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Abstract

Composite likelihood methods provide a wide
spectrum of computationally efficient techniques
for statistical tasks such as parameter estimation
and model selection. In this paper, we present
a formal connection between the optimization of
composite likelihoods and the well-known con-
trastive divergence algorithm. In particular, we
show that composite likelihoods can be stochas-
tically optimized by performing a variant of con-
trastive divergence with random-scan blocked
Gibbs sampling. By using higher-order com-
posite likelihoods, our proposed learning frame-
work makes it possible to trade off computa-
tion time for increased accuracy. Furthermore,
one can choose composite likelihood blocks that
match the model’s dependence structure, mak-
ing the optimization of higher-order composite
likelihoods computationally efficient. We empir-
ically analyze the performance of blocked con-
trastive divergence on various models, includ-
ing visible Boltzmann machines, conditional ran-
dom fields, and exponential random graph mod-
els, and we demonstrate that using higher-order
blocks improves both the accuracy of parameter
estimates and the rate of convergence.

1 INTRODUCTION

Learning the parameters of graphical models through max-
imum likelihood estimation (MLE) is hard in many cases
due to the general intractability of computing the partition
function and its gradient. While it is possible to lever-
age the independence structure of a model to make these
calculations manageable, many models, such as highly-
connected Markov random fields, fall outside this tractable
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category, motivating the need for approximate parameter
estimation techniques.

A general way to perform approximate maximum likeli-
hood estimation is to use MCMC sampling to avoid the
explicit calculation of the partition function or its gradi-
ent (Geyer, 1991; Snijders, 2002). With enough samples,
MCMC-MLE becomes as accurate as MLE; however, the
MCMC chains may take a long time to reach equilibrium
and generate a sufficient number of samples. An alternative
approach is to approximate the objective function itself by
using pseudolikelihood. Maximum pseudolikelihood esti-
mation (MPLE) is computationally fast; however, the esti-
mates it produces may be inaccurate or unreliable (Besag,
1974; Geyer, 1991).

Composite likelihoods are higher-order generalizations of
pseudolikelihood that unlock a potentially wide spectrum
of estimation techniques that lie between MLE and MPLE.
While composite likelihood methods have garnered signifi-
cant interest among statisticians (e.g. Lindsay, 1988; Varin
and Vidoni, 2005; Parner, 2001; Fearnhead and Donnelly,
2002), these techniques have yet to be fully explored by
the machine learning community; a few exceptions include
work by Liang and Jordan (2008) and Dillon and Lebanon
(2009). Asymptotic analysis shows that maximum com-
posite likelihood estimation (MCLE) is statistically more
efficient than the maximum pseudolikelihood estimation
(MPLE) (Liang and Jordan, 2008); however the compu-
tational cost also increases when higher-order relationships
are used. Nonetheless it is possible to trade off computation
time for increased accuracy by switching to higher-order
composite likelihoods.

Meanwhile, contrastive divergence (CD) is a popular ma-
chine learning algorithm that has been used to learn
Markov random fields and deep belief networks (Hinton,
2000). The CD algorithm iterates repeatedly between ob-
taining samples from the current model, used to calculate
a gradient estimate, and optimizing the model parameters
given that gradient. Interestingly, CD also provides a spec-
trum of estimation algorithms between MLE and MPLE. It

1Both authors contributed equally.
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has been shown that CD based on one step of a random-
scan Gibbs sampler (which we refer to as “CD-1” in this
paper1) for models with only visible units is equivalent to
a stochastic MPLE optimization (Hyvärinen, 2006). Fur-
thermore, CD using exact samples from the current model
– obtainable after sufficiently many steps of MCMC sam-
pling (“CD-∞”) – is equivalent to a stochastic MLE opti-
mization. CD-n, which performs n sampling steps, is an
algorithmic variant which, despite having less theoretical
backing, allows one to operate between MLE and MPLE.

In this paper, we introduce blocked contrastive divergence
(BCD) as another principled way to explore the middle
ground between MLE and MPLE. Specifically, we show
that CD based on a random-scan blocked Gibbs sampler
is stochastically equivalent to maximum composite likeli-
hood estimation. Not only does this connection provide
an efficient algorithmic engine for optimizing composite
likelihoods, but it also bridges two different fields and al-
lows for the cross-fertilization of techniques. For instance,
statisticians working on composite likelihood may benefit
from techniques inspired by contrastive divergence, such as
fast-weights persistent CD (FPCD) (Tieleman and Hinton,
2009). Likewise, from a CD point of view, this connection
may provide tools to better understand theoretical proper-
ties of CD and generate improved versions of CD.

In the next section, we review the concepts of pseudolikeli-
hood and composite likelihood. Then we present the theo-
retical connection between maximum composite likelihood
estimation and blocked contrastive divergence. We empir-
ically show that our blocked contrastive divergence algo-
rithm performs well on models such as fully visible Boltz-
mann machines, conditional random fields, and exponential
random graph models. Finally, we review related work and
conclude with directions for future work.

2 LIKELIHOOD, PSEUDOLIKELIHOOD,
AND COMPOSITE LIKELIHOOD

We briefly review the concepts of likelihood, pseudolikeli-
hood, and composite likelihood. In this paper, we consider
models which can be expressed in exponential family form,

p(x|θ) = exp(θTu(x))/Z(θ), (1)

where u(x) is a vector of the sufficient statistics and Z(θ)
is the partition function which normalizes the distribution.

Suppose we have N independent observations from the
model, X = {x1, x2, . . . , xN}, and the goal is to find the
parameter θ which generated the observed data. A stan-
dard technique is to perform maximum likelihood estima-

1In the literature, “CD-1” usually refers to CD with one Gibbs
sweep through all the variables. In this paper, “CD-1” refers to
one Gibbs update step on a randomly selected variable.

tion (MLE), which maximizes the loglikelihood,

L(θ|X) =
N∑
i=1

log p(xi|θ). (2)

The ML estimator, θ̂ml ≡ arg maxθ L(θ|X) has several
well-known properties such as asymptotic consistency and
normality (Lehmann and Casella, 1998), so that

√
N(θ̂ml − θ∗)→ N (0, I(θ∗)−1), (3)

where θ∗ is the true parameter and I(θ) is the Fisher in-
formation. The asymptotic variance I(θ∗)−1/N is a mea-
sure of the estimator’s statistical efficiency, and it is well-
known that MLE is optimal in this regard since it achieves
the Cramer-Rao lower bound — no other consistent estima-
tor has lower asymptotic variance than the ML estimator.

While MLE has nice theoretical properties, its practical ap-
plication is hindered by the general intractability of com-
puting the partition function and its gradient. To see this,
we substitute Eq. (1) into Eq. (2),

L(θ|X) ∝ 1
N

N∑
i

θTu(xi)− logZ(θ), (4)

and take its gradient, which is a standard calculation,

∂L(θ|X)
∂θ

= 〈u(x)〉0 − 〈u(x)〉θ. (5)

where 〈·〉0 denotes the expected value over the empirical
data distribution p0(x) = 1

N

∑
i δ(x−xi), and 〈·〉θ denotes

the expected value over the model distribution p(x|θ), i.e.,

〈u(x)〉θ =
∑
x

u(x) exp(θTu(x))/Z(θ).

To exactly calculate this gradient, we would need to sum
over a number of configurations which is exponential in
the total number of variables.

Maximum pseudolikelihood estimation (MPLE) (Besag,
1974) avoids this computational issue entirely by optimiz-
ing a different objective function: the pseudolikelihood,

PL(θ|X) =
N∑
i=1

M∑
j=1

log p(xij |xi¬j , θ), (6)

where M is the number of variables in the model and x¬j
denotes the set of variables excluding variable j. The op-
timization of PL(θ|X) does not require computing a dif-
ficult partition function, as it requires summing over only
each xi individually.

Like MLE, MPLE is also asymptotically consistent (Lind-
say, 1988); however, in general it has larger asymptotic
variance than MLE, and the MPLE is unable to achieve
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the Cramer-Rao bound (Lindsay, 1988). Furthermore, em-
pirical studies suggest that MPLE is less efficient in prac-
tice and may even fail for models such as Ising mod-
els (Geyer, 1991), conditional random fields (Kumar and
Hebert, 2004), and exponential random graph models (van
Duijn et al., 2009). Since pseudolikelihood overestimates
local dependencies, problems may arise when the depen-
dence among variables is very strong.

The concept of composite likelihood was introduced as an
extension of pseudolikelihood to fill the gap between MLE
and MPLE (Lindsay, 1988). The composite likelihood is
defined as

CL(θ|X) =
N∑
i=1

C∑
c=1

log p(xiAc |x
i
Bc , θ), (7)

where the outer sum is over N observations, the inner sum
is over C different likelihood terms, and Ac and Bc are
subsets of the index set I = {1, 2, . . . ,M} such that Ac 6=
∅ and Ac ∩Bc = ∅.

The estimator obtained by optimizing the composite like-
lihood is called the maximum composite likelihood esti-
mator (MCLE). The definition of composite likelihood is
quite general and contains several special cases. If Ac = I ,
Bc = ∅, and C = 1, Eq. (7) is the full loglikelihood. When
Bc = ∅, Eq. (7) is sometimes referred to as a marginal
composite likelihood, and when Bc = ¬Ac, where ¬Ac =
I/Ac, it is referred to as a conditional composite likelihood.
In this paper, we restrict our focus to conditional compos-
ite likelihoods. We also assume that all Ac in one com-
posite likelihood have the same size, and we let their size
n = |Ac| be the order of the composite likelihood. In this
case, if Ac = {c} for c = 1, 2, . . . ,M , Eq. (7) is the pseu-
dolikelihood.

Like MPLE, MCLE has been shown to be asymptotically
consistent (Lindsay, 1988); furthermore, MCLE has an
asymptotic variance that is smaller than MPLE but larger
than MLE (Liang and Jordan, 2008; Dillon and Lebanon,
2009). It is widely believed that by increasing the size of
Ac (and correspondingly decreasing the size of Bc), one
can capture more dependency relations in the model and
increase the accuracy of the estimates. One can also select
specific Ac and Bc subsets to fit the characteristics of spe-
cific models. Various forms of composite likelihood have
been successfully used in applications such as spatial statis-
tics (Varin and Vidoni, 2005), survival analysis (Parner,
2001), and genetics (Fearnhead and Donnelly, 2002).

The drawback of using a composite likelihood as opposed
to the pseudolikelihood is the increased computational cost
of optimizing the product of higher-order likelihood terms.
The computational cost is in general exponential in the size
of the largest subset Ac. However, it is possible to choose
the composite likelihood terms in such a way that they
match the dependence structure of the actual model. For

certain models with sparse dependence structure, we show
that one may choose the set Ac such that the conditional
probability is computationally tractable (see Figure 4), al-
lowing the optimization of higher-order composite likeli-
hoods to be computationally efficient. Later in the paper
we demonstrate this method on conditional random fields.

3 BLOCKED CONTRASTIVE
DIVERGENCE

Contrastive divergence (CD) is a widely used machine
learning algorithm (Hinton, 2000) which has been suc-
cessfully used to learn a variety of models, including re-
stricted Boltzmann machines and Markov random fields
(Carreira-Perpiñán and Hinton, 2005; Hinton and Salakhut-
dinov, 2006). We briefly review the CD framework and in-
troduce a variant of CD based on composite likelihood.

To introduce contrastive divergence, recall that the gradient
of the likelihood is defined as

∂L(θ|X)
∂θ

= 〈u(x)〉0 − 〈u(x)〉θ. (8)

As mentioned earlier, calculating the second term of the
gradient is usually not tractable due to the presence of the
partition function. Nonetheless, given the ability to sam-
ple from the model distribution p(x|θ), one can perform a
Monte Carlo approximation of the gradient. One way to
obtain a sample from the model distribution is to perform
Gibbs sampling across the individual variables xj until the
Markov chain converges to the equilibrium distribution.
This approach is referred to as CD-∞ (Carreira-Perpiñán
and Hinton, 2005), since the Markov chain is guaranteed to
converge after an infinite number of Gibbs sampling steps.

Hinton (2002) observed that it can be effective to run just a
few steps of the sampler (after initializing the sampler from
the observed data distribution p0(x) = 1

N

∑
i δ(x−xi)), in

order to obtain an approximate gradient. Running one step
of the sampler is known as CD-1, while running n steps is
known as CD-n. The intuition is that one obtains a rough
estimate of the gradient even though the sampler has not
reached the equilibrium distribution. Formally, contrastive
divergence uses the modified gradient,

∂CD(θ|X)
∂θ

= 〈u(x)〉0 − 〈u(x)〉n, (9)

where 〈·〉n represents the average over samples drawn from
the n-th step of a Markov chain governed by p(x|θ), start-
ing from the data distribution p0(x).

It has been shown that the gradient for CD-1 is the stochas-
tic version of the gradient used in maximum pseudolike-
lihood estimation (Hyvärinen, 2006). Thus, CD-1 corre-
sponds to MPLE, CD-∞ corresponds to MLE, and CD-n is
an algorithm that is between MPLE and MLE.
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We propose a new approach, blocked contrastive diver-
gence (BCD), which performs blocked Gibbs sampling
in the MCMC part of CD. Just as CD-1 is equivalent to
MPLE, we show that BCD is equivalent to a stochastic
maximum composite likelihood estimation (MCLE). To
see this, consider the gradient of the composite likelihood,

∂CL(θ|X)
∂θ

= 〈u(x)〉0 − 〈u(x)〉CL, (10)

where

〈u(x)〉CL =
1
C

∑
c

〈〈u(x)〉p(xAc |x¬Ac ,θ)〉0,

where 〈u(x)〉p(xAc |x¬Ac ,θ) denotes the expectation of u(x)
with respect to the conditional distribution p(xAc |x¬Ac , θ)
for fixed values of x¬Ac , and 〈·〉0 still denotes the average
over data distribution p0(x). The derivation of Eq. (10) is
presented in the Appendix.

We can approximate 〈u(x)〉CL with a Monte Carlo approx-
imation. To this end, we define a random-scan blocked
Gibbs sampler (RSBG) based on {Ac} as a blocked Gibbs
sampler which randomly selects one of the subsets Ac with
equal probability 1

C and updates the elements of xAc jointly
conditional on the other elements x¬Ac using the full con-
ditional probability p(xAc |x¬Ac , θ). From the definition
of RSBG, one can see that 〈u(x)〉CL is in fact the average
of samples drawn from the first step of the RSBG sampler
starting from data distribution p0(x). Thus, CD using this
RSBG sampler is indeed a stochastic version of MCLE.
With a sufficiently large number of samples, this Monte
Carlo approximation approaches the gradient of the condi-
tional composite likelihood with blocks {Ac}.

The tight connection between CD and composite likelihood
implies that maximum composite likelihood estimation can
be implemented by using a variant of CD based on the
blocked Gibbs sampler. Since higher-order composite like-
lihoods generally have higher statistical efficiency, BCD is
expected to have higher efficiency as the blocking size n in-
creases. It is reasonable to expect contrastive divergence to
behave better by using the blocked Gibbs sampler. This is
confirmed by the experiments presented later in the paper.

This connection also promotes the transfer of ideas be-
tween CD and composite likelihood. One advantage of
composite likelihood, mainly developed within the statis-
tics community, is the existence of theoretical properties
such as concavity and asymptotic consistency. Meanwhile,
contrastive divergence has spawned many practical algo-
rithmic improvements, such as CD-n and fast weights per-
sistent CD (FPCD) (Tieleman and Hinton, 2009), which
perform well but are lacking in theoretical justification.
One can combine CD-n or PCD with our blocked sam-
pler to improve performance, although it may no longer be
clear which objective functions are being optimized. Fur-
thermore, it is well known that composite likelihoods are

concave and have unique maximal points (Lindsay, 1988).
Thus, this guarantees from a theoretical viewpoint that CD
based on one step of the RSBG sampler, as the stochastic
version of MCLE, should also have unique solutions.

4 EXPERIMENTAL ANALYSIS

We apply blocked contrastive divergence to visible Boltz-
mann machines, conditional random fields, and exponen-
tial random graph models, and we show that blocking can
improve both the accuracy of the estimates and the algo-
rithm’s rate of convergence. In the following sections, we
use the notation “Bn-CDm” to denote the version of CD
with m steps of the random-scan blocked Gibbs sampler
with block size n. We are interested in the behavior of
Bn-CD1, which is equivalent to nth-order composite like-
lihood, as well as B1-CDn (or CD-n), which is widely used
in the contrastive divergence literature.

4.1 BOLTZMANN MACHINES

Boltzmann machines are widely-used models in computer
science and statistical physics which are useful as testbeds
for evaluating parameter estimation methods. In this set of
experiments, we use a visible Boltzmann machine (VBM)
consisting of 8 binary variables, with a matrix of pairwise
potentials W and higher-order potentials weighted by θ:

p(x|W, θ) =
1
Z

exp(xTWx+ θ1
∏
i=1:4

xi + θ2
∏
i=5:8

xi+

θ3
∏
i=3:6

xi + θ4
∏
i=1:8

xi).

We include higher-order potentials in this model to high-
light the fact that BCD can outperform standard CD in
these regimes. For each algorithm, we use a gradient de-
scent step size of 0.001. In the first experiment, we set W
to be a matrix which exhibits a block structure (namely,
0.5 appearing in matrix positions [1,2],[3,4],[5,6],[7,8] and
their transposed entries, and 0 elsewhere); we also arbitrar-
ily set θ1 = 0.8, θ2 = −0.5, θ3 = 4, and θ4 = 3. Using
these parameters, we sampled 2000 data cases to create the
training set and 500 data cases to create a test set. Using
the training set as the data, we ran our algorithms for thou-
sands of iterations. We use randomly selected subsets of
variables of size n as blocks in Bn-CD1.

Figure 1 shows the performance of BCD with various block
sizes relative to B1-CDn when plotted over both iterations
and time. In each iteration, Bn-CD1 calculates conditional
probabilities over 2n configurations while B1-CDn only
calculates 2n probabilities; thus we are able to obtain an
accurate estimate of the actual time it would take to run
these algorithms. Performance is measured by the average
loglikelihood of the test cases given the current model pa-
rameters. Since the model is small, we can calculate these
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loglikelihoods exactly. We see that BCD significantly out-
performs standard CD, which is not surprising because the
high-order potentials define strong dependency structures
in the model, and the n steps of regular Gibbs sampling
in B1-CDn would converge more slowly than one step of
n-order blocked Gibbs sampling in Bn-CD1.

In Figure 2(a), we perform the same experiment 100 times
but with a random set of parameters. The strength for W
(which uses the same block structure as before) is chosen
uniformly from [0,1] and each θ is chosen uniformly from
[-2,2]. We restrict our focus to comparing B3-CD1 and
B1-CD4, whose time complexities are the same per itera-
tion. We show the test-likelihood achieved by B3-CD1 and
B1-CD4 after 10,000 iterations, and we see that B3-CD1
performs as well or better than B1-CD4 over 100 differ-
ent models. We also perform an experiment in Figure 2(b)
where we let the strength of both W and θ vary from 0 to 1
(each point is a different experiment). We see that blocked
contrastive divergence stays stable and obtains accurate pa-
rameter estimates even when the strength of the model po-
tentials increases significantly. In contrast, standard CD
starts to become unstable and inaccurate for models with
higher potential strengths. This plot suggests that blocked
contrastive divergence is especially useful when the vari-
ables in the model are strongly connected. Overall, these
results indicate that BCD rarely performs worse than CD
and in many cases performs significantly better.

4.2 CONDITIONAL RANDOM FIELDS

We apply our methods on a conditional random field (CRF)
for image segmentation (Kumar and Hebert, 2004; Vish-
wanathan et al., 2006). Let x be a binary image, where
xj = ±1 is the label of the j-th pixel. Let y be a noisy
observation of x. In this CRF, the posterior distribution
p(x|y) is directly specified as an Ising model,

p(x|y, θ) =
1
Z

exp(
∑
j

wThj(y)xj +
∑
i∼j

vThij(y)xixj),

(11)
where i ∼ j means pixels i and j are adjacent in the image.
Meanwhile, hj(y) and hij(y) are the node features and
edge features. In CRFs, we can incorporate prior knowl-
edge by defining specific features using that knowledge.
The features hj(y) and hij(y) can be complicated func-
tions which depend on the whole vector of y, and not just
local values like yi and yj . In this setting, the features are
defined as hj(y) = [1, yj ] and hij(y) = [1, cij ], where cij
is calculated by running a Canny edge detector on the noisy
image y. We take cij = 1 if there is no edge detected both
on pixel i and j, and cij = 0 otherwise.

We analyze the performance of Bn-CD1 on this CRF. To
decrease the blocked sampling computation time of Bn-
CD1, which is O(dn) in worst case, where d is the do-
main size of xi (for the binary image example, d = 2), we
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Figure 1: Performance of BCD when compared to standard
CD-n on a visible Boltzmann machine. (a) TOP: Average
test loglikelihood as a function of the number of CD itera-
tions. (b) BOTTOM: Average test loglikelihood as a func-
tion of rescaled time (error bars suppressed for clarity). The
same legend is shared between the two plots.

select blocks whose corresponding graphs have tree struc-
tures when performing RSBG – see Figure 4 for the pos-
sible sub-tree structures. We perform forward-backward
sampling on those subtree structures to draw samples from
the full conditional distribution p(xAc |x¬Ac). This proce-
dure only requires a time complexity ofO(nd2) rather than
O(dn). Thus, we can directly compare Bn-CD1 with B1-
CDn, which also has time complexity linear in n.

In our experiment, we use a chess board image with 32×32
pixels, and we generate 15 noisy images by adding Gaus-
sian noise N (0, 1) to the original image. We use 10 of the
noisy images (a total of 10,240 pixels) for training and 5
images (a total of 5,120 pixels) for testing. The parame-
ters [w, v] are estimated by using Bn-CD1 and B1-CDn.
The step size of gradient descent is 0.001 and the maxi-
mum number of iterations is 1000. Since exact inference is
intractable, we use loopy belief propagation to estimate the
MAP image on test data, and we calculate the average error
rate of the MAP image with respect to the original image.
Figure 3 suggests that the error rate decreases as the block-
ing size increases, and Bn-CD1 outperforms B1-CDn for
the same value of n. Note that since the time complexities
of Bn-CD1 and B1-CDn are approximately the same due
to the use of tree-structured blocks, we obtain significant
computational savings by using Bn-CD1 in this case.



Learning with Blocks: Composite Likelihood and Contrastive Divergence

−5.5 −5 −4.5 −4 −3.5 −3
−5.5

−5

−4.5

−4

−3.5

−3

B1−CD4 Test Log−Likelihood

B
3−

C
D

1 
T

es
t L

og
−

Li
ke

lih
oo

d

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

Strength

A
ve

. T
es

t L
og

−
Li

ke
lih

oo
d

B1−CD4
B3−CD1

Figure 2: A comparison between B1-CD4 and B3-CD1 on
VBMs. (a) TOP: Each dot is a separate model with random
parameters. (b) BOTTOM: The performance of the algo-
rithms, as the strength of the model’s potentials increases.

4.3 EXPONENTIAL RANDOM GRAPH MODELS

The exponential random graph model (ERGM) is a flexible
family of models for complex networks which is widely
used in social network analysis (see Robins et al. (2007)
for an introduction to ERGMs).

Assume we have a graph x, and suppose xij denotes the
edge between i-th node and j-th node, with xij = 1 indi-
cating the existence of an edge between nodes i and j, and
xij = 0 otherwise. The distribution over networks for an
exponential random graph model is the following,

P (x|θ) =
1

Z(θ)
exp(θTu(x)) (12)

where u(x) = [u1(x), . . . , uk(x)] are the global features
of the network, such as the number of edges, the number of
k-stars, and the number of triangles.

An important problem in ERGM research is to estimate the
parameter vector θ given the observed network data. MPLE
and MCMC-MLE are two of the main methods that have
been widely investigated. The use of MPLE on ERGMs
was first suggested by Strauss and Ikeda (1990). Although
MPLE is computationally fast, it is known that estimates
from MPLE are inaccurate for certain networks (Robins
et al., 2007). MCMC-MLE is a more accurate method for
parameter estimation in ERGMs (Snijders, 2002; van Duijn
et al., 2009). However, MCMC-MLE requires the Markov
chain to converge and, hence, requires large amounts of
computation, especially when the network size is large.
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Figure 3: A comparison between B1-CDn and Bn-CD1 on
a CRF. (a) TOP: A visual depiction of the results of binary
image denoising. (b) BOTTOM: Percentage error rates of
B1-CDn and Bn-CD1 with blocking size n. The error de-
creases as the blocking size increases, and Bn-CD1 outper-
forms B1-CDn. The blocks Ac in Bn-CD1 are randomly
selected from the tree-structured subsets in Figure 4.

To trade off computation time for accuracy, we use Bn-CD1
to estimate the parameters of the ERGM. In our experi-
ment, we used the Lazega social network data used in Sni-
jders et al. (2006). In this network of 36 nodes, an edge
denotes a tie between corporate lawyers in the network.
Since each possible undirected edge is a different variable,
our model contains 630 variables. The network statistics
that we employ in our model are the number of edges, the
number of 2-stars, and the number of triangles. Thus, there
are three parameters to fit in our model.

Since there is no ground truth for the parameters for this
data set, we ran MCMC-MLE using the widely-used statnet
R package (Handcock et al., 2008) and used those estimates
as the ground truth. As is usually the case in social network
analysis, we only have one data point (a single network of
lawyers) to use when fitting the three parameters. Never-
theless, it is still possible to successfully perform blocked
contrastive divergence. In Figure 4.3, we show the results
of running B1-CD1, B2-CD1, B3-CD1, and B4-CD1 on
the Lazega data for 20,000 iterations. We use an initial
gradient descent step size of 0.001 which is gradually de-
creased. We plot the L1 error between the current parame-
ter estimates of the algorithm and the parameter estimates
obtained from MCMC-MLE, and we see that using BCD
with higher-order blocks improves the accuracy of the es-
timates when compared to B1-CD1. As in the case of the
visible Boltzmann machines, we choose random blocks of
variables of the same order. Even using a block size of 2
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Figure 4: An illustration of tree-structured composite like-
lihood blocks for an Ising model. These configurations are
used in Bn-CD1 in Figure 3: B3-CD1 randomly selects
blocks of shape “L” or “–”, B4-CD1 uses blocks of shape
“T”, B5-CD1 uses shape “+”, and B7-CD1 uses shape “H”.
The locations and orientations of the blocks are randomly
drawn at each iteration of Gibbs sampling.

shows a substantial amount of improvement over standard
CD. We also see that a relatively small blocking size of 4,
which does not require a lot of calculation in practice, al-
lows the algorithm to estimate parameters which are close
to the ones found by statnet’s MCMC-MLE routine.

We also performed experiments on simulated networks
(which we sampled from ground truth parameters) and
found that BCD also performs well in these cases.

5 RELATED WORK

The theory and application of composite likelihood tech-
niques has garnered increasing interest among statisticians,
e.g. Besag (1974), Lindsay (1988), Parner (2001), Fearn-
head and Donnelly (2002), and Varin and Vidoni (2005).
The machine learning community has also recently begun
to explore composite likelihood techniques. Liang and Jor-
dan (2008) compare discriminative and generative risks and
provide an asymptotic analysis of a unified framework of
techniques which includes composite likelihood. Dillon
and Lebanon (2009) propose stochastic composite loglike-
lihood (SCL) as a method to decrease the computation time
for optimizing the composite likelihood. In their approach,
each blockAc is selected by a certain probability; they also
examine statistical and computational tradeoffs for differ-
ent composite likelihoods, using asymptotic variance as a
measurement. While our random-scan blocked Gibbs sam-
pling strategy is similar to the idea of SCL, we formally
connect MCLE to contrastive divergence and thus obtain a
practical algorithm for optimizing composite likelihoods.
We also investigate the use of tree-structured composite
likelihoods to increase computational efficiency.

Our work is also influenced by Hyvärinen (2006), who de-
veloped the connection between pseudolikelihood and con-
trastive divergence for visible Boltzmann machines. An-
other result by the same author (Hyvärinen, 2007) uncov-
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Figure 5: Performance of BCD with various block sizes
on an ERGM. (a) TOP: L1 error of BCD as the algorithm
progresses. (b) BOTTOM: Evolution of ERGM parame-
ters. Dashed lines indicate values obtained by MCMC-
MLE. Higher-order blocks lead to more accurate estimates.

ers the connection between pseudolikelihood, contrastive
divergence, and score matching. For instance, score match-
ing is equivalent to a version of CD that performs Langevin
updates instead of Gibbs sampling. Thus, there exists an
entire tapestry of related estimation techniques based on
the contrastive divergence framework.

We note that a trivial form of blocked Gibbs sampling is
usually performed when applying contrastive divergence to
models like restricted Boltzmann machines. In RBMs, all
the variables in a hidden or visible layer are conditionally
independent from one another given the other layer, and
thus they can be easily sampled jointly. In contrast, our
work applies blocked sampling to dependent sets of vari-
ables and highlights the benefits of including such non-
trivial joint sampling steps in speeding MCMC conver-
gence. Moreover, we have focused on models with only
visible variables. One can extend our blocked sampling ap-
proach to models with hidden variables, although the con-
nection to composite likelihoods is less clear.

6 CONCLUSION

In this paper, we have studied the relationship between
composite likelihood and blocked contrastive divergence.
We have shown that one can improve the accuracy of
parameter estimates using blocked contrastive divergence
for various models, especially when there exist strong de-
pendencies. We also proposed the use of efficient tree-
structured composite likelihoods for models with sparse
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dependence structures. This approach decreases the time
complexity of MCLE from being exponential in block size
to being linear in block size, making the optimization of
high-order composite likelihoods possible in practice.

There remain many open issues regarding the efficient op-
timization of composite likelihoods. Optimally choosing
the sizes and shapes of the blocks to use in the composite
likelihood is still an open area of research. Furthermore,
combining blocked contrastive divergence with other com-
putational tricks, such as persistent CD with fast weights,
provides interesting directions for future work.
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Appendix

We derive Eq. (10). Starting from the conditional CL (Eq. 7),

CL(θ|X) =

CX
c=1

NX
i=1

log p(x
i
Ac
|xi¬Ac , θ)

= C
NX
i=1

log
exp(θTµ(xi))

Z(θ)
−

CX
c=1

NX
i=1

log
X
xAc

exp(θTµ(xAc , x
i
¬Ac ))

Z(θ)

∝
1

N

NX
i=1

θ
T
µ(x

i
)−

1

C

CX
c=1

1

N

NX
i=1

log
X
xAc

exp(θ
T
µ(xAc , x

i
¬Ac )),

where the second line uses the definition of conditional probabil-
ity and Eq. 1, and the third line cancels Z(θ) and divides by CN .
While the gradient of the first term is 〈µ(x)〉0, the gradient of the
second term (the “negative” part) is below,

∂CL−

∂θ
=

1

C

CX
c=1

1

N

NX
i=1

P
xAc

µ(xAc , x
i
¬Ac ) exp(θTµ(xAc , x

i
¬Ac ))P

xAc
exp(θTµ(xAc , x

i
¬Ac ))

=
1

C

CX
c=1

1

N

NX
i=1

X
xAc

µ(xAc , x
i
¬Ac )p(xAc |x

i
¬Ac , θ)

=
1

C

CX
c

〈〈u(x)〉
p(xAc |x

i
¬Ac

,θ)〉0.

For a Monte Carlo approximation of this gradient, one can obtain
samples by randomly choosing a block c and a data point i, and
performing one blocked Gibbs step using p(xAc |xi

¬Ac , θ).


