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Abstract

Two-mode networks are a natural representation for many
kinds of relational data. These networks are bipartite graphs
consisting of two distinct sets (“modes”) of entities. For ex-
ample, one can model multiple recipient email data as a two-
mode network of (a) individuals and (b) the emails that they
send or receive. In this work we present a statistical model
for two-mode network data which posits that individuals be-
long to latent sets and that the members of a particular set
tend to co-appear. We show how to infer these latent sets
from observed data using a Markov chain Monte Carlo in-
ference algorithm. We apply the model to the Enron email
corpus, using it to discover interpretable latent structure as
well as evaluating its predictive accuracy on a missing data
task. Extensions to the model are discussed that incorporate
additional side information such as the email’s sender or text
content, further improving the accuracy of the model.

Introduction
Event participation data can be studied as a two-mode net-
work where a bipartite graph associates individuals with the
events that they participate in. By explicitly representing
events as a second class of node (a “mode”), two-mode
networks capture more relational structure than the stan-
dard one-mode representation. Two-mode networks have a
rich tradition in the social network literature (Breiger 1974;
Borgatti and Everett 1997) and are a natural representation
for relational data involving co-occurrences, membership, or
affiliation between sets of entities.

Two-mode data arises in email and other digital social me-
dia, where events often have multiple participants. Previous
studies tend to treat multi-recipient emails as a collection of
dyadic interactions (e.g. Eckmann, Moses, and Sergi 2004)
even though such emails can account for more than 40% of
emails exchanged within organizations (Roth et al. 2010).
Two-mode networks also arise in social networking sites,
such as FacebookTM, where ties can be formed between in-
dividuals and non-person entities such as event invitations
and fan pages. With the increasing amount of online social
interaction of all forms, there is a growing need for statistical
models that can make predictions from such data.
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For example, suggesting groups of email contacts can
help users interact separately with family, friends, and
coworkers. Users find it tedious and time-consuming to cre-
ate these groups manually, motivating automatic alternatives
(Roth et al. 2010; MacLean et al. 2011). To address this,
recent work has demonstrated the practical utility of tools
that can suggest possibly forgotten or incorrect recipients in
email (Carvalho and Cohen 2008; Roth et al. 2010).

When studying network data, the goal is often to make
predictions about missing or future data, as well to explore
scientific hypotheses—and ideally to achieve both of these
goals within a principled framework. Complicating factors
can include the presence of missing data (perhaps due to pri-
vacy issues) or sparse data (e.g. the amount of information
per individual is highly skewed). When additional informa-
tion is available, such as attributes or covariates that capture
individual-level or event-level characteristics, we would like
to be able to incorporate such information into our model so
as to improve our understanding of the data.

Statistical network modeling provides a general frame-
work for handling such issues, including prediction, hy-
pothesis testing, sparsity, attribute dependence, and so forth.
Specifically, in this paper, we propose a statistical latent vari-
able model for two-mode data based on the intuition that co-
appearance patterns among individuals are driven in part by
their shared group memberships.

For instance, people in the same research group are likely
to be senders or recipients of the same emails. Similarly, a
set of individuals that form a social clique are likely to attend
the same social events. This is a relatively old idea in sociol-
ogy. Simmel (1955) postulated that people’s social identities
are defined by their membership in various groups such as
family, occupation, neighborhood, and other organizations.
Feld (1981) called these shared activities and interests foci,
and argued they help explain dyadic interaction.

In this paper we “operationalize” these concepts by
proposing a statistical model that automatically infers
groups or foci from event-based network data. Our proposed
model explains co-appearance relationships in event data by
positing that there exist latent sets of individuals that tend to
appear together at the same events. We provide an algorithm
for inferring the latent sets and other model parameters from
observed two-mode data. The inferred latent sets impose a
clustering on the individuals, with the property that individ-



uals may belong to more than one set. This can give insight
into the social structure of the network, making our method
useful for exploratory data analysis. Specifically, the model
allows us to analyze the social identities of the individuals in
terms of the sets they belong to, and the nature of the events
by the sets of individuals that attend them.

Latent variable models such as this offer a sensible
trade-off between modeling flexibility and computational
tractability (Hoff 2009). A variety of related latent vari-
able network models have been described in the literature.
For example, two-mode blockmodels (Borgatti and Everett
1997) assign events and individuals to latent equivalence
classes.

Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003) is a popular latent variable model for text that has also
been applied to network data (Zhang et al. 2007). A key as-
pect of latent variable modeling for networks is the assump-
tion of a hypothetical latent space that characterizes indi-
vidual behavior, where network processes (such as events
relating sets of individuals) are conditionally independent
given the individuals’ representations in that space (Hoff
2009). Many latent variable models, including LDA, can
alternately be seen as matrix factorization methods, where
a T × N co-appearance matrix can be decomposed into a
product of a T ×K matrix with a row for each event and a
K × N matrix with a column for each individual (Buntine
and Jakulin 2006). Our proposed model can also be under-
stood as a matrix factorization method that, unlike methods
such as LDA, explictly decomposes the co-occurrence ma-
trix using a sparse latent set representation of the individuals.

The remainder of the paper develops as follows. We then
describe our model as well as the statistical methods used
to learn the model from data. We illustrate the ability of
the model to extract social structure on a small, two-mode
dataset. Following an exploratory analysis and a set of pre-
diction experiments on multi-recipient email data, we con-
clude with a discussion of related work and future directions.

Model
Our proposed model for two-mode networks assumes that
co-appearance patterns in individual-event data can be
explained by a relatively small number of latent sets of
individuals.1 The goal of the model is to find these latent
sets, resulting in a sparse representation of individuals and
events that cannot be recovered existing matrix factorization
techniques. Intuitively, these sets may correspond to shared
foci such as social cliques, club memberships, or workplace
collaboration. According to our model, events are produced
via a two-step process. Firstly, a number of sets are
activated for the event. In the second step, conditioned on
the list of activated sets, the list of individuals participating
in the event is generated as a noisy realization of the union
of individuals from the active sets. A key property of the
proposed model is that performing inference to recover the

1While two-mode data pertains to any bipartite network be-
tween two distinct classes of entities, we focus on the case where
the classes of entities are individuals and events. However, our
model is applicable to more general classes of two-mode data.

latent sets from the observed event data produces a (possibly
overlapping) clustering of the individuals. By encoding
individuals by their inferred latent set memberships and
events by the sets that are active, this framework provides
a dimensionality reduction for the observed data which
can aid in exploratory data analysis as well as prediction.
Before describing the model formally, we first introduce
some notation:

T Number of events
N Number of individuals
K Number of latent sets
yij Binary value indicating whether individual j is

present at event i
zjk Binary value indicating whether individual j is

a member of set k
wik Binary value indicating whether set k is active

for event i
pjk Probability that individual j appears in an event,

given that they are a member of set k and only
set k is active

θjk A positive real-valued transformation of pjk
qijk Binary value indicating whether a Bernoulli trial

with probability pjk succeeded for event i
ρk Prior probability that each individual is a member

of set k
τi Prior probability that each set is active in event i.

Capitalized versions of the variables above correspond to
matrices, e.g. Y is the co-occurrence matrix. We now de-
scribe the model formally. The model corresponds to assum-
ing that the data are generated by the following process:

For each individual j and set k, sample j’s membership:
zjk ∼ Bernoulli(ρj)

For each event i and set k, sample whether k is active:
wik ∼ Bernoulli(τi)

For each event i and individual j:
For each active set k that j belongs to (wik = zjk = 1):

Flip a weighted coin giving j the chance to attend i:
qijk ∼ Bernoulli(pjk)

yij = 1 iff ∃k : qijk = 1 .

Note that the event data yij are generated via a noisy-
OR over i’s active sets that j belongs to, with every such
set giving individual j an opportunity to attend event i.
Reparametrizing pjk via θjk = − log(1 − pjk), the prob-
ability of the ith individual appearing in the jth event is
therefore conditionally independent of the other entries of
Y given the latent variables and model parameters, and is
given by the noisy-OR likelihood:

p(yij = 1|W,Z,Θ) = 1− exp (−
∑
k

wikzjkθjk) . (1)

The model can also be understood as a factor model in
which the data matrix Y is probabilistically factorized as

p(Y |W,Z,Θ) ∼ f(W (Z ·Θ)T ) , (2)
where f(x) is a Bernoulli distribution on the noisy-OR of
each of the entries of the matrix x, and Z ·Θ is the Hadamard
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Figure 1: Left: Davis’ Southern women data, as presented in Davis, Gardner, and Gardner (1941). Next, posterior estimates of
the predictive distribution, W, and Z (ordered left to right) after fitting the model with K = 2.

(entry-wise) product of Z and Θ. In practice, we also sub-
tract an intercept term ε inside the exp in Equation 1. This
corresponds to including an extra coin flip in the noisy-OR
that determines the probability that an individual appears at
an event, even if she is not a member of any active sets.

We take a Bayesian approach to building the model, al-
lowing us to incorporate prior knowledge about the la-
tent variables and parameters. We place an informative
Beta(εα, εβ) prior on ε with εα = 1 and εβ = 20 so
that the probability of appearing without being a member
of an active set is small. We also place a prior on the
set memberships, ρj ∼ Beta(Zα, Zβ) = Beta(1,K), im-
plying individuals belong to only one set on average. For
each event, we assume the probability of an active set τi ∼
Beta(Wα,Wβ) = Beta(1,K). We let θjk ∼ N(µ, σ).

A useful aspect of the statistical framework is that it al-
lows us to leverage side information about a particular event
by placing additional structure for determining which sets
are active. For example, we can instead model whether a set
is active for a given event with a logistic regression

logit (p(wik = 1)) = Xiβk (3)
whereXi is a p-dimensional vector of covariates concerning
event i, βk ∼ Normalp(0, λI) are the respective parameters
specific to set k, and logit(x) = log(x/(1 − x)). Later we
use this extension in an email context to incorporate infor-
mation about each email’s sender and textual content.

In this formulation of the model one must choose the
number of latent sets a priori. In our experiments be-
low, we show the predictive performance for a particular
dataset varies with different values of K. If overfitting is
a concern, the value of K can be chosen via a model se-
lection procedure using cross-validation, for example. Al-
ternatively, one could consider a nonparametric prior on
the binary matrices W and Z (Wood and Griffiths 2007;
Doshi-Velez and Ghahramani 2009).

Inference
We show how to perform inference on the unknown pa-
rameters and hidden variables of our model, given the ob-
served Y . Maximum likelihood optimization for this model
via gradient-based methods is intractable as the likelihood
function is not concave due to the presence of the hidden
variables. An expectation-maximization algorithm is also
difficult for this model: the dependence between W and Z
makes it impractical to compute the expectation step.

We instead use a Markov chain Monte Carlo (MCMC)
method to perform inference. MCMC algorithms are a tech-
nique for sampling from complex distributions by traversing
the state space via an appropriately chosen Markov chain.
The posterior distribution of our unobserved variables can
be simulated using Gibbs sampling: we iteratively sample
each unknown variable from its full conditional distribution
given all available data and other variables. We can improve
the mixing time by integrating out the set membership prior
probabilities ρ and τ rather than sampling them.

Sampling Z
Given the model, we have the following sampling equation
for Z:

p(zjk = 1|z¬(j,k),W, Y,Θ, ε, Zα, Zβ)

∝ p(Y |W,Z∗,Θ, ε)p(zjk = 1|zj,¬k, Zα, Zβ)

= p(zjk = 1|zj,¬k, Zα, Zβ)

T∏
i=1

p(yij |W,Z∗,Θ, ε)

=

∑
k′ 6=k zjk′ + Zα

K + Zα + Zβ

T∏
i=1

p(yij |W,Z∗,Θ, ε)

where Z∗ is the current Z but with zjk = 1.



Sampling Θ

It is not possible to sample directly from the posterior of
each θjk, so we sample these parameters using Metropolis-
Hastings steps. The Metropolis-Hastings algorithm is an
MCMC method where in each iteration a candidate for the
next sample is generated from a “proposal” distribution,
such as a Gaussian centered at the current location of the
chain. The proposed sample is accepted with some proba-
bility, otherwise the previous sample is duplicated. In our
case, in each Gibbs iteration we propose each θjk’s new
value from θjk ∼ Beta(θα, θβ) and accept this new value
with probability

min
(

1, rjk =
p(Y |W,Z,Θ(t), ε)

p(Y |W,Z,Θ(t−1), ε)

p(Θ(t)|θα, θβ)

p(Θ(t−1)|θα, θβ)

)
.

If the new value is rejected, the previous value is retained.
We only need to sample θjk as above where zjk = 1, rather
than allN×K elements. If zjk = 0, we can sample θjk from
its prior p(θjk|θα, θβ). The intercept term ε is also sampled
using similar Metropolis-Hastings updates.

Optimizing W and β
From Bayes rule we can also derive the posterior distribu-
tions of W and β:

p(wik| . . .) ∝ p(Y |W,Z,Θ)p(wik|X,β) , and
p(βkp| . . .) ∝ p(W |X,β)p(βkp)

It is straightforward to sample the W s and βs using
Metropolis-Hastings updates using a procedure similar to
that for Θ. However, we obtained better mixing perfor-
mance by instead maximizing their posterior probabilities
via a logistic regression conditioned on the other variables
and the observed covariates X . This strategy is reminiscent
of iterated conditional modes (ICM) (Besag 1986). While
there is little theory on the long-run convergence properties
of MCMC sampling used in conjunction with ICM, such a
strategy can work well in practice.

Making Predictions
To make predictions we use S samples of the posterior distri-
bution obtained via MCMC to compute a Monte Carlo esti-
mate ŷij of the posterior predictive probability for individual
j occurring at a given event i:

p(yij = 1) ≈ ŷij =
1

S

S∑
s=1

p(yij = 1|W (s), Z(s),Θ(s), ε(s)) .

If entries of the Y matrix are unavailable, under a missing
completely at random (MCAR) assumption we can sample
them in each iteration of the MCMC procedure using Equa-
tion 1, and then use the equation above at prediction time.
We use this method in our prediction experiments on held-
out data in the Experiments section.

Algorithmic Considerations
The sampling equations described above require us to fre-
quently compute the current log-likelihood, so it is impor-
tant to make this computation efficient. Due to the form
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Figure 2: Latent set statistics after fitting the model with
K = 20 to the Enron dataset. Top: Proportion of a given
latent set size. Bottom: Proportion of events having a given
number of active sets.

of the log-likelihood, a sparse implementation is straightfor-
ward. Note that we have a log(ε) term in the log-likelihood
for each element in the set {(i, j) : yij = 0,

∑
k wikzjk =

0 ∀k} and an additional log(1−ε) term in the log-likelihood
for each element in the set {(i, j) : yij = 1,

∑
k wikzjk =

0}. Only for the other entries do we need to compute
p(yij = 1|W,Z,Θ, ε) explicitly. This makes the log-
likelihood scale with the number of edges instead of the
number of entries in Y , allowing us to exploit the sparsity
found in many real world networks.

As with all MCMC algorithms, it is important to consider
the mixing behavior and convergence properties of the pro-
cedure. We typically find the log-likelihood of the data con-
verges within 30-50 Gibbs sampling iterations. As expected
with a Metropolis-Hastings step the Θ and ε parameters tend
to change slowly. However, this may not be an issue in prac-
tice as small changes in these parameters do not have a great
effect on our parameters of interest (e.g. estimates of the
posterior predictive density or the set memberships). In pre-
liminary experiments we found that the algorithm benefits
greatly from a sensible initialization strategy. We initial-
ize each row of the Z matrix by computing the normalized
counts of the observed sets and sampling from the resulting
multinomial distribution. We also increase the robustness
of the algorithm to local modes by simulating from several
MCMC chains.
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Figure 3: Proportion of events for which each individual is present and the given latent set is active, sorted from largest to
smallest. Dark bars correspond to members of the set. Red dots indicate estimates of pjk for members of the sets.

Illustrative Example
We illustrate the use of the model on a small social net-
work dataset collected by Davis concerning the attendance
of women at a set of social events (Davis, Gardner, and
Gardner 1941). The data have a long tradition in the social
network analysis literature as a means to investigate methods
for two-mode data (Freeman 2003).

According to Freeman’s meta-analysis of previous studies
using this dataset, the general consensus is that the women
are partitioned into two groups2 whose events occasionally
include members of both groups. We explore this by fitting
our model with K = 2 latent sets. Figure 1 shows the mean
of 50 samples from the posterior of W and Z after 50 itera-
tions as burn-in. In Figure 1, the posterior predictive distri-
bution shows general agreement with the true Y (e.g. events
7, 8, and 9 draw from both groups of women). The success
of the model that fits the data satisfactorily with two latent
groups both validates the appropriateness of the model for
such data and supports the hypothesis that there are in fact
two groups of women. The analysis here shows the least cer-
tainty regarding the set membership of Dorothy, Olivia, and
Flora. It is sensible for the model to be uncertain regarding
the memberships of these individuals, as they only appeared
at events attended by both groups.

Evaluation
In this section we use the Enron dataset (Klimt and Yang
2004) to demonstrate the utility of the model qualitatively
via an exploratory data analysis (EDA) task, and quantita-
tively with missing data prediction experiments. We employ
a two-mode network representation consisting of individu-
als and the emails that they participated in as senders or re-
ceivers. For visualization purposes we consider a subset of
7319 multirecipient emails among the 191 individuals who

2Group 1 includes Evelyn, Laura, Theresa, Brenda, Charlotte,
Frances, Eleanor, Pearl, and Ruth. Group 2 includes Verne, Myrna,
Katherine, Sylvia, Nora, Helen, Dorothy, Olivia, and Flora.

participated in more than 150 emails between the years of
1999 and 2002.

When fitting our model to the training data using MCMC,
we simulate 3 chains with 50 iterations each using the Gibbs
sampler described previously on the training data. Hyperpa-
rameter settings can be found in the Model section.

Exploratory Analysis of Email Data
A primary strength of the model is the dimensionality reduc-
tion that results from the clustering of individuals into over-
lapping latent sets. The recovered sets help us understand
the structure of the network, making the model a useful tool
for exploratory data analysis.

After fitting the model with a chosen number of latent sets
K, we can plot the distribution of set sizes (i.e. sums of the
columns of Z) and the number of active sets per event (ie.
sums of the rows of W ) as seen in Figure 2. Distributions
such as these are typical of fits from the model. The typical
latent set size is around 5; occasionally we see sets of larger
sizes of 20 to 35.

The activity of members for a few latent sets is shown in
Figure 3. Each bar denotes the proportion of times a given
individual was present for an event for which that set was
active (ie.

∑
i wikzjk for a given individual j and set k).

Members of the set have darker bars, and the red dots indi-
cate model estimates for their probability of appearing, pjk.
Though a variety of people may be present when a given
set is active (only the top 30 are shown in the Figure 3), the
model finds a smaller set of individuals that are typical of the
set. The model determines these sparse sets simultaneously
with individuals’ membership strength, as shown by the red
dots. In Table 1 we list the members of these sets and include
the covariates with the top five largest parameters βkp. Note
that some senders strongly indicate a particular latent set is
active, even when that sender is not a member of the latent
set. This illustrates the model can capture asymmetries be-
tween senders and sets, an effect which can be present in real
networks (e.g. one person sends out emails with humorous
pictures and a subset of recipients rarely gives a response).



Figure 4: Network of greater-than-average co-activity
among the latent sets after fitting the presented model on
Enron email data with with K = 20.

The ability to model overlapping sets provides a tool for
exploring the co-activity of the sets themselves. In Figure 4
we plot a network denoting the sets which co-appear more
often than average. Three sets were isolates and were omit-
ted from the figure. Some interesting structure becomes ap-
parent, where a clique of sets 5, 11, 16, and 20 tend to co-
appear with each other but not with sets 9 and 10, for exam-
ple. This sort of decomposition is difficult to achieve with
traditional blockmodels or clustering techniques.

Prediction Experiments
The model can also be used for prediction tasks such as pre-
dicting the presence of individuals given information about
an event. As shown in Equation 2, the model can be under-
stood as a constrained matrix factorization method, where
W is constrained to be binary and Z · Θ is sparse. While
these constraints are essential to the latent set interpretation,
the model pays a penalty in representational power relative
to unconstrained factorization methods. As might be ex-
pected, unconstrained matrix factorization approaches such
as LDA appear to provide slightly better predictive perfor-
mance, and hence may be better suited if prediction is the
primary goal.

We therefore focus our experimental comparison on
methods that produce an interpretable latent set represen-
tation of the data. The purpose of these experiments is not
to demonstrate the model’s predictive power, but instead to
validate its ability to infer sets that capture the latent struc-
ture of the data. Specifically, we compare our model to K-
means clustering, a method for assigning data points to K
non-overlapping latent clusters. The clusters that K-means
extracts are a similar notion to our latent sets, making it a
natural competitor to our model.

In our experiments, we also consider several extensions
to the model where covariates specific to email data are in-
corporated via extra observed variables X and correspond-
ing regression coefficients β in the logistic regression on the
W s in Equation 3. The covariates we considered were topic
variables extracted from the text of the emails, as well as the
identity of senders and the day of the week. The topics, in-
tended to correspond to semantic themes such as “sports” or

“politics”, were extracted using the lda package3 with the
number of topics set to 20. We introduced binary variables
Xim for each topic m indicating whether email i contained
a word from that topic.

Experimental Setup
For the experiment we fit our models to a training set con-
sisting of 80% of email events. Observations from the re-
maining test set were chosen to be missing completely at
random with probability p = .5.

Predictions from the model can be used to rank the most
likely individuals to appear. For missing observations in the
test set we consider the top M -ranked individuals predicted
by the model and ask if any of these individuals are present
in the event. Models are compared using their average per-
formance on this task across events for M = 5, 10, and 20.
These values correspond to the far left side of the receiver-
operating characteristic curve. We also consider the area un-
der the receiver-operating characteristic curve (AUC) for the
task of filling in all missing entries.

After estimating Z and Θ from the training set with K
sets, for each event we must decide which sets are active
while conditioning on observed information (e.g. individu-
als who are known to be present/absent, available covariates
X , and so on). For each chain we sampled thewik values for
all test events, using the values after 15 iterations for com-
puting predictions.

For comparison, we applied K-means for each value of
K, clustering the rows (events) of Y . Missing entries of the
matrix were set to zero at training time. To perform predic-
tion we assigned each test data point to its closest cluster and
used the cluster means to rank individuals.

Results
In Table 2 we provide the results of our missing data exper-
iment. Without any covariates our model outperforms the
K-means method for K = 20, 40 and 60, and for each pre-
diction task. We conjecture that this is due to the ability of
our model to handle noise via a probabilistic formulation.

Unsurprisingly, the model containing information about
the email’s sender outperforms the model without any co-
variates. The difference in performance when we add in
topic model covariates (labeled “Both”) is not statistically
significant. This indicates that individuals tend to send
emails to the same sets of people, and that in a relative sense
the content of emails is not particularly informative.

We note that the difference in performance of our model
versus the baseline (K-means) is most pronounced at the
highest precision.

Discussion
Our proposed model considers two-mode network data to
be represented by latent sets of individuals that may be ac-
tive for each observed event. Connections can be drawn be-
tween the proposed model and other models and algorithms
in the literature. The model presented here can be viewed

3Available at www.cran.r-project.org/web/packages/lda/ .



Set Members pjk Set Members pjk Set Members pjk
robert.quick 0.89 jeffrey.shankma 0.73 mark.elliott 0.99
mary.ogden 0.84 shari.stack 0.68 susan.flynn 0.85
becky.tlucek 0.71 paul.thomas 0.66 carolina.waingo 0.66
deb.korkmas 0.64 per.sekse 0.62 mzeleanor 0.46
fred.lagrasta 0.54 susan.flynn 0.49
sara.shackleton 0.33 marc.r.cutler 0.25
steven.kean 0.28
thomas.gros 0.24
Top Covariates βkp Top Covariates βkp Top Covariates βkp
eric.bass 12.61 kaye.ellis 7.2 kay.chapman 7.44
martin.cuilla 9.19 carol.clair 6.6 beverly.stephen 4.66
daren.farmer 8.76 sara.shackleton 6.51 communications enron 1.74
monique.sanchez 8.27 mark.taylor 6.34 customers think get 1.27
jim.schwieger 8.21 janette.elberts 5.73 kay lynn meeting 1.27

Table 1: Top: Estimates of pjk for members of selected latent sets after fitting the model to the Enron data with K = 20.
Bottom: Five covariates with the largest effect for predicting that the given set is active.

as Bayesian matrix factorization, as per Equation 2. The
chief difference between our model and other factor models
is the sparsity constraints that are used to impose the latent
set interpretation for the model. Wood and Griffiths (2007)
propose a similar model, but they use an Indian Buffet Pro-
cess prior on Z, do not use a Θ matrix, and the noisy-OR
likelihood that they use assumes each additional active set
contributes equally to the probability of an appearance. Fac-
tor modeling with a noisy-OR likelihood has been applied
to link analysis before (Singliar and Hauskrecht 2006). The
model of Singliar and Hauskrecht is similar to our proposed
model, but a Z matrix is not used so the representation is
not sparse, and thus, it cannot be interpreted as a latent set
model. The work here is most similar to the single-mode
network model of Mørup, et al (2010) (Mørup and Schmidt
2010) who use an IBP prior on Z, though their parameter-
ization of the noisy-OR likelihood resembles a stochastic
block model rather than allowing for varying membership
strengths as in the proposed model. Another model lever-
aging the IBP for network modeling is due to Miller, Grif-
fiths and Jordan (2009) , who propose a sparse latent feature
model for single-mode network data. Single-mode matrix
factorization models such as this typically have a bilinear
form Y ∼ f(ZWZT ). K-means clustering can be viewed
as a latent variable method, where objects are assumed to
each belong to a latent cluster. The latent sets in our model
can be viewed as cluster memberships that are allowed to
overlap. Although K-means is a non-probabilistic method,
it is closely related to probabilistic mixture models, and has
a matrix factorization interpretation similar to the factoriza-
tion that our model performs.

Relative to deterministic models likeK-means, the noisy-
OR likelihood essentially puts a noise model on top of the
factorized representation of the data matrix. This is reminis-
cent of Gelman et al. (2010), where a stochastic component
extends Guttman scaling to a probabilistic framework. From
another view, our model can be understood as a spike-and-
slab distribution, where we place a large portion of probabil-
ity on a small set of individuals and place a small probability,
ε, on all other occurrences.

Co-clustering (also known as bi-clustering) is a related
approach to finding latent structure in matrix data, where
a compressed approximation of matrix data is obtained by
simultaneously clustering the rows and columns of the ma-
trix. A general formulation of co-clustering can be found in
Banerjee et al. (2004).

Two prominent approaches to statistical modeling of net-
work data are exponential family random graph models
(ERGMs) (Wasserman and Pattison 1996; Robins et al.
2007) and latent variable methods (Hoff 2009). ERGMs
have been applied in the past to two-mode data (Wang et
al. 2009), though currently these methods do not scale well
to large networks, as are common in social media.

Methods for ranking the relevance of items to a small set
of query objects have been explored previously (Ghahra-
mani and Heller 2005; Roth et al. 2010), however these
methods do not extract latent set representations from the
data. Alternative inference methods which have also been
applied to Bayesian factorization models could potentially
be applied here, such as the particle filter of Wood and
Griffiths (2007) or variational inference (Doshi-Velez and
Ghahramani 2009; Jaakkola and Jordan 1999).

Conclusion
We presented a generative model for two-mode network data
that assumes there exist latent sets of individuals that tend
to co-appear, and showed how to infer these sets using a
Markov chain Monte Carlo algorithm. The latent sets im-
pose a clustering on the individuals, providing insight into
the social structure of the network. We apply the model to
an exploratory analysis of multiple recipient email commu-
nication data. Extensions for the model were given, showing
how to model the influence of covariates such as topics in
the email text and sender-specific effects. Predictive exper-
iments on a missing data task demonstrated that the model
performs well relative to K-means clustering, and showed
the benefits of incorporating covariates. Although we fo-
cused on email data, the methods presented here can readily
be applied to other types of two-mode data.



Top 5 Top 10 Top 20 AUC
Number of Sets 20 40 60 20 40 60 20 40 60 20 40 60
K-Means 0.486 0.493 0.538 0.559 0.603 0.618 0.786 0.846 0.862 0.887 0.898 0.902
No Covariates 0.609 0.694 0.71 0.698 0.773 0.798 0.855 0.907 0.931 0.904 0.931 0.94
Topics 0.616 0.651 0.663 0.709 0.738 0.753 0.868 0.879 0.894 0.901 0.918 0.935
Senders 0.667 0.742 0.76 0.768 0.825 0.843 0.919 0.936 0.957 0.929 0.953 0.963
Both 0.689 0.726 0.749 0.794 0.819 0.83 0.919 0.934 0.946 0.921 0.943 0.952

Table 2: Experimental results on a missing data task.
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