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A Bayesian Mixture Approach to Modeling Spatial
Activation Patterns in Multi-site fMRI Data
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Abstract—We propose a probabilistic model for analyzing the overall activation pattern. While spatial statistibattare
spatial activation patterns in multiple fMRI activation im ages derived from multiple neighboring voxels have been used to
such as repeated observations on an individual or images fro test significance of activations [4], [5], more recent aizes

different individuals in a clinical study. Instead of taking the to directlv take int tth tial inf i
traditional approach of voxel-by-voxel analysis, we diredy model propose to directly take into account tne spatial Infongrin

the shape of activation patterns by representing each actation the activation pattern by modeling the shape of local attiva
cluster in an image as a Gaussian-shaped surface. We assumeaegions explicitly. For example, Hartvig [6] representdu t
that there is an unknown true template pattern and that each activation surface in fMRI as a parametric function coristst
observed image is a noisy realization of this template. We nalel of a superposition of Gaussian-shaped bumps and a constant

an individual image using a mixture of experts model with eah back dl | d d tochasti t del t
component representing a spatial activation cluster. Takig a ackground level, and used a stochastic geometry model 1o

nonparametric Bayesian approach, we use a hierarchical Dich- find the number of bumps automatically. Penny and Friston [7]
let process to extract common activation clusters from muiple proposed a mixture model with each mixture component repre-
images and estimate the number of such clusters automatidgl  senting a local activation cluster. In earlier work we pregd

We further extend the model by adding random effects to the 5 yagponse surface model that represents an activaticerpatt

shape parameters to allow for image-specific variation in tk it G . h d tri fad
activation patterns. Using a Bayesian framework, we learn e as a superposition ot Gaussian shaped parametric suriades a

shape parameters for both image-level activation patternand the ~demonstrated how the model could be used to characterize and
template for the set of images by sampling from the posterior quantify inter-machine variability in multi-site fMRI stlies
distribution of the parameters. We demonstrate our model ona  [g].

dataset collected in a large multi-site fMRI study. The methods discussed above on modeling spatial activation

Index Terms—Functional magnetic resonance imaging, brain shape in fMRI data can handle only a single image. The prob-

activation, hierarchical model. lem of extracting spatial patterns from multiple images hass
been addressed, even though detection and charactemizatio
[. INTRODUCTION of such patterns can in principle provide richer informatio

UNCTIONAL magnetic resonance imaging (fMRI) is(than voxel-level information) about cognitive activitpdits
widely used to study how the brain functions in responsgériation across individuals, across time, and across mesh

to external stimuli. In each run of an fMRI scan, data argrevious approaches for spatial modeling in multiple insage
collected as a time-series of 3-dimensional voxel imagetewhwere based on first extracting spatial statistics from iiatiial
a subject is responding to external stimuli or performing #nages, finding correspondences of those statistics across
specific cognitive task. The temporal aspect of the tim@sermultiple images, and finding brain regions with significant
data for a run is often summarized ag-nap, a 3-dimensional activations in terms of the statistics matched across image
image of 3 coefficients that estimate the amount of activatiol?]-{13]. Although the spatial statistics were extractednf
at each voxel. An experiment often comprises multiple rugultiple correlated voxels in the neighborhood of an atkbra
within a visit, and may also include multiple visits, andegion, their representation did not explicitly capturee th
multiple subjects. There is also increasing interest inyairag ~ activation shape information, and the overall approachnadid
data taken at multiple different fMRI sites (machines) [2], Provide a mechanism to systematically learn the varigbilit

In a typical approach to analysis of fMRI data, the activatioacross different images. A Bayesian hierarchial model has
maps are analyzed using voxel-by-voxel hypothesis testirfggen proposed to account for spatial variability in actormt
The set of voxels that are found to be statistically significaacross multiple images [14], but the spatial correlatiors wa
(e.g., based onstatistics) are then used to define the activatétiodeled through a covariance parameter between each pair of
region in the brain [3]. This approach assumes that t@xels, instead of using an explicit representation ofvatiton
activation at each voxel is independent of the activation Bhapes.
neighboring voxels, and ignores the spatial information in In this paper we propose a new statistical approach that can
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Template shared mixture components [21]. At the top of the hierarchy
mixture model QO is a template mixture model with a set of components that
are common across bottom-level mixture models. All of the

e YN N bottom-level mixture models have components with the same

Image-level fixed component parameters but are allowed to have their own
mixture model Q Cp mixing proportions. When we apply the hierarchical Dirietl

" r 1 process to the specific problem of fMRI activation modeling,
fMRI brain we can simultaneously infer both the top-level template and
activation k L _‘ the image-level activation patterns from observed imagss,

well as the number of components at each level.

The hierarchical Dirichlet process assumes that the nextur
component parameters (e.g, the intensities and locatibns o
. L ) . the Gaussian-shaped surface models we wish to use for fMRI
clinical study. We model each activation cluster in an imase g iation modeling) are fixed across images. However, as ca
a Gaussian-shaped surface with parameters for (a) its heigh seen in Figure 1, there is image-specific local variation i
or peak value, representing the amount of activation, (B) thye shape of activation clusters. In this paper we introduce
location of the cluster, modeling the center of activation iyqgitional flexibility to the hierarchical Dirichlet prose as
voxel-space, and (c) the width of the cluster. Given multiyio,s: each image is allowed to have its own shape parame-
ple activation images, we extract common activation chsSt&ey \ith a common prior distribution across images that4as
across images and learn the image-specific variation in e, shape in the activation template, and with a variance
activation shape in each image. The general idea is ilesira ., irolling the amount of image-specific random variation.
in Figure 1. At the bottom of Figure 1 are fMRI activationryig jmage-specific random variation added to the template
images in the rlght_ motor region of the bra_ln over four ru”§hape parameters is sometimes referred toaadom effects
from the same subject performing a sensorimotor task. Thetee statistical literature [22]. By introducing randorffeets
are three activation clusters that appear in all or some ef tf) 1o component parameters in the hierarchical Dirichlet
four images, with image-specific variation in intensity anfl.,cess and estimating the random effects parameters, nve ca
location. Th.ese types of varlat|0r_1 are common in multi-i®age 4 poth the template activation shape and the imagefspec
fMRI experiments, due to a variety of factors such as headnqom variation. In our experiments using data from a large
motion and variation in the physiological and cognitiveteta 1, iti_site fMRI study, we demonstrate that the hierarchica
of the subject. The underlying assumption in the model treat Wi ihjet process with random effects leads to systemiigica
propose in this paper is that there is an unknown true aBiivat po e results when compared to alternative approaches.
pattern (as shown at the top of Figure 1) in a subject’s brainThg rest of the paper is organized as follows. In Section
given a particular stimulus, and that the activation pagen || \ve introduce a mixture of experts model with a Dirichlet
the observed images (as shown in the middle row of Figu{)‘?ocess prior for a single image. In Section Ill, we pro-
1) are noisy realizations of this true activation templatéh pose a model for multiple images that uses a hierarchical
variability in the activation patterns due to various S@SC pjrichlet process. In Section IV, we further extend this rabd
Our goal is to build a probabilistic model that infers botle thby introducing random effects to the shape parameters in
overall template and image-specific activation pattervemi 4ciivation components. Section V provides a demonstration
multiple observed images. the proposed models using multi-site fMRI data. We conclude

We base our probabilistic model for multiple images on @ Section VI with a brief discussion of future work.
mixture of experts model with a Dirichlet process prior for
a single image [8]. We model spatial activation patterns in a!l- A M IXTURE OF EXPERTSMODEL WITH DIRICHLET
single activation image as a mixture of experts [17]-[19wi PROCESSPRIOR FOR ASINGLE IMAGE
a constant background component and one or more activatio¥Ve begin by discussing the mixture of experts model for
components. Each local activation cluster is modeled uaingactivation patterns in a single image, which we then geireral
parametric surface model with parameters for its peak valie multiple images in later sections.
the location of the cluster, and the width. The problem of es-
timating the number of such activation components is hahdié- The Model
by combining this mixture of experts model with a Dirichlet We develop the model for the case of 2-dimensional slices
process prior. A Dirichlet process prior is a nonparametref 5 maps—the 3-dimensional case can be derived as an
Bayesian prior that has been shown to be useful in learniag xtension of the 2-dimensional case, but is not pursuedisn th
number of components in a mixture model from data withog@aper. We assume that thiievaluesy;,i = 1,..., N (where
having to specify ita priori [20]. N is the number of voxels) are conditionally independent of

To model multiple activation images in a single probatitist 88ch other given the voxel positiaty = (zi1,zi2) and the
framework, we link the common components in multipléhcdel parameters. We then model the actl\{ag@rat voxel
single-image models by introducing a hierarchy in the Diric Xi With a mixture of experts model [18], [23]:
let process prior. Thg hierarghical Dirichlet_process is @ _ p(yilxi, 0) = Z p(yilzi, xi, 0) P(zi]xs, 0), (1)
developed for handling multiple related mixture modelshwit Pl

Fig. 1. lllustration of image-level variations from the tplate model.
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where ¢ = {cpg, cm,m = 1,..., M} is a set of component let the height parametét,,, be a priori uniformly distributed
labels for the backgroungy and the) activation components between 0 and a pre-defined valtigay. The Kmax is set to
(thecy,’s), z; is the component label for thi#h voxel, andd = a value about 15-20% higher than the maximgnvalue in
{Obg, O, = 1,..., M, af,g, o2} represents the componenthe image. For the width paramefgy,,, we use a half-normal
parameters. Théyg andcfgg are parameters for the backgroundiistribution with mean 0 and variane€ as a prior for the
component, and thé,,’s ando2,, are used to model activationvariance terms irt,,, and place a uniform prior over [-0.5, 0.5]
components as described below. on the correlation coefficients. This ensures that always
The first term on the right hand side of (1) defines the spatigfiays positive-definite. A normal distributid¥i(0, 7,?) is used
model or expert for a given mixture component. We model tras a prior on the background meanThe variances, and
activation component as a normal distribution having a meaﬁg are given half-normal prior distributions with mean 0 and
that is a Gaussian-shaped surface centerdd, atvith width ~ varianceo2, and aggo respectively.
3. and heightk,,,

Elyi|Xi, 2 = Cm, Om, 02 B. Dirichlet Process as a Prior

— exp(—(x- by (Sm) Hxi — b )) @) A practical issue with the finite mixture model approach
" Lo Loy is how to determine the number of components in the model
where6,, = {km,bm,Sm}, and a variancer2,. The back- [25], [26]. Nonparametric Bayesian approaches address thi

ground component is modeled as a normal distribution wiflfoblem by assuming an infinite number of componeats
mean priori and then letting the data determine how many compo-

) nents exist in the posterior. In particular, Dirichlet pesses
Elyi|xi, zi = cbg, Obg, Tpgl = 11, are well-suited as a nonparametric Bayesian prior for méxtu
models [20], [27]. Using this approach, we can infer a pos-

wherefhg = {11}, and variancerp,. e e ,
The second term in (1) is known as a gate function in tr%erlor distribution over the number of components given the

: . ; . Shserved data.
mixture of experts framework—it decides which model shoul s . o
o o — " A Dirichlet process [28] is a measure over probability mea-
be used to make a prediction for the activation level at posit

x;. Using Bayes’ rule we write this term as sures denoted aBP(a,GO)_ with a c_:oncentration parameter

a > 0 and a base distributiot’, as its two parameters. The
Dirichlet process is most easily described by associating a
component parameter vectgr with each voxel(x;,y;). We
reserve the notatiofi, for a distinct component parameters;
severalkp;'s may be equal to the sandlg. We place a Dirichlet
ﬁrocess priotDP(«, Gy) on the parameters = {n.'s,c €
%'} and @ as follows:

p(xi|zi, O),
ZCG%” p(xi |Ca 0)7Tc ’

where 7., is a class prior probabilityP(z;) [19], [24].
p(x;|z:, 0) is defined as follows. For the activation componen
with z; = ¢, p(x:]2,0) is a normal density with meah,,,
and covariance’,,. The b,, and X,,, are shared with the
Gaussian surface model in (2). This implies that the prditabi »i|G ~G, Gla,Gy ~ DP(«a,Gy), (5)

of activating thenth model or expert is highest at the center of _ ) ) - _

the activation and gradually decaysxasmoves away from the where G itself is a discrete probability measure in the form
center.p(x;|z;, @) for the background component is modele§’

as having a uniform distribution of /N for all positions in >

the brain, wheréV is the number of voxels in the image.»f G = Z 700,

is not close to the center of any activations, the gate foncti e=t

selects the background expert for the voxel. The denominagenerated fromD P («, Go). The prior has an infinite number
of (3) provides an expression for the distribution of thetinp of components, but conditioned on the observed data, only a fi

P(Z”Xi, 0) =

®3)

space a®(x;[0) = > . p(xilc, 0)e. nite number of components exist in the posterior. We destgna
Combining the pieces results in a full generative-mod#hie first component as the only background component. All of
specification [18], [24], the remaining components are activation components, and th
model can have an arbitrary number of such components. A
p(yixil0) = p(yilxi, O)p(x:]6) stick-breaking representation describes the constmiaifoG
= > pyilzi i, 0)P(zi]x;, 0)p(x:|0) from DP(a, Go) [29] as follows:
nee o ~ Stick(a),  0.|Go ~ Go, 6
= Z p(yilzi, xi, 0)p(xi|2i, O) 2, (4) . | ) | ’ ’ . (_)
2.€% wherer is constructed from a stick-breaking process Stgk(

The second line in the above equation follows from (1) and’ described below [29]

the third line is obtained by applying (3). ) el , )
Using a Bayesian modeling framework, we place prior me=m, [[(1—7)), =~ Betdl, ). (7)
distributions on the parameters as follows. We let the gente i=1
of activationb,,, be a priori uniformly distributed inside or We can understand the process of generatipg via (7)
a half voxel away from the brain region in the image. Was breaking a unit-length stick sequentially as follows. We
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samplen] from Betg1, «), break the stick atr{, and set re-assignz; to a newly created component. f # z; for

m = w;. We take the remainder of the stick of lengttall j # i (i.e., z; is a singleton), we propose to re-assign
(1 —#}), select the second break-point by samplifgfrom z; to one of the existing components with some other data
Beta1,«), and setmy, = w4(1 — 71), and so on. It is points assigned to it. We accept the proposal based on the

straightforward to show that.'s generated using (7) sum toMetropolis-Hastings acceptance rule. To improve the ngixin

1. The component parametér associated with each. is in the sampling algorithm, we use an additional partial Gibb

drawn from the base distributio@,, which is made up of the sampling step for non-singletons [31].

prior distributions defined in Section II-A for the activati As we sample from the conditional posterior in (9), ths

component parametergb,,, k,,, ¥, } and the background are associated with a finite number of components. Note that

component parametgr. We use a Gammayb) distribution the number of components represented by:tfecan change

as a prior for the concentration parameter from one sampling iteration to the next. New components
If we integrate outG' from the model described in (5), it can get generated, and existing components can disappear if

can be shown that the labels (thgss) have the following they become empty with ne;’s assigned to them. We are

clustering property [30]: interested only in which observations are associated vi¢h t
K i same component, regardless of the ordering of the compsnent

Zilz1, . 2im1), o~ Z _ e - o Sy (8) INthe Iabeling schemg. From a Baygsian viewp.oint,.at"the end
—i-l+ta i—1l+a of the sampling iterations, we obtain a posterior distiinut

of the number of components as a histogram of the sampled
values over iterations. If we wish to report one fixed value
for the number of components, we can (for example) select
the sample with the highest posterior probability and use th

where n_ % represents the number of, variables,i’ < i,
that are assigned to componentand K is the number of
components that have one or more voxelszin..., z;_1
associated with t_hem. The_ probability thatis assigned to a associated assignments and components.
new component is proportional to. Note that the component , ,

with more observations already assigned to it has a higher?) Sampling Component Parameters: Given the component

probability of attracting the next observation. It can bewh |2Pels z, we use a Gibbs sampling algorithm with some
thatz,,..., 2y are exchangeable under (8) [31] Metropolis steps to sample the component parameters. For
T the background meap and the concentration parameter

it is possible to use the full conditional distribution ofeth
C. Markov Chain Monte Carlo (MCMC) Sampling for Learn-  parameter given all others. For the remaining parameters,
Ing we use a Metropolis algorithm with Gaussian random walk

Because of the nonlinearity of the model and non-conjugapyoposal distributions.

in the base distribution of the Dirichlet process prior, we 3) Initialization Methods: At the start of the MCMC sam-
rely on MCMC simulation methods to obtain samples frorpling the model is initialized to one background component
the posterior probability distribution of the parameteigée9 and one or more activation components. To initialize the
the data. In a Bayesian mixture model framework it is conmodel, we use a heuristic algorithm to find candidate voxels
mon to augment the unknown parameters with the unknowy local activation centers and assign a mixture compoteent
component labels for observations and consider the joigéch of the candidates. The heuristic procedure is as fsllow
posterior distributiorp(, z|y, X) wherey, X andz represent To find candidate voxels, we take all of the positive voxels

a collection ofy;’s, x;’s and z;’s for i = 1,...,N and, in an image, and repeatedly select the largest voxel among

0 = {1, 9bg Taco {Pm> X, km},m = 1,..., M, a}. During  the voxels that have not been chosen and are at least several

each sampling iteration the component laketsd parameters voxels apart from the previously selected voxels until ¢her

0 are sampled alternately. are no voxels left. The location and height parameters of
1) Sampling Component Labels: For eachi we samplez; the component are set to the position and fhealue of the

from its conditional posterior given as candidate voxel respectively.

p(zi|z—ia BaYa X7 CY)

2 x:. 0 2 0. P(2z_ 9
o< p(yilei i, O)p(xilzi, 0, ) P(zi]2—i, o), ©) I11. HIERARCHICAL DIRICHLET PROCESSES FOR

where the first two terms on the right-hand side of the equatio MULTIPLE FMRI IMAGES
are data likelihoods, and the last term is given by (8), agsgm
that z; is given by (8), acting as i; is the last item in a  To generalize the method of Section Il so that it can learn
sequence like (8) that contains &l voxels. common activation patterns from multiple images, we model
Because of the non-conjugacy of the base distribution @ach image as a mixture of experts model as described in
the Dirichlet process prior, it is not possible to analyffixa Section Il and let the components be shared among images by
compute the conditional posterior in (9), so we use a samembining image-level models using a hierarchical Dirgthl
pling method based on the Metropolis-Hastings algorithm fprocess. A hierarchical Dirichlet process combines Didth
Dirichlet process mixtures with a non-conjugate prior [3de processes in a hierarchical manner to model multiple rélate
briefly describe the sampling algorithm as followszjf= z; mixture models with shared mixture components but differen
for somej # i (i.e., z; is a non-singleton), we propose tomixing proportions [21].
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A. The Models images excluding;,, m,;jt is the number of local clusters in

Assume that we havg images and that each image is modimage assigned to théth global cluster excluding;;, and
eled with a mixture of experts with a Dirichlet process priofx iS the number of local clusters assigned to itile global
as in Section IIl-A. To allow for the sharing of component§luster. -
across images, we combine Dirichlet processes hieraibhica According to (13) the probability that a new local cluster
and model the base distributi@#, as coming from an upper- IS generated within imagg is proportional toa. This new
level Dirichlet processDP(v, H). Let y;; be theith voxel cluster is generated according to (14). If a new component

(i=1,...,N;)inimagej (j = 1,...,J). Then the complete is selected in (14) the corresponding component parameter i
model for a hierarchical Dirichlet process is given as drawn from the base distributiofi.
Notice that more than one local cluster in imagean be
¢ji ~ Gj, Gjla,Go ~ DP(a, Go), linked to the same global cluster. It is the assignment ofi®x
Goly, H ~ DP(~, H), (10) to one of theK global clusters via local cluster labels that is
of interest.

where H is a base distribution for the component parameters

as defined in Section 1l-A¢;; is the component parameter ) .

associated with théth voxel in thejth image, andy andar  B- MCMC Sampling for Learning

are concentration parameters for Dirichlet processes.dfe  To learn the model from a set of activation images we use

in the above equation takes the following form an MCMC sampling algorithm to sample from the posterior
0 distribution of the component labels and unknown pararseter
Gy = 2505907 (11) given a set of images. The quantities of interest are thel loca

=1 cluster labelsh;;'s, the global cluster label$;;’s, and the

. - _ 2 2 _
where 8,’s are generated from Stick] and 6.’s are distinct COmponent parametets= {1, o, oaco { b, Tm, km },m =
values in ¢;;’s representing distinct component parameters - - M, @, 7}. We sample each of these in turn from its
sampled from the base distributio. The G,’s are given conditional posterior distribution in each iteration of bBs

as sampling. See Appendix A for more details.
oo
G; = Zﬂjc&)ca (12) IV. HIERARCHICAL DIRICHLET PROCESSES WITH
c=1 RANDOM EFFECTS FORMULTIPLE FMRI IMAGES

wherer;.'s are mixing proportions for the mixture model of To achieve the flexibility required to model the type of
the jth image. It is important to notice thdt; comes from image-specific variation illustrated in Figure 1, we furthe
the Dirichlet process with a discrete distributi@r, as its extend the model described in Section Il by introducing
base distribution. Thus, the components represented in thedom effects on component parameters.
Gj's are the ones present @y, forcing theJ images to have
components with the same parameters. A. The Models

We can derive a similar clustering property to (8) for

hierarchical Dirichlet processes at each level of the higra We_ttake the model |r][ SectlontIII—A: arlld let t;aehymagg
At the bottom level, voxelg;; fori = 1,..., N, are assigned "av€ !tS OWn component parame 815 'S, Kinj'S, Ximj'S, an

to one of theT; local clusters within imagej. When we 1;'s as follows. Letz;; be the label assignment of thid voxel
integrate oulG; '%n (10), we obtain in the jth image to one of the global clusters throuljh’s
] 1

andl;;'s. Then, the observatiofy;;,x;;) in the jth image is
5 —ji modeled as
(0%
p(hjilh_ji 0) ~ N, -1t ~0u+ N1t = Otreus (13)

t=1

E[yji |ij'a Zji = Cm, emja Ugct]
where h;; represents the label assignmentgf to one of = kmjexp(—(xji — bmj)’(Emj)_l(xji — bmj)) , (15)

the T; local clustersh_j; is all of thehj;’s in the jth image ] ] ]
excludingh;;, andn; 7" is the number of voxels assigned tg#nd if ;i is a background component, the observation
the tth local cluster excluding;;. (45i,x;i) in the jth image is modeled as

At the top-level Dirichlet process, the local clusters are

Elyji|Xji, 2ji = cbg, 05.bg, O] = 1
assigned to one of the global clusters with parametgrd his s 9709 e ’

assignment can be seen by integrating Gytin (10): The image-specific parametels,;'s and k,,,;'s, for each of
K ., the M activation components, and the’s are modeled as
my,’ coming from a common prior distribution given b
Piell—jri ) ~ > s e ’ " e
k=1 w “ bmj ~ N(bm, \Ilbm)

Y
TS T e (14) Fung ~ Nk, 07, (16)

o 2
wherel;; maps theth local cluster in imagg to one of thek’ g ~ N, ¥p),
global clusters shared by all of theimages,1_;, represents where theb,,’s andk,,’s define the unknown template activa-
the label assignments for all of the local clusters acrdsstion shape for thenth component, ang: defines the overall
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background mean across images. The variance paramesees provided in Figures 2(a) and (b). Figure 2(a) shows the
Uy, , w,%m, and 1/13 represent the amount of variation insingle MCMC draw with the highest posterior probability
parametersb,,;, k.;, and p; for each component acrosswhen the model is fit to data with low activation intensities
images. Thus, thb,,,’s, k,,,’s, andu can be viewed as definingand high noise levelsk(,=1.0 ando2, = agg = 1.0). Figure
templates, and thé,,;’s, k,,;'s, andu;’s as noisy observa- 2(b) shows the single MCMC draw with the highest posterior
tions of the template for imaggwith variances¥y, s, zp,ﬁm 's, probability when the model is fit to data with high activation
andwﬁ respectively. The width paramete¥s, ;'s are modeled intensities and low noise levels,(=2.0 andrZ = agg =0.2).
as coming from a prior of a half-normal distribution for theThe left-most panel in Figures 2(a) and (b) shows the true
variance elements and a uniform distribution of«0.5,0.5] locations of the template activation clusters as ‘+'s anel th
for the correlations. We do not constraih,;'s across images region within one standard deviation as measured by the
through a population-level distribution. F@@m’s and ¢ﬁ in estimated¥,,’s is indicated by ellipses around each location.
(16), we use half-normal distributions with mean 0 and prén the remaining panels of Figures 2(a) and (b), we show the
defined values for variances as priors. R, 's, we set estimated image-specific activation clusters for severn ¢bu
the covariance elements to 0, assuming that andb,,,, in the ten) images in the image set as ellipses marking themegio
b, = (bm,,bm,) are independent of each other, and use within one standard deviations (as measured by the estiimate
half-normal prior on the variance elements. ¥ m;’s) of the image-specific location; the ellipses are ovelrlai
We extend the clustering properties in (13) and (14) fan the images. In the high-noise case, Figure 2(a), our model
hierarchical Dirichlet processes to describe the genaratis able to determine the approximate locations of the two
process of the model described above. The only differenceoist of the three true activation components by combining the
that if a global cluster selected using (14) (for the assignim information across multiple images, even when the actvati
of /) is a component that has not been used injthémage, areas are not clear from individual images. When there @&rcle
the image-specific shape parameters for ftieimage needs evidence for activation with low noise as in Figure 2(b), our
to be generated from its prior. model is able to correctly identify the three true activatio
clusters.

B. Learning with MCMC Sampling
For inference we use an MCMC sampling scheme thatin order to systematically compare the performance of
is based on the clustering property of the model describedr method for detecting activated voxels and a benchmark

in the previous section. In each iteration of the samplinfpreshholding approach, we simulate 20 sets of 10 images
algorithm we alternately sample labdis= {h;; for all j,i}, (each set of 10 generated as described above), and plot

1 = {i; forall j,t} and component paramete®@ = receiver operating characteristic (ROC) curves averaged o
{1, 145, Tbgs Tace {Pms By ks ks Xy o, U7 4%}, m  the 20 datasets. To obtain an ROC curve from the hierarchical
= 1,....,M,j = 1,...,J,a,7v} from their conditional Dirichlet process with random effects, we fit the model toreac

posterior distributions. Details are given in Appendix B. dataset, and use the following scheme to rank the voxelagUsi
the posterior samples for cluster labéls’s from the MCMC

C. Demonstration of the Model on Smulated Data sampling algorithm, we estimate the posterior probabitity

ﬁ_ach voxel belonging to either background component or any

We demonstrate the performance of the hierarchical Diric o .
i . of the activation components. We aggregate these protiedili
let process with random effects on simulated data, and com-

pare the results with what we obtain from a simple threshold- that we obtayn for each voxel_ a ;mgle posterlpr probebil
0{ that voxel being part of an activation cluster (withouyaed

mg_scheme for a voxel-wise an_aly_5|s. We assume a templ?oewhich cluster). We rank the voxels according these pimster
activation pattern of three activation clusters of the same

intensity located ab;=(7,7), by=(7,19), andbs=(15,15) in probabilities of belonging to any of the activation compotse

a 20-by-25 region, and generate 10 observed images from t ompare the sorted list with the set of truly activated vexel

template, using 0.3, 0.8, and 1.2 as the variance eIementﬁ]cr)]rf; sﬂglt dti)rllperr:e?rzr(;)(;svigdsiprfv}ler%r?lf tﬁg S(S(glscg::\i:%rdlzicr)wr t?oe
¥y, 's, and 0.3, 0.2, and 0.1 ag;, 's for m = 1,2,3. We 9 ' Py 9

further assume that the first three observed images contg?ﬁlr intensities to obtain ROC curves.

all of the three activation clusters, the next three images
contain two clustersi;n = 1 and 2, and the remaining four We compute ROC curves for varying values of the parame-
images have a different subset of clusters,= 2 and 3. ter defining activation heights(,=1.0, 1.5, 2.0) in Figure 2(c)
Given the true parameters, the intensity value at each wafxelwith the width fixed £,,; = 3%), and then for varying values
an image is determined by computing the intensity level faf the parameter defining activation widths,(; = 22, 3%, 4?)
each of the activation and background components and takind-igure 2(d) with the height fixedk(, = 1.5). The three sets
the maximum value. The corresponding component with tleé ROC curves from the left to the right in Figures 2(c) and
maximum value is considered as the true cluster label for tk@) correspond to different levels of noisﬁgg =02,=02,
voxel. Finally, we add noise generated fraw(0,c2,) and 0.6, and 1.0, respectively. The results show that acrofereift
N(0, agg) to the intensity level of each voxel. values of shape parameters and noise levels our methodroutpe
Illustrations demonstrating the fit of the hierarchicaliBlir ~ forms the thresholding method that treats voxels indepethye
let process with random effects to two sets of sample imagefseach other.
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Fig. 2. Results on simulated data comparing the hierarciididachlet process with random effects and a thresholdipgraach. The activation clusters
estimated from hierarchical Dirichlet process with randeffects are shown for datasets simulated with (a) low amtimaintensities with high noise level
(km=1.0 ando2, = o2, = 1.0), and (b) high activation intensities with low noise levé},{=2.0 ando2,, = o2, = 0.2). The results are based on the single
MCMC sample with the highest posterior probability. The-lefost images in Panels (a) and (b) show the true locatiorlkeofemplate activation clusters as
‘+’s, and estimated regions within one standard deviatmsrieasured by th#,,’s) as ellipses. In the next seven images in Panels (a) anth@oestimated
image-specific activation clusters are overlaid over tive irmages as ellipses of width one standard deviations (asasd by theX,,;'s). ROC curves for
detecting the true activation voxels averaged over 20 sited|datasets are shown for (c) varying heighiss (with fixed 3,,,;), and (d) varying widths, the
variance elements df,,,;'s, of the activation clusters (for fixed,,). In Panels (c) and (d), the three sets of ROC curves frometfied the right correspond
to the noise levelsry, = o3 = 0.2, 0.6, and 1.0, respectively.

V. EXPERIMENTS subjects, so that future data collected across sites anjdctsib

Using data from a multi-site fMRI study we experimentall)f"“‘n be ar_walyzed collectively and consistently (e.g., Llﬁs_])
compare the different models described in Sections II-| e experiments below we use the data from the sensorimotor

namely, the mixture of experts model with a Dirichlet prcx:e§ﬂ5k’ and flocus on ?‘C_t'vat'in W'tr:"n sEecllf:cc re%pni Of"eﬁt
prior, the hierarchical Dirichlet process, and the hignizal 2t are relevantto this task such as the left and right jrtea:

Dirichlet process with random effects gyri, the left and right superior temporal gyri, and the laftd
' right occipital lobes. During the sensorimotor task sutgec

_ . . were presented with auditory and visual stimuli and were
A. Multi-Ste Data Collection and Preprocessing asked to tap fingers on each hand periodically. The brain

FMRI scans for the same five control subjects were cdlegions analyzed correspond to areas expected to refleetlyis

lected from 10 different scanners as part of a multi-sit@uditory and motor activity.

study of functional brain images, known as FIRST BIRN or Each run of the sensorimotor task produces a series of
fBIRN (Functional Imaging Research on Schizophrenia Tef85 scans that can be thought of as a time-series of voxel
bed Biomedical Informatics Research Network) [1], [32]r Foimages. The set of scans for each run is preprocessed in a
each subject there were two visits to each site, and at eaith vétandard manner using SPM99 [33] with the default settings.
fMRI data were collected for four runs of a sensorimotor taskhe preprocessing steps include correction of head motion,
and two runs of each of breathholding, resting, and cognitimormalization to a common brain shape, and spatial smooth-
recognition tasks, using a common protocol. The primaigg. Using the motion correction algorithm as implemented
goal of this study is to better understand the variability dh SPM99 all of the four runs in each visit are realigned to
fMRI response patterns across runs, visits, scanners)sitel the first image of the first run. The head motion correction
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is followed by a co-registration and normalization steptthahe top) the global template, the site-specific templatel an
transforms the images into a standard space defined by the image-specific (or run-specific) activation model. A¢ th
SPM eco-planar imaging (EPI) canonical template (Montrebbttom level of the hierarchy are the eight images from the
Neurological Institute template, or MNI template). The noreight runs at a specific site. In the previous analysis of the
malized images are interpolated using bilinear interpotat same dataset [16], it was shown that the visit variability is
and resliced t@ x 2 x 2mm voxels before being smoothed withmuch smaller than the run variability. Thus, in our analysis
an8mm FWHM (Full Width at Half-Maximum) 3D Gaussianwe combined the four runs from each of the two visits, and
kernel. modeled them as if they were eight runs from one visit,
A general linear model is then fit to the time-series data fathough a simple extension of our model with an addition
each voxel, yielding a regression coefficighthat estimates of another hierarchy would allow us to explicitly model the
the amount of activation at each voxel. The design matrixluseisit variability. The model with random effects hdsl,,’'s
in the analysis includes the on/off timing of the sensorionotand k,,’s as global templates, arll,,;’s and k,,,;'s as site-
stimuli measured as a boxcar convolved with the canonicgiecific parameters for thith site, modeled as coming from
hemodynamic response function,2Amap is a voxel image of the distributionsV'(b,,,, ¥, ,) and N (k,,, w,%m), respectively.
the regression coefficients’é) that summarizes the activationThe activation component parametédrs,;.'s and k,,;.'s for
across time as an activation map. Binary masks for regionsaf individual image of therth run in the jth site were
interest from the normalized atlas were then used to extinect modeled as coming from the distribution§(b,,,;, ¥, )
0 values for all voxels within a region. Thegevalues serve as andN(kmj,wﬁmj), respectively. The model without random
our data. The approach can be easily applied to other summaeffects hadb,,’s and k,,,’s in a global template fixed across
measures, e.g., t-statistics. We focus here on detectiegsarall of the images.

of increased activation during the sensorimotor task ikedab In all of our experiments, the prior distributions were sgt a
rest periods; the models outlined above could be modified fllows. The priors for the concentration parameters atheac
address expected decreases in activation as well. of the three levels of Dirichlet processes were set, from the

top level, to Gamma(0.1, 1), Gamma(2, 2), and Gamma(2,
2), respectively. For the activation components, the pidor
the width parameters and the height parameters in the global

In this section we describe the setup for our applicaticdlemplate were set in the same manner as in the single-image
of the models to the FBIRN data, including specification ahodel. For the variance parameters in the random effects
the prior distributions for the models used in our experitsenmodel, we used a half-normal(0,4) and a half-normal(0,0.4)
and initialization methods for our algorithms. We selected as priors for®y, ,’s and v} s, respectively, at the top-level,
2-dimensional cross-section from each of the six regions ahd a half-normal(0,2) and a half-normal(0,0.2) as priors f
interest to fit the models. In all of the experiments we ran thybmj 'S andd;gm 's, respectively, at the site-level. \epriori
sampling algorithm for 4000 iterations and used the samplgowed the shape parameters to vary more at the top level
over the last 3000 iterations after 1000 burn-in iteratibms than at the site-level by using a larger value for the vaganc
present the results. After a few initial runs of the sampling the half-normal priors for the top-level variance paraens.
algorithm, we found that 4000 iterations with 1000 burn-ihis is a reasonable assumption because intuitively weatxpe
iterations were sufficient for convergence. to see a larger variability in the activation patterns asrsites,

1) Single-image Models. We set the prior distributions for compared to across runs within a site.
the model as follows. We priori assumed a small value We ran the heuristic clustering algorithm for initializati
of the concentration paramater that tends to encourage aof the single-image model described in Section 1I-C on one
relatively small number of components, and hence set tleg prof the 80 images (10 sites 8 runs), and used the results as
for o to Gamma(0.1, 1) in order to keep the mean of thigitial values for the number of components and component
gamma relatively small at 0.1. For the activation composienparameters. The output of this heuristic algorithm for the
the priors for the width parameteis,, were set to a half- component labels of the single image was used to initialize
normal distribution with mean 0 and variance 100. We useHe labels for all of the other images.
a large variance in the half-normal prior to make the prior
nearly uninformative within a fairly large range of valu&ye
assumed an uninformative prior for the height parametgys
and used a uniform distribution ovfY, Kay with Kmax Set to To illustrate the methodology, we fit the two multiple-image
a value 25% larger than the maximum intensity in the imagmodels to the right precentral gyrus of subject 5. Using the
The initialization scheme described in Section 1I-C wasdus&ingle sample with the highest posterior probability, wevgh
to initialize the model. the estimated image-level (or run-level) activation patsefor

2) Multiple-image Models: For our experiments with the the 8 runs in site 3 in Figure 3 for the non-random effects
two hierarchical Dirichlet process models (with and withoumodel and the random effects model. In the first column
random effects), we analyzed a single subject at a timegusiof Figure 3, we include the raw images, and in the second
a collection of 80 images (10 sites 8 runs per site) of each column in Figure 3, we highlight the top 15 % voxels with
region of interest for the given subject. Thus, the model h#ise highest intensities in each image, which would corredpo
three layers of Dirichlet processes, corresponding tonffroto the results of single-voxel analyses. Ellipses are dréavn

B. Experimental Setup

C. llludtrative Results for a Single Subject
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Fig. 3. Results for the right precentral gyrus for subjecE&ch row corresponds to an image from one of 8 runs for the sadigdual. In column 2, the
top 15% voxels with the highest intensity levels are hightiggl. In columns 3-5, estimated activation components @edad on the images. In column 3, a
single-image model is fit to each of the 8 runs separatelyhéncase of multiple-image models (columns 4 and 5), we fit tbdets to all of the 80 images
for subject 5 and show the run-level activation patternsgighe single sample with the highest posterior probabilit

show a region of width standard deviation centered arouad tbommon activation clusters better than the model without
location parameters with the height parameters repreddnjte random effects, in the presence of run-specific variations i
the thicknesses of the ellipses. Ellipses with the samercolictivation shapes. For example, the random effects model
across all sites and runs correspond to the same activatienognizes the activation components with a relativelyhhig
component. intensity in the middle of the images as realizations of the
For comparison, we fit the single-image model to each of tkame component shared among those images, whereas the
8 images separately and show the results in the third columan-random effects model fits the same activation clustéts w
of figure 3. This single-image model correctly recognizedifferent combinations of multiple components in the difiet
the high intensity areas as activation components, and firndsges. This shows that having a fixed set of parameters for
other activation components with lower intensities. Hoarev all of the images does not give the model enough flexibility to
since this model analyzes each image separately it canmot Imodel the variability due to sites and runs. The random &ffec
information across the eight runs even though the actimationodel found a more compact summary of the site-specific
patterns are quite consistent among the images. activation pattern than the model without random effects.
In the last two columns of Figure 3 we see that the
hierarchical Dirichlet process with random effects captur Histograms of the number of components over the last
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Fig. 4. Histograms of the number of components over the 18803terations for the right precentral gyrus for subjectbr the single-image model, the
histogram for run 1 in visit 1 is shown.

3000 iterations are shown in Figure 4. The posterior ma#sat activation patterns are fairly consistent across ruitisin
is peaked around a larger number of components for thesite.
hierarchical Dirichlet process without random effectsrtfiar As for the computation time, it took 71 minutes to run
the model with random effects. This is because the hiereathithe MCMC sampling algorithm for the hierarchical Dirichlet
Dirichlet process generates a larger number of componentsptrocess model on the 80 images used in Figures 3 and 5, and
summarize the activation pattern in the same set of imagé®1 minutes for the model with random effects on the same
compared to the model with random effects. Since the hieraet of images. These computation times could be consider-
chical Dirichlet process has one set of fixed parameterseshaably shortened by code optimization and/or by paralletizin
across all of the images, it tries to explain the local valigh the algorithms for execution on multi-core machines or grid
in activation shape through additional activation compuse architectures.

Using the same sample, we show the estimated top-level

and site-level template activation patterns in Figure ffajhe Comparison of Models across Subjects

hierarchical Dirichlet process and in Figure 5(b) for thedab . .
with random effects. For the model without random effects in We fit the model with random effects to the fMRI data fqr
ach subject for the left precentral gyrus and right superio

Figure 5(a), the activation components are drawn as eﬁips% ) N
temporal gyrus and show the estimated global activation

with size proportional to one standard deviation of the tvidt 27 : S
mplates in Figure 6. The estimated activation comporaets

parametersy,,’s centered around the location parametert : . .
own as ellipses that correspond to 1.5 times the covarianc

b,,’s, and with the thickness of the ellipses proportional ® th . :
¥y, in the component location parameters, centered around

height parameters,,. In Figure 5(a), the site-specific images : . .
on the right contain a subset of exact copies of componertﬁg location parametets,,, W'Fh the height parametefs,, as
ﬁ icknesses. The number of times that each component appear

from the global template on the left. For the model wit the 10 sit e t lates is sh {10 the ek
random effects in Figure 5(b), the global template shows t € 1U siie-specilic tempiales IS Showh next to the etpse
e show only those components that appear in 5 or more

template activation components as ellipses centered dro AN
the location parametets,,’'s with the height parameters,,’s ) L
as thicknesses. For the same model, we show the site—Ievell:'Ven though each subject is analyzed separately, there are

templates on the right, using the site-specific shape pdeasje several activation clusters in the results shown in Figure 6
that appear consistently across subjects within a region of

b,;'s and k,,;’s, to draw the ellipses. Note that the radii N ¢ F le. in the left ral .2
of the dotted-lined ellipses for the model in Figure 5(b erest. For exampie, In the 1eft precentral gyrus in Fegur
the models found an activation cluster in the upper left of

are proportional to 1.5 times the standard deviation of thg " . ) . :
brop tﬁe image in all of the subjects. For the right superior terapo

covariance parametemBy, 's and¥y, . that in turn represent . 2
the variation in the locations of activation components. gyrus all of the subjects show two activation clusters on the
right of the images.

As we can see in Figure 5, once again, the random effec
model finds a more compact summary of the activation pattern
than the model without random effects by using a small& Analysis of Variability in Activation Patterns
number of components to explain the activation pattern. The model with random effects can be used to estimate
We notice that the across-run variability represented asw much variability in the activation patterns is due to
W¥y,,,;’s in Figure 5(b) (on the right) is generally smaller tharlifferent sources, e.qg., run-to-run versus site-to-seability.
the across-site variability represented®g 's (on the left). The results from Figure 5(b) suggest that site variabilgy i
The frequencies of each activation component appearinglanger than run variability in terms of the locations of &ation
any of the ten sites for the subject are shown as numbers nelisters, since for most of the clusters, tig, 's are larger
to each ellipse in the global template in Figure 5. Similarlghan the®y,  's. Here we quantify more precisely the overall
the frequencies of each activation component appearingyin avariation in the height and location parameters due to sites
of the eight runs in each site for the subject are shown ians on a per-subject basis. Given the estimated parameters
the site-level templates. Most of the components are comnimn each region of interest (from the sample with the highest
across all of the eight runs within a site. This again showmsterior probability from the model) we compute the overal



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, MARCH 200 11

Global Template

oxgn

8
~
v
8
]

Global Template

Site 6 Site 7 Site 8 Site 9 Site 10
(b)

Fig. 5. The global template (on the left) and site-level titgs (on the right) estimated by (a) a hierarchical Diethprocess and (b) a hierarchical
Dirichlet process with random effects, using the right precal gyrus of subject 5. Note that the solid ellipses inrégresent the widths of the activation
components, whereas the dotted ellipses in (b) represenvatiation in the location parameters of activation clisstdhe single sample with the highest
posterior probability is shown. The frequencies of eaclivaiibn component appearing in any of the 10 sites for thgeztitare shown as numbers next to
each ellipse in the global template. Similarly, the frequies of each activation component appearing in any of thieteigns in each site for the subject are
shown in the site-level templates.

site variability in the height parameters Wafgh,site) Dy taking and, similarly, the overall run variability in the locatigra-
an average of the variance paramet¢g§n 's over all of the rameters Vafo, run) as
components as follows: ]

2 Var, = _ .
Varheignt,site) Zm wkm . (loc.run) (Number of sites)
N (Number of actlvatlo-n c.o.mplonents) S, (‘I’bmj(l, 1)+ Wy, (2, 2))
Similarly, we compute the overall run variability in the phi zj: (Number of activation components in Sifp

parameters Vadeight,un) DY taking an average of the variance
2 ’ H . . .
parameters);. s over all of the sites and components agne results are shown in Figure 7(b) for the right precentral

follows: gyrus. Again, we see that in location parameters the site
Var(height run) = 1 . varia_bility is I_arger than the_run variability. These resuare
(Number of sites) consistent with those of Friedman et al [16], who analyzed
dom w;%mj images from the same experiment using analysis of variance
Z (Number of activation components in sif§’ models applied to statistics such as the maximum and median
J

values of percent signal change and contrast-to-noise rati
We plot the results for the right precentral gyrus in Figu@)7 ithin each region of interest.
As we expected, for all of the subjects, the site variabiity |5 Figures 7(a) and (b), the difference between the site and
much larger than the run variability. _ run variability is larger for the height parameters than toe
We perform the same analysis for the location parametef§cation parameters. A plausible explanation is that theeee
We summarize the information in tle< 2 covariance matrices scanner-specific characteristics such as the magnet #ireng

¥y,,'s by taking the sum of the two variance elementga; affect the heights of activation clusters more than the
Uy, (1,1) and ¥y, (2,2). We can compute the overall site|g.ations.

variability in the location parameters \(g, site) 8 In Figure 5(b), we notice that most of the activation com-
Vi . > (O, (1,1) + ¥y, (2,2)) ponents are shared among all of the images across runs in
alfloc.site) (Number of activation components) the same site, whereas this persistency is weaker acress sit
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Fig. 6. Hierarchical Dirichlet processes with random efefit to the left precentral gyrus and the right superior terap gyrus of subjects 1, 2, 3, 4, and
5. The global template activations based on the single samijth the highest posterior probability are shown as elipsf 1.5 standard deviation of the
covariances¥y, =~ centered at the locationls,,’s with the heightsk,,'s as thicknesses. The frequencies of each activation coemcappearing in any of
the 10 sites for the subject are shown as numbers next to digudee
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Fig. 7. Analysis of variability in activation patterns. (®priability in height parameters, (b) variability in loéah parameters, and (c) average rate of
occurrence of activation components across images.

In order to quantify how persistent an activation comporignt power of a model (irrespective of how many parameters the
across sites or runs, we compute the average rate of occerremodel has), as it evaluates how much probability mass a
of an activation component among the 10 sites or the 8 rumsodel assigns to unseen test data, higher probability salue

We compute the measure for site as follows. being better (e.g., [34]). We comput® Dies{ Dirain) USING

1 Monte Carlo integration over the parameters (the component
Fsite = — .
site (Number of activation components) labels and random effects parameters) as follows. We draw

. data, evaluate the likelihood of the test data given these
(Number of sites) N
parameters, and compute an average of this likelihood over
Similarly, we use the following as the measure for runs.  multiple posterior draws of the parameters.

Z (Frequency of thenth component among 10 sites) parameters from their posterior distribution given therirg

1 For a given subject and region of interest, we perform cross-
F.n= i . . . .
un = (Number of sites) validation at two different levels, one at the run I_eveI ahd t
(Frequency of thenth component among 8 runs in site j) other at the site level. For run-level cross-validation, le@ve
Z Xom (Number of runs) out one run from each of the 10 sites, use those held-out 10
. (Number of activation components in s images as test data, and perform an 8-fold (across 8 runs)

cross-validation. For each set of held-out runs, we tram th

odel on the remaining 70 images from the 10 sites, and

(?npute the predictive log-likelihood (or logP score) oéth

0 held-out test images (one per site). In the site-levesxro

validation, we leave out one site at a time, use the 8 images

in the held-out site as test set, and perform a 10-fold cross-

validation. We use theéx 8 = 72 images in the other 9 sites as
To evaluate the predictive benefit of adding random effedtsining set, learn the model, and compute the predictige lo

to the hierarchical Dirichlet process model, we conductdikelihood of the 8 images at the test site. Intuitively, rine

a number of cross-validation experiments. Specifically, wa&hould be more uncertainty in a future observation when the

compute the logP scorg(Dies{ Dirain), Of test dataDiestgiven same subject is scanned at a new site, compared to when the

training dataDy,i, for each model in each fold of the crosssame subject is scanned for another run at the same site, Thus

validation. The logP score is a fair estimator of the pradict we expect to see a lower predictive logP score per image

If the values for ke or Fypn are close to 1, most of the image
across sites or runs share common components. We plot
results in Figure 7(c). As we expected, activation comptsen
are more persistent across runs than across sites.

F. Evaluation of Predictive Performance
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Fig. 8. Results from cross-validations for right precenggrus. (a) With random effects vs. without random effedsch letter corresponds to leave-one-
site-out or leave-one-run-out cross validations for edcth® five subjects. (b) Leave-one-site-out vs. leave-ameaut. Each letter corresponds to the models
with or without random effects for each of the five subjects.

for the leave-one-site-out than for the leave-one-runeoass- effects parameters for each image, and we demonstrated this
validation. on a dataset from a multi-site fMRI study.

We show the average per-voxel logP scores of test dataThe model we propose in this paper assumes that the
for the right precentral gyrus in Figure 8. The figure showgroup-specific variation in parameters in any single migtur
the scores for the five subjects from leave-one-run-out andmponent is independent of the variation in parameters of
leave-one-site-out cross-validation. In Figure 8(a), thaxis other components. A possible extension would be to model
represents logP scores from the model with random effecésjditional systematic group variation in the mixture compo
and they-axis from the model without random effects. For alhent parameters such as global translations of the template
of the subjects, the model with random effects shows syste(or a subset of the components) in an image, e.g., due to
atic improvement in logP scores compared to the hierarthiadfferent MRl machine characteristics or head positioning
Dirichlet process in both leave-one-run-out and leave-sitee We could also include across-subject variability in the elod
out cross-validations. instead of analyzing each subject separately, and model the

In Figure 8(b), we plot the logP scores of the five subjectsteraction between subjects and sites in terms of varidtio
for both models using the-axis as the scores from the leavethe activation shape.
one-run-out cross-validation and thyeaxis as the scores from Other information could also be used to further enhance the
the leave-one-site-out cross-validation. In all of theesagshe model. For example, in this paper we focused on activation
subjects shown as letters lie under the- y line, confirming maps that summarize the voxel time-series into a single
our intuition that the leave-one-site-out cross-validativould image. To take advantage of all of the information present
give a lower logP score. in the dataset, a useful extension would be to model spatial
patterns over time, e.g., combining the proposed Dirichlet
process framework with the time-dependent model of Penny
and Friston [7]. Furthermore, structural MRI scans cobelct

In this paper we proposed a probabilistic framework for ader a subject could be used as a spatial prior to constrain
alyzing spatial activation patterns in multiple fMRI a@fion modeled activation areas to gray matter regions in the brain
images. Each image was modeled as a mixture of a ba¢k:g., as proposed in [35]).
ground component and a number of activation componentsanother useful direction would be to extend the hierarchica
with each activation component representing an activati@irichlet process with random effects proposed in this pape
cluster as a Gaussian-shaped surface. We combined multipiedel differences between labeled groups of individuatg, e
single-image models through a hierarchical Dirichlet @s& in studies of controls and patients for a particular disar@ieis
With the hierarchical Dirichlet process we were able to iinfecould be done by introducing a variable for a group label in
the activation clusters that appear commonly in all or #the model, whose value is known in the training data, but is
subset of the images. The number of activation componenisknown at prediction time.
was inferred from the data using a nonparametric Bayesian

VI. CONCLUSIONS

framework with a hierarchical Dirichlet process. To allow APPENDIX A
further flexibility in the model we incorporated random eff® g, \ipL NG ALGORITHM FOR HIERARCHICAL DIRICHLET
in the activation shape parameters and let each individual PROCESSES

image have image-specific variation in the activation shape ,

rather than forcing all images to have a fixed set of activatid™ S2Mpling Component Labels

shape parameters as is the case in the hierarchical DirichleTo sample the component labels we use the sampling
process. In this probabilistic framework we were able tadeaalgorithm based on the clustering properties of (13) and.(14
the unknown template activation shape as well as the randdvie sample the local cluster labels;’s by drawing each of



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, MARCH 200 14

the hj;’s in turn from the conditional posterior distribution,indicate that the component in the template pattern has been
given as introduced to the image before, whereas such parameters do
not exist for the component being introduced to the image

p(hji :tlh_ﬁ’?.’.y’x) _ for the first time. We modify the sampling equations for

x { e py;is X4il6je) if ¢ was used hierarchical Dirichlet processes to take into account ieaag

ap(yji, xjilh_ji, 0,7) 1 £ = tnew specific parameters as described below.

where @ is the set of all component parametefs, is the ~ \We sampleh;;'s using the following conditional distribu-

parameters of one of th& components associated with thdlon:

tth local cluster in imagg, and P(hy; = tlh_;;,0,y,X)

{ ny ' plyji, Xjiluje) if ¢+ was used
XX .
ap(yji, xjilh—ji,0,7) if t =tnew,

v whereu; is the image-specific activation component param-
+=——— [ p(y;i,x;l0)p(6)d6. (17) S0 | in image
S T + 7 Jir =i : eters associated with th¢h local cluster in imageg and

K
mi
p(yji, Xjilhji, 0,7) = Y  —=———p(y;i,X;il0k)
jZ ]l jZ ; Zu mu + ’7 jZ ]l

We sample the global cluster labéls’s using the condi- p(yji’xji|h7ji’0"}/)zz Lp(yﬁ,xﬁlujk) (19a)
tional posterior distribution given as oA M Y
m
p(ljt = k|17jt7 Qay, X) + Z 72 mk o /p(yji,xji|u)p(u|6’k)du (19b)
m/;ﬁ Hi:h]‘i:t p(yjiv in|9k) keB - “
if k£ was used in imagég 7// 3 Nn(6)dudd. (19
x 18 + p(yji, Xjilu)p(ul@)p(0)dudd. (19c)
7 T, o (33655100030 S Samut
if k& is new in imagej. In (19a) the summation is over componentsAin= {k| some

Since we do not have conjugate priors for the componefti for ¢’ 7 i is assigned td:}, representing global clusters
parameters in this model for fMRI data, it is not possible tf1at already have some local clusters in imag@ssigned
evaluate the integrals in (17) and (18) analytically for avnet® them. In this case, since;, is already known, we can
component. We approximate the integrals by drawing a sam§i@'Ply compute the likelihoogh(y;i, x;i[ux). In (19b) the

from the prior and evaluating the likelihood using this ségnpSUmmation is oved3 = {k| no h;,» for i’ # i is assigned
[31]. to k} representing global clusters that have not yet been

assigned in image. In (19c) we model the case where a
B. Sampling Component Parameters new global component gets generatgd. The integrals in _(19b)
, and (19c) cannot be evaluated analytically, so we appraeima
Given the sample for component labels we sample thgs integral by sampling new values fog;, andd;, from their

component parameters. We use Gibbs sampling to samplg,; gistributions and evaluating the likelihopdy,i, x i |ux)
the background meap and the Metropolis algorithm with T

the normal distribution as a proposal for all of the other Samples forl;’s can be obtained from the conditional
parameters. We place a gamma prior®@m@nd~ and sample jistribution given as

values for these parameters from their conditional posteri

distributions [21]. P(lj; = k[1_j¢,u,0,y,X)

My Tion,it P55 i)
< A APPENE'XB 5 if k¥ was used in imagg
AMPLING ALGORITHM FOR HIERARCHICAL DIRICHLET —jt _ e 0.)d
PROCESSES WITHRANDOM EFFECTS ocq IH”}J;? i(f]];x?;'?%p;s;k) " (20)
A. Sampling Component Labels_ - v[[ L, = P(yjis %jilu)p(ul0)p(0) dudd
Because of the presence of image-specific shape parameters, if kis a new component.

the sampling methods for component labels for a hierard:hi%\S

Dirichlet process in (17) and (18) cannot be directly appte (20) analytically. We approximate the integrals by samplin

its extension with random effects. In a hierarchical Dilath . d
; . new values for,;;, andé; and from the priors and evaluating
process, since image-level shape parameters are exae:sco%e likelihood.

of the corresponding component parameters in the template

activation pattern, whenever we decide to generate a neal loc _

cluster for an image-specific activation pattern, we carpym B- Sampling Component Parameters

copy the parameters from the template. However, in the modelGiven h and1 we use Gibbs sampling to sample the back-
with random effects, each image inherits a perturbed versiground meang: and ;;'s and use the Metropolis algorithm
of the parameters in the template, and we should consideth a normal distribution as a proposal for all of the other
two separate cases of known and unknown image-speciigrameters.

parmaters for each of the template component, when generati practice, this MCMC scheme for the hierarchical Dirich-
ing a new local cluster. The known image-specific parametdes process with random effects can mix poorly and get stack i

in the sampling of;;, we cannot evaluate the integrals in
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local maxima where the labels for two image-level composerit3]
are swapped relative to the same two components in the
template. To address this problem and restore the correct
correspondence between template components and imagje-lev
components we propose a move that swaps the labels for t[\glvﬁ
group-level components at the end of each sampling iterati

and accepts the move based on a Metropolis acceptance rule.
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