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Fig. 5. The global template (on the left) and site-level templates (on the right) estimated by (a) a hierarchical Dirichlet process and (b) a hierarchical
Dirichlet process with random effects, using the right precentral gyrus of subject 5. Note that the solid ellipses in (a)represent the widths of the activation
components, whereas the dotted ellipses in (b) represent the variation in the location parameters of activation clusters. The single sample with the highest
posterior probability is shown. The frequencies of each activation component appearing in any of the 10 sites for the subject are shown as numbers next to
each ellipse in the global template. Similarly, the frequencies of each activation component appearing in any of the eight runs in each site for the subject are
shown in the site-level templates.

site variability in the height parameters Var(height,site)by taking
an average of the variance parametersψ2

km
’s over all of the

components as follows:

Var(height,site) =

∑

m ψ2
km

(Number of activation components)
.

Similarly, we compute the overall run variability in the height
parameters Var(height,run) by taking an average of the variance
parametersψ2

kmj
’s over all of the sites and components as

follows:

Var(height,run)=
1

(Number of sites)
·

∑

j

∑

m ψ2
kmj

(Number of activation components in sitej)
.

We plot the results for the right precentral gyrus in Figure 7(a).
As we expected, for all of the subjects, the site variabilityis
much larger than the run variability.

We perform the same analysis for the location parameters.
We summarize the information in the2×2 covariance matrices
Ψbm

’s by taking the sum of the two variance elements
Ψbm

(1, 1) and Ψbm
(2, 2). We can compute the overall site

variability in the location parameters Var(loc, site) as

Var(loc,site) =

∑

m

(

Ψbm
(1, 1) + Ψbm

(2, 2)
)

(Number of activation components)
,

and, similarly, the overall run variability in the locationpa-
rameters Var(loc, run) as

Var(loc,run) =
1

(Number of sites)
·

∑

j

∑

m

(

Ψbmj
(1, 1) + Ψbmj

(2, 2)
)

(Number of activation components in sitej)
.

The results are shown in Figure 7(b) for the right precentral
gyrus. Again, we see that in location parameters the site
variability is larger than the run variability. These results are
consistent with those of Friedman et al [16], who analyzed
images from the same experiment using analysis of variance
models applied to statistics such as the maximum and median
values of percent signal change and contrast-to-noise ratio
within each region of interest.

In Figures 7(a) and (b), the difference between the site and
run variability is larger for the height parameters than forthe
location parameters. A plausible explanation is that thereare
scanner-specific characteristics such as the magnet strength
that affect the heights of activation clusters more than the
locations.

In Figure 5(b), we notice that most of the activation com-
ponents are shared among all of the images across runs in
the same site, whereas this persistency is weaker across sites.
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Fig. 7. Analysis of variability in activation patterns. (a)Variability in height parameters, (b) variability in location parameters, and (c) average rate of
occurrence of activation components across images.

In order to quantify how persistent an activation componentis
across sites or runs, we compute the average rate of occurrence
of an activation component among the 10 sites or the 8 runs.
We compute the measure for site as follows.

Fsite =
1

(Number of activation components)
·

∑

m

(Frequency of themth component among 10 sites)
(Number of sites)

Similarly, we use the following as the measure for runs.

Frun =
1

(Number of sites)
·

∑

j

∑

m
(Frequency of themth component among 8 runs in site j)

(Number of runs)

(Number of activation components in sitej)

If the values for Fsite or Frun are close to 1, most of the images
across sites or runs share common components. We plot the
results in Figure 7(c). As we expected, activation components
are more persistent across runs than across sites.

F. Evaluation of Predictive Performance

To evaluate the predictive benefit of adding random effects
to the hierarchical Dirichlet process model, we conducted
a number of cross-validation experiments. Specifically, we
compute the logP score,p(Dtest|Dtrain), of test dataDtest given
training dataDtrain for each model in each fold of the cross
validation. The logP score is a fair estimator of the predictive

power of a model (irrespective of how many parameters the
model has), as it evaluates how much probability mass a
model assigns to unseen test data, higher probability values
being better (e.g., [34]). We computep(Dtest|Dtrain) using
Monte Carlo integration over the parameters (the component
labels and random effects parameters) as follows. We draw
parameters from their posterior distribution given the training
data, evaluate the likelihood of the test data given these
parameters, and compute an average of this likelihood over
multiple posterior draws of the parameters.

For a given subject and region of interest, we perform cross-
validation at two different levels, one at the run level and the
other at the site level. For run-level cross-validation, weleave
out one run from each of the 10 sites, use those held-out 10
images as test data, and perform an 8-fold (across 8 runs)
cross-validation. For each set of held-out runs, we train the
model on the remaining 70 images from the 10 sites, and
compute the predictive log-likelihood (or logP score) of the
10 held-out test images (one per site). In the site-level cross-
validation, we leave out one site at a time, use the 8 images
in the held-out site as test set, and perform a 10-fold cross-
validation. We use the9×8 = 72 images in the other 9 sites as
training set, learn the model, and compute the predictive log-
likelihood of the 8 images at the test site. Intuitively, there
should be more uncertainty in a future observation when the
same subject is scanned at a new site, compared to when the
same subject is scanned for another run at the same site. Thus,
we expect to see a lower predictive logP score per image
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Fig. 8. Results from cross-validations for right precentral gyrus. (a) With random effects vs. without random effects.Each letter corresponds to leave-one-
site-out or leave-one-run-out cross validations for each of the five subjects. (b) Leave-one-site-out vs. leave-one-run-out. Each letter corresponds to the models
with or without random effects for each of the five subjects.

for the leave-one-site-out than for the leave-one-run-outcross-
validation.

We show the average per-voxel logP scores of test data
for the right precentral gyrus in Figure 8. The figure shows
the scores for the five subjects from leave-one-run-out and
leave-one-site-out cross-validation. In Figure 8(a), thex-axis
represents logP scores from the model with random effects,
and they-axis from the model without random effects. For all
of the subjects, the model with random effects shows system-
atic improvement in logP scores compared to the hierarchical
Dirichlet process in both leave-one-run-out and leave-one-site-
out cross-validations.

In Figure 8(b), we plot the logP scores of the five subjects
for both models using thex-axis as the scores from the leave-
one-run-out cross-validation and they-axis as the scores from
the leave-one-site-out cross-validation. In all of the cases, the
subjects shown as letters lie under thex = y line, confirming
our intuition that the leave-one-site-out cross-validation would
give a lower logP score.

VI. CONCLUSIONS

In this paper we proposed a probabilistic framework for an-
alyzing spatial activation patterns in multiple fMRI activation
images. Each image was modeled as a mixture of a back-
ground component and a number of activation components
with each activation component representing an activation
cluster as a Gaussian-shaped surface. We combined multiple
single-image models through a hierarchical Dirichlet process.
With the hierarchical Dirichlet process we were able to infer
the activation clusters that appear commonly in all or a
subset of the images. The number of activation components
was inferred from the data using a nonparametric Bayesian
framework with a hierarchical Dirichlet process. To allow
further flexibility in the model we incorporated random effects
in the activation shape parameters and let each individual
image have image-specific variation in the activation shape
rather than forcing all images to have a fixed set of activation
shape parameters as is the case in the hierarchical Dirichlet
process. In this probabilistic framework we were able to learn
the unknown template activation shape as well as the random

effects parameters for each image, and we demonstrated this
on a dataset from a multi-site fMRI study.

The model we propose in this paper assumes that the
group-specific variation in parameters in any single mixture
component is independent of the variation in parameters of
other components. A possible extension would be to model
additional systematic group variation in the mixture compo-
nent parameters such as global translations of the template
(or a subset of the components) in an image, e.g., due to
different MRI machine characteristics or head positioning.
We could also include across-subject variability in the model
instead of analyzing each subject separately, and model the
interaction between subjects and sites in terms of variation in
the activation shape.

Other information could also be used to further enhance the
model. For example, in this paper we focused on activation
maps that summarize the voxel time-series into a single
image. To take advantage of all of the information present
in the dataset, a useful extension would be to model spatial
patterns over time, e.g., combining the proposed Dirichlet
process framework with the time-dependent model of Penny
and Friston [7]. Furthermore, structural MRI scans collected
for a subject could be used as a spatial prior to constrain
modeled activation areas to gray matter regions in the brain
(e.g., as proposed in [35]).

Another useful direction would be to extend the hierarchical
Dirichlet process with random effects proposed in this paper to
model differences between labeled groups of individuals, e.g.,
in studies of controls and patients for a particular disorder. This
could be done by introducing a variable for a group label in
the model, whose value is known in the training data, but is
unknown at prediction time.

APPENDIX A
SAMPLING ALGORITHM FOR HIERARCHICAL DIRICHLET

PROCESSES

A. Sampling Component Labels

To sample the component labels we use the sampling
algorithm based on the clustering properties of (13) and (14).
We sample the local cluster labelshji’s by drawing each of
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the hji’s in turn from the conditional posterior distribution,
given as

p(hji = t|h−ji,θ,y,X)

∝

{

n−ji
t p(yji,xji|θjt) if t was used
αp(yji,xji|h−ji,θ, γ) if t = tnew,

where θ is the set of all component parameters,θjt is the
parameters of one of theK components associated with the
tth local cluster in imagej, and

p(yji,xji|h−ji,θ, γ) =
K

∑

k=1

mk
∑

u mu + γ
p(yji,xji|θk)

+
γ

∑

umu + γ

∫

p(yji,xji|θ)p(θ)dθ. (17)

We sample the global cluster labelsljt’s using the condi-
tional posterior distribution given as

p(ljt = k|l−jt,θ,y,X)

∝















m−jt
k

∏

i:hji=t p(yji,xji|θk)

if k was used in imagej
γ

∫
∏

i:hji=t p(yji,xji|θ)p(θ)dθ
if k is new in imagej.

(18)

Since we do not have conjugate priors for the component
parameters in this model for fMRI data, it is not possible to
evaluate the integrals in (17) and (18) analytically for a new
component. We approximate the integrals by drawing a sample
from the prior and evaluating the likelihood using this sample
[31].

B. Sampling Component Parameters

Given the sample for component labels we sample the
component parameters. We use Gibbs sampling to sample
the background meanµ and the Metropolis algorithm with
the normal distribution as a proposal for all of the other
parameters. We place a gamma prior onα andγ and sample
values for these parameters from their conditional posterior
distributions [21].

APPENDIX B
SAMPLING ALGORITHM FOR HIERARCHICAL DIRICHLET

PROCESSES WITHRANDOM EFFECTS

A. Sampling Component Labels

Because of the presence of image-specific shape parameters,
the sampling methods for component labels for a hierarchical
Dirichlet process in (17) and (18) cannot be directly applied to
its extension with random effects. In a hierarchical Dirichlet
process, since image-level shape parameters are exact copies
of the corresponding component parameters in the template
activation pattern, whenever we decide to generate a new local
cluster for an image-specific activation pattern, we can simply
copy the parameters from the template. However, in the model
with random effects, each image inherits a perturbed version
of the parameters in the template, and we should consider
two separate cases of known and unknown image-specific
parmaters for each of the template component, when generat-
ing a new local cluster. The known image-specific parameters

indicate that the component in the template pattern has been
introduced to the image before, whereas such parameters do
not exist for the component being introduced to the image
for the first time. We modify the sampling equations for
hierarchical Dirichlet processes to take into account image-
specific parameters as described below.

We samplehji’s using the following conditional distribu-
tion:

P (hji = t|h−ji,θ,y,X)

∝

{

n−ji
t p(yji,xji|ujt) if t was used
αp(yji,xji|h−ji,θ, γ) if t = tnew,

whereujt is the image-specific activation component param-
eters associated with thetth local cluster in imagej and

p(yji,xji|h−ji,θ, γ)=
∑

k∈A

mk
∑

umu + γ
p(yji,xji|ujk) (19a)

+
∑

k∈B

mk
∑

umu + γ

∫

p(yji,xji|u)p(u|θk)du (19b)

+
γ

∑

u mu + γ

∫ ∫

p(yji,xji|u)p(u|θ)p(θ)dudθ. (19c)

In (19a) the summation is over components inA = {k| some
hji′ for i′ 6= i is assigned tok}, representing global clusters
that already have some local clusters in imagej assigned
to them. In this case, sinceujk is already known, we can
simply compute the likelihoodp(yji,xji|ujk). In (19b) the
summation is overB = {k| no hji′ for i′ 6= i is assigned
to k} representing global clusters that have not yet been
assigned in imagej. In (19c) we model the case where a
new global component gets generated. The integrals in (19b)
and (19c) cannot be evaluated analytically, so we approximate
the integral by sampling new values forujk andθk from their
prior distributions and evaluating the likelihoodp(yji,xji|ujk)
[31].

Samples forljt’s can be obtained from the conditional
distribution given as

P (ljt = k|l−jt,u,θ,y,X)

∝



































m−jt
k

∏

i:hji=t p(yji,xji|ujk)

if k was used in imagej
m−jt

k

∫
∏

i:hji=t p(yji,xji|u)p(u|θk)du
if k is new in imagej

γ
∫ ∫

∏

i:hji=t p(yji,xji|u)p(u|θ)p(θ) dudθ
if k is a new component.

(20)

As in the sampling ofhji, we cannot evaluate the integrals in
(20) analytically. We approximate the integrals by sampling
new values forujk andθk and from the priors and evaluating
the likelihood.

B. Sampling Component Parameters

Givenh and l we use Gibbs sampling to sample the back-
ground meansµ and µj ’s and use the Metropolis algorithm
with a normal distribution as a proposal for all of the other
parameters.

In practice, this MCMC scheme for the hierarchical Dirich-
let process with random effects can mix poorly and get stuck in



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, MARCH 2010 15

local maxima where the labels for two image-level components
are swapped relative to the same two components in the
template. To address this problem and restore the correct
correspondence between template components and image-level
components we propose a move that swaps the labels for two
group-level components at the end of each sampling iteration
and accepts the move based on a Metropolis acceptance rule.
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