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Abstract

We describe an application of probabilistic modeling to
the problem of recognizing radio galaxies with a bent-
double morphology. The type of galaxies in question con-
tain distinctive signatures of geometric shape and flux den-
sity that can be used to be build a probabilistic model that is
then used to score potential galaxy configurations. The ex-
perimental results suggest that even relatively simple prob-
abilistic models can be useful in identifying galaxies of in-
terest in an automatic manner.

1. Introduction

In this paper we investigate the problem of identifying
bent-double radio galaxies in the FIRST (Faint Images of
the Radio Sky at Twenty-cm) Survey data set [1]. FIRST
produces large numbers of radio images of the deep sky
using the Very Large Array at the National Radio Astron-
omy Observatory. It is scheduled to cover more that 10,000
square degrees of the northern and southern caps (skies).
Of particular scientific interest to astronomers is the identi-
fication and cataloging of sky objects with a "bent-double”
morphology, indicating clusters of galaxies. (For an exam-
ple, see Figure 1.) Due to the very large number of observed
deep-sky radio sources, e.g. on the order of 108 so far, it is
infeasible for the astronomers to label all of them manually.

2. Data

The data from the FIRST Survey is available in
two different formats. In the “raw image” format,
image cut-outs are available from the FIRST website
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Figure 1. An example of a bent-double (left)
and non-bent-double (right) galaxies. Notice
that the configuration on the right does not
have enough "bend".

(http://sundog.stsci.edu/). The second data format is in the
form of a catalog of features that have been automatically
derived from the raw images by an image analysis program
[5]. Each entry corresponds to a single detectable "blob”
of bright intensity (a sky object) relative to the sky back-
ground: these entries are called components. The "blob” of
intensities for each component is fitted with an ellipse (de-
tails in [5]). The ellipses and intensities for each ellipse are
described by a set of estimated features such as sky position
of the centers, (RA (right ascension) and Dec (declination)),
peak density flux and integrated flux, RMS noise, lengths of
the major and minor axes, and the position angle of the ma-
jor axis of the ellipse counterclockwise from the north. The
goal is to find sets of components that are spatially close and
that resemble a bent-double. In the results in this paper we
focus on the classification of candidate sets of components
that have been detected by an existing spatial clustering al-
gorithm [3] where each set consists of three components
from the catalog (three ellipses). As of 2000, the catalog
contained over 15,000 three-component configurations and
over 600,000 configurations total. Three-component bent-
double configurations typically consist of a center or "core”
component and two other side components called ”lobes”.



The set which we use to build and evaluate our models
consists of a total of 128 examples of bent-double galax-
ies and 22 examples of non-bent-double configurations. A
configuration is labeled as a bent-double if at least two as-
tronomers labeled it as such. Note that the visual identifica-
tion process is the bottleneck in the process since it requires
significant time and effort from the scientists, and is sub-
jective and error-prone. This motivates the creation of auto-
mated methods for identifying bent-doubles. This data set is
also considerably biased towards the bent-double class (i.e.,
bent-doubles are far more prevalent in this training data set
than they are in the catalog in general). This is an artifact
of the manner in which scientists generated a labeled data
set. However, since we use a likelihood-based approach for
ranking candidate objects, where a model is built only on
positive examples (bent-doubles), the training methodology
presented below is not sensitive to such an imbalance in the
training data.

Previous work on automated classification of three-
component candidate sets has focused on the use of
decision-tree classifiers using a variety of geometric and im-
age intensity features [2] [3]. A limitation of the decision-
tree approach is its relative inflexibility in handling uncer-
tainty about the object being classified, e.g., the identifica-
tion of which of the three components should be treated as
the core of a candidate object. A primary motivation for
the development of a probabilistic approach is to provide a
framework that can handle such uncertainties in a coherent
manner. In particular, in this paper, we focus on a prob-
abilistic mixture model that treats the identification of the
center component as a hidden variable, providing a natural
framework for handling this uncertainty both in the model-
building phase (on training data) and in the detection phase
(on test data).

3. Probabilistic Modeling of Bent-Double
Galaxies

We denote a three-component configuration by C =
(c1,c2,¢3), where the ¢;’s are the elliptical components
as described in the previous section. Each component
¢, is represented as a feature vector, where the specific
features will be defined later. Our approach focuses on
building a probabilistic model for bent-doubles: p (C) =
p(c1,ce,c3), the likelihood of the observed c; under a
bent-double model where we implicitly condition on "bent-
double”. Our general approach is to define this likelihood,
then estimate its parameters from training data, and use it to
rank candidate configurations.
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Figure 2. Elliptical components of a hy-
pothetical bent-double. Assuming that la-
bel a would correspond to a core compo-
nent, a good choice of orientations would be
{1-0b,2>a,3—>ctor{l —-¢2—a,3— b}

3.1. Modeling Orientation

By looking at examples of bent-double galaxies and by
talking to the scientists studying them, we have been able
to establish a number of potentially useful characteristics
of the components, the primary one being geometric sym-
metry. In bent-doubles, two of the components will look
close to being mirror images of one another with respect to
a line through the third component. We will call mirror-
image components lobe components, and the other one the
core component. It also appears that non-bent-doubles ei-
ther don’t exhibit such symmetry, or the angle formed at the
core component is too straight — the configuration is not
“bent” enough. Once the core component is identified, we
can calculate symmetry-based features. However, identify-
ing the most plausible core component requires either an
additional algorithm or human expertise. In our approach
we use a probabilistic framework that averages over differ-
ent possible orientations weighted by their likelihood.

To formalize the estimation of the core and the lobes,
consider the following. Without loss of generality assign
the numbers 1, 2, 3 to the components. In general we do not
know which of 1, 2, or 3 is the core (under a bent-double
assumption). By an orientation we mean a mapping of ver-
tices to a set of labels {a, b, ¢} which preserves the neighbor
relation in a cyclical order. Figure 2 shows an example of
elliptical representation with possible orientations. For the
set of three vertices, all 6 mappings preserve the neighbor
relation. (In general, for configurations of n components,
there will be 2n such mappings.) The mapping from com-
ponents 1,2, 3 to a, b, ¢ is defined by orientation 8;. We can



then write
6
p(Ca,Cb,CC) = Zp(ca;cbycc|0i)p(0i); (1)
i=1

i.e., a mixture over all possible orientations. Each orienta-
tion is assumed a priori to be equally likely, i.e., p(6;) = %
Intuitively for a configuration that clearly looks like a bent-
double, the terms in the mixture corresponding to the cor-
rect core component would dominate, while the other core

interpretations would have much lower likelihood.

We represent each component ¢, by three features. Note
that the features can only be calculated conditioned on
a particular mapping since they rely on properties of the
(assumed) core and lobe components. Thus, conditioned
on a particular mapping or orientation 8, assuming label
x € {a,b,c} where a,b,c are defined in a cyclical order,
the features are defined as:

e Angle a; p—the angle formed at the center of the com-
ponent (a vertex of the configuration) mapped to label
T,

o Side rati _|center of = to center of next(z)|

€ Tall0S 8T'2.0 = {center of « to center of prev(z)]’

_ peak flux of nezt(x)
B peak flux of prev(z)’

o Intensity ratios ir, g

and so c;|0 = (a0, ST4,0,ir2,0). Other features are also
possible. Nonetheless this particular set appears to capture
the more obvious visual properties of bent-doubles.

Rather than modeling the full joint distribution of all
features, we make some approximating conditional inde-
pendence assumptions (motivated by the relatively small
amount of training data). In particular, we assume that

P ((Ca, Cp, cc) |0)
= P(aa,0,,0,0c,0) P (57a,0,576,0,57c,0)
x P (iTa,g,in,g, iTC,g) .
For all ratio features r (either of sr,ir), 74,0 - 74,9 - 7c,0 = 1.
For the angle features, aq,9 + apg + cp = m. Assume
that label a corresponds to the choice of the core compo-
nent. If we further assume conditional independence for the
features of any two components we can obtain further sim-
plifications:
P (a9, ap,0,0c,0)
= P(aae) P (an,0]aa) P(acsloas, o)
= P(aqe) P(one);
P (r4,0,76,0,Tc,0)
= P(ra0) P(ro0lrae) P (reolra,0,s,0)
= P(rae) P(rpe)-

Given @, let P, (o) = P(q,9), Py (r) = P(rq,), and
let B, (a) = P(ab,g), By (T) = P(Tb,g). If we know
for every training example which component is the core
(and is mapped to label a) we can then unambiguously esti-
mate each of these distributions by using either parametric
or non-parametric methods (see [4] for more details). In
practice, however, the identity of the core component is un-
known.

We use our model to estimate which components are
likely to be cores, using the following iterative scheme. Ini-
tially, core components for the bent-double examples in the
training set are chosen at random. At each step of the iter-
ation, we build the corresponding P, and P, distributions
from the training set using the currently estimated orien-
tations (and labels a). The estimated P, and P, distribu-
tions are then used on all of the examples in the training
set to calculate the probability of each component being a
core. This is done by summing P (c,, ¢, cc| ;) in Equa-
tion 1 over the 2 (out of 6 possible) orientations 6; that map
that component to label a. The most likely core compo-
nents for each example are chosen to be the cores for the
next iteration (in effect this is an approximation to a full
expectation-maximization procedure, where the most likely
core component is chosen rather than averaging over core
components). The likelihood (probability of the training set
under the currently estimated distributions) is recorded at
each iteration. The algorithm stops either after a prespec-
ified maximum number of iterations or when there are no
changes from one iteration to the next.

This procedure vyields estimates of the P, and P,
distributions for each feature, allowing calculation of
P (cq,ch,cc|8;) for any particular orientation 6;. Thus,
for a new unlabeled example we can now calculate a full
likelihood P (¢,, ¢y, c.) (Equation 1), i.e. we average over
all 6 possible orientations. For a set of unlabeled exam-
ples this yields a set of likelihood scores under the bent-
double model, which can be sorted and thresholded to
yield a receiver-operating characteristic. If the likelihood
of the data under a non-bent-double model is assumed to
be roughly uniform in feature-space, then these likelihoods
will be roughly monotonically proportional to the poste-
rior probability of a bent-double given the observed data.
Here we choose not to build an explicit model of non-bent-
doubles given that they can exhibit considerable variation,
and instead rely on a model only of the positive examples
for detection.

4. Experimental Results

For our experiments we use leave-one-out cross-
validation, where for each of the 150 examples we build



a model using the positive examples from the set of 149
“other” examples, and then score the original example with
this model. The examples are then sorted in decreasing or-
der by their likelihood score and analyzed using receiver op-
erating characteristics (ROC curves). If the two classes can
be perfectly separated by these scores, i.e. scores of all neg-
ative examples would appear after scores of all positive ex-
amples, then the curve would coincide with the left and up-
per sides of the [0, 1] x [0, 1] square. We use Agoc, the area
above the curve, as a measure of goodness of the model. A
random score assignment would yield Aroc = 0.5 while
perfect assignment would have Agroc = 0.

We experimented with both parametric and non-
parametric estimators of the distributions P, and P,. In
a non-parametric setup, we used kernel density estimators
(KDE) with a number of different choices of bandwidth.
The results appear relatively insensitive to the particular
bandwidths chosen. One set of bandwidths resulted in the
plot shown in Figure 3. Alternatively, we tried estimating
P, and P, with normal distributions on transformed fea-
tures with one set of transformations resulting in the plot
shown in Figure 3. Details on the kernel selection and
parametrization methods can be found in [4]. From the plot
we can infer, among other things, that the highest score for
a negative example appears after scores of 74% or 95 out
of 128 positive examples for the KDE-based method and
80% or 103 out of 128 for the parametric method. Thus, the
model appears to be quite useful at detecting bent-double
galaxies.

5. Conclusions

We proposed a probabilistic model for the identification
of bent-double galaxies. A general mixture model initial
framework allows for a principled and effective approach to
orientation estimation. Experimental results based on cross-
validation are accurate enough to suggest that the technique
may be quite useful for automated identification of likely
bent-double candidates from very large astronomy catalogs.
Future work includes a comparison of this method with de-
cision trees.
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Figure 3. ROC curve plot for a model using
angle, ratio of sides, and ratio of intensi-
ties, as features. For the parametric method,
Agroc = 0.0469. For the KDE-based method,
Agroc = 0.0696.
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