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Abstract

Data sets that characterize human activity over time through collections of time-
stamped events or counts are of increasing interest in application areas as human-
computer interaction, video surveillance, and Web data analysis. We propose a
non-parametric Bayesian framework for modeling collections of such data. In
particular, we use a Dirichlet process framework for learning a set of intensity
functions corresponding to different categories, which form a basis set for repre-
senting individual time-periods (e.g., several days) depending on which categories
the time-periods are assigned to. This allows the model to learn in a data-driven
fashion what “factors” are generating the observations on a particular day, includ-
ing (for example) weekday versus weekend effects or day-specific effects corre-
sponding to unique (single-day) occurrences of unusual behavior, sharing infor-
mation where appropriate to obtain improved estimates of the behavior associated
with each category. Applications to real-world data sets of count data involving
both vehicles and people are used to illustrate the technique.

1 Introduction

As sensor and storage technologies continue to improve in terms of both cost and performance,
increasingly rich data sets are becoming available that characterize the rhythms of human activity
over time. Examples include logs of radio frequency identification (RFID) tags, freeway traffic
over time (loop-sensor data), crime statistics, email and Web access logs, and many more. Such
data can be used to support a variety of different applications, such as classification of human or
animal activities, detection of unusual events, or to support the broad understanding of behavior in
a particular context such as the temporal patterns of Web usage.

To ground the discussion, consider data consisting of a collection of individual or aggregated events
from a single sensor, e.g., a time-stamped log recording every entry and exit from a building, or the
timing and number of highway traffic accidents. For example, Figure 1 shows several days worth of
data from a building log, smoothed so that the similarities in patterns are more readily visible.

Of interest is the modeling of the underlying intensity of the process generating the data, where
intensity here refers to the rate at which events occur. These processes are typically inhomogeneous
in time (as in Figure 1), as they arise from the aggregated behavior of individuals, and thus exhibit
a temporal dependence linked to the rhythms of the underlying human activity. The complexity
of this temporal dependence is application-dependent and generally unknown before observing the
data, suggesting that non- or semi-parametric methods (methods whose complexity is capable of
growing as the number of observations increase) may be particularly appropriate.

Formulating the underlying event generation as an inhomogeneous Poisson process is a common first
step (see, e.g., [1,4]), as it allows the application of various classic density estimation techniques to
estimate the time-dependent intensity function (a normalized version of the rate function; see Sec-



tion 2). Techniques used in this context include kernel density estimation [2], wavelet analysis [3],
discretization [1], and nonparametric Bayesian models [4, 5].

Among these, nonparametric Bayesian ap-

proaches have a number of appealing advan- 60
tages. First, they allow us to represent and rea-
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tion to be shared among several related but dif-
fering sets of observations (e.g., multiple days
of data). This second point is crucial for many
problems, as we rarely obtain many observa-
tions of exactly the same process under exactly
the same conditions; instead, we observe mul-
tiple instances which are thought to be similar, but may in fact represent any number of slightly
differing circumstances. For example, behavior may be dependent on not only time of day but also
day of week, type of day (weekend or weekday), unobserved factors such as the weather, or other
unusual circumstances. Sharing information allows us to improve our model, but we should only
do so where appropriate (itself best indicated by similarity in the data). By being Bayesian, we can
remain agnostic of what data should be shared and reason over our uncertainty in this structure.

Figure 1: Count data from a building entry log
observed on ten Mondays, each smoothed using a
kernel function [2, 6] to enable visual comparison.

In what follows we propose a non-parametric Bayesian framework for modeling intensity functions
for event data over time. In particular, we describe a Dirichlet process framework for learning the
unknown rate functions, and learn a set of such functions corresponding to different categories. Indi-
vidual time-periods (e.g., individual days) are then represented as additive combinations of intensity
functions, depending on which categories are assigned to each time-period. This allows the model
to learn in a data-driven fashion what “factors” are generating the observations on a particular day,
including (for example) weekday versus weekend effects as well as day-specific effects correspond-
ing to unusual behavior present only on a single day. Applications to two real-world data sets, a
building access log and accident statistics, are used to illustrate the technique.

We will discuss in more detail in the sections that follow how our proposed approach is related to
prior work on similar topics. Broadly speaking, from the viewpoint of modeling of inhomogeneous
time-series of counts, our work extends the work of [4] to allow sharing of information among
multiple, related processes (e.g., different days). Our approach can also be viewed as an alternative
to the hierarchical Dirichlet process (HDP, [7]) for problems where the patterns across different
groups are much more constrained than would be expected under an HDP model.

2 Poisson processes

A common model for continuous-time event (counting) data is the Poisson process [8]. As the
discrete Poisson distribution is characterized by a rate parameter ), the Poisson process! is charac-
terized by a rate function A(t); it has the property that over any given time interval 7, the number of
events occurring within that time is Poisson with rate given by A = fT A(t). We shall use a Bayesian
semi-parametric model for A(¢), described next.

Let us suppose that we have a single collection of event times {7;} arising from a Poisson process
with rate function A(¢), i.e.,

{7} ~ Plr; At)] (1)

"Here, we shall use the term Poisson process interchangeably with inhomogeneous Poisson process, mean-
ing that the rate is a non-constant function of time ¢.




where A(t) is defined on t € [—00, 00]. We may write A(t) = v f(t), where v = [*°_A(t) and f(t)
is the intensity function, a normalized version of the rate function. A Bayesian model places prior
distributions on these quantities; by selecting a parametric prior for v and a nonparametric prior for
f(t), we obtain a semi-parametric prior for \(¢). Specifically, we choose

¥~ T(a,b) 16 = [ Ks0)dc(e) G ~ DP[aGy|

where I is the gamma distribution, K is a kernel function (for example a Gaussian distribution)
and DP is a Dirichlet process [9] with parameter o and base distribution G. The Dirichlet process
provides a nonparametric prior for f(t), such that (with probability one) f has the form of a mixture
model with infinitely many components: f(t) = >_; w; K (t; 0;). If desired we may also place prior

distributions on some or all of these quantities (e.g., a, {a, b}, or the parameters of Gy) as well.

Dirichlet processes and their variations [7,9-11] have gained recent attention for their ability to
provide representations consisting of arbitrarily large mixture models. In particular, they have been
the subject of recent work in modeling intensity functions for Poisson processes defined over time [4]
and space—time [5].

2.1 Monte Carlo Inference

For the Poisson process model just described, the likelihood of the data {7;}, ¢ = 1... N at some
time 7" is given by

T
p({7i}i7, f(+)) = exp (—/_ vf(t)> WNHf(n)
which, as T — oo (i.e., as we observe a complete data set) becomes
{7}, F()) = [exp(=y)7"] [H f(n)] 2)

The rightmost term (term involving f) has the same form as the likelihood of the 7; as i.i.d. samples
from the mixture model distribution defined by f. As in many mixture model applications, it will be
helpful to create auxiliary assignment variables z; for each 7;, indicating with which of the mixture
components the sample 7; is associated. The complete data likelihood is then

p({Tivzi};fYaf(')) - [eXp(fﬁy)’YN] [H wz«;K(Ti;ezqz)‘| .

Inference is typically accomplished using Markov chain Monte Carlo (MCMC) sampling [9].
Specifically, although the posterior for v has a simple closed form, p(y|{7;}) x T'(N + a,1 + b),
sampling from f is more complicated. Samples from f can be drawn in a variety of ways. One
of the most common methods is the so-called “Chinese Restaurant Process” (CRP, [7, 9]), in which
the relative weights w; are marginalized out while drawing the assignment variables z;. Such exact
sampling approaches work by exploiting the fact that only a finite number of the mixture compo-
nents are occupied by the data; by treating the unoccupied clusters as a single group, the infinite
number of potential associations can be treated as a finite number. The operations involved (such as
sampling values for ¢; given a collection of associated event times 7;) are easier for certain choices
of K and G than others; for example using a Gaussian kernel and normal-Wishart distribution, the
necessary quantities have convenient closed forms [9].

Another, more brute-force way around the issue of having infinitely many mixture components is to
perform approximate sampling using a “truncated” Dirichlet process representation [12, 13]. As de-
scribed in [12], for a given «, data set size [V, and tolerance ¢, one can compute a maximum number
of components M necessary to approximate the Dirichlet process with a Dirichlet distribution using
the relation

e~ 4N exp|—(M —1)/q]

and in this manner, can work with finite numbers of mixture components. This representation will
prove useful in Section 3.



The truncated DP approximation is helpful primarily because it allows us to sample the (complete)
function f(t) (as compared to only the “occupied” part in the CRP formulation). Given a set of
assignments {z; } occupying (arbitrarily numbered) clusters 1....J, we can sample the weights w;
in two steps. First, we sample the occupied mixture weights, w; (j < J), and the total unoccupied
weight w = Z?JOH wj, by drawing independent, Gamma-distributed random variables according to
I'(N;,1) and I'(a, 1), respectively, and normalizing them to sum to one. The values of weights w; in
the unoccupied clusters (j > .J) can then be sampled given w using the stick—breaking representation
of Sethuraman [14].

Note that the truncated DP approximation highlights the importance of also sampling « if we hope
for our representation to act non-parametric in the sense that it may grow more complex as the data
increase, since for a fixed « and e the number of components M is quite insensitive to N. For more
details on sampling such hyper-parameters see e.g. [10].

2.2 Finite Time Domains

Our description of non-parametric Bayesian techniques for Poisson processes has so far made im-
plicit use of the fact that the domain of f(¢) is infinite. When the domain of f is finite, for example
[0, 1], a few minor complications arise. For example, the kernel functions K (-) should properly
be defined as positive only on this interval. One possible solution to this issue is to use an alternate
kernel function, such as the Beta distribution [4]. However, this means that posterior sampling of the
parameters 6 is no longer possible in closed form. Although methods such as Metropolis-Hastings
may be used [4], they can be highly dependent on the choice of proposal density.

Here, we take a slightly different approach, drawing truncated Gaussian kernels with parameters
sampled from a truncated Normal-Wishart distribution. Specifically, we define

_ Nt ,0)xa(p)
Joy N (w5 p o2)da

K(t:0 = [p,0%]) (1, 0%] ~ x1 (1) X1 () NW (11, o)

where x1(t) is one on [0, 1] and zero elsewhere and AV is the normal-Wishart distribution. Sam-
pling in this model turns out to be relatively simple and efficient using rejection methods. Given the

restrictions imposed on y and o, one can show that the normalizing quantity Z = fol N (z; p, 0?) is
always greater than one-third. Thus, to sample from the posterior we simply draw from the original,
closed form posterior distribution, discarding (and re-sampling) if © ¢ [0,1], o & [0, 1], or with
probability 1 — (32)~1.

3 Categorical Models

As mentioned in the introduction, we often have several collections d = 1... D of observations,
{74i} withi = 1... N, arising from D instances of the same or similar processes. If these processes
are known to be identical and independent, sharing information among them is relatively easy—we
obtain D observations N, with which to estimate v, and the 7,4; are collectively used to estimate
f(t). However, if these processes are not necessarily identical, sharing information becomes more
difficult.

Yet it is just this situation which is most typical. Again consider Figure 1, which shows event data
from ten different Mondays. Clearly, there is a great deal of consistency in both size and shape,
although not every day is exactly the same, and one or two stand out as different. Were we to
also look at, for example, Sundays or Tuesdays (as we do in Section 4), we would see that although
Sunday and Monday appear quite different and, one suspects, have little shared information, Monday
and Tuesday appear relatively similar and this similarity can probably be used to improve our rate
estimates for both days.

In this example, we might reasonably assume that the category memberships are known (for ex-
ample, whether a given day is a weekday or weekend, or a Monday or Tuesday), though we shall
relax this assumption in later sections. Then, given a structure of potential relationships, what is a
reasonable model for sharing information among categories? There are, of course, many possible
choices; we use a simple additive model, described in the next section.



3.1 Additive Models

The intuition behind an additive model is that the data arises from the superposition of several
underlying causes present during the period of interest. Again, we initially assume that the category
memberships are known; thus, if a category is associated with a particular day, the activity profile
associated with that category will be observed, along with additional activity arising from each of
the other categories present.

Let us associate a rate function A.(t) = 7. f.(t) with each category in our model. We define the rate
function of a given day d to be the sum of the rate functions of each category to which d belongs.
Denoting by s the (binary-valued) membership indicator, i.e., that category c is present during day
d, we have that \g(t) = >_ Ac(t).

c:Sqe.=17""¢

At first, this model might seem quite restrictive. However, it matches our intuition of how the data
is generated, stemming from the presence or absence of a particular behavioral pattern associated
with some underlying cause (such as it being a work day). In fact, we do not want a model which
is too flexible, such as a linear combination of patterns, since it is not physically meaningful to say,
for example, that a day is only “part” Monday. To learn the profiles associated with a given cause
(e.g., things that happen every day versus only on weekdays or only on Mondays), it makes sense
to take an “all or nothing” model where the pattern is either present, or not. This also suggests
that other methods of coupling Dirichlet processes, such as the hierarchical Dirichlet process [7],
may be too flexible. The HDP couples the parameters of components across levels, but only loosely
relates the actual shape of the profile, since it allows components to be larger or smaller (or even
disappear completely). In [7], this is a desirable quality, but in our application it is not. Using an
additive model allows both a consistent size and shape to emerge for each category, while associating
deviations from that profile to categories further down in the hierarchy.

Inference in this system is not significantly more difficult than in the single rate function case (Sec-
tion 2). We define the association as [y4;, z4;], where yg4; indicates which of the categories generated
event 74;. It is easy to sample y4; according to p(ya; = c|{ c(£)}) o< [Ae(7ai)] / [0 Aer (Tai)]-

3.2 Sampling Membership

Of course, it is frequently the case that the membership(s) of each collection of data are not known
precisely. In an extreme case, we may have no idea which collections are similar and should be
grouped together and wish to find profiles in an unsupervised manner. More commonly, however,
we have some prior knowledge and interpretation of the profiles but do not wish to strictly enforce
a known membership. For example, if we create categories with assigned meanings (weekdays,
weekends, Sundays, Mondays, and so on), a day which is nominally a Monday but also happens
to be a holiday, closure, or other unusual circumstances may be completely different from other
Monday profiles. Similarly, a day with unusual extra activity (receptions, talks, etc.) may see
behavior unique to its particular circumstances and warrant an additional category to represent it.

We can accommodate both these possibilities by also sampling the values of the membership indi-
cator variables s, i.e., the binary indicator that day d sees behavior from category c. To this end,
let us assume we have some prior knowledge of these membership probabilities, pg.(Sqc); we may
then re-sample from their posterior distributions at each iteration of MCMC.

This sampling step is difficult to do outside the truncated representation. Although up until this point
we could easily have elected to use, for example, the CRP formulation for sampling, the association
variables {yq;, zq; } are tightly coupled with the memberships s4. since if any y4; = ¢ we must have
that s4. = 1. Instead, to sample the s4. we condition on the truncated rate functions A.(t), with
truncation depth M chosen to provide arbitrarily high precision. The likelihood of the data under
these rate functions for any values of {s4.} can then be computed directly via (2) where

Y= Z SdeTVe and ft) = 7_1 Z SdeAe(t)-

In practice, we propose changing the value of each membership variable sq4. individually given
the others, though more complex moves could also be applied. This gives the following sequence of
MCMC sampling: (1) given a truncated representation of the {\.(¢)}, sample membership variables
{54c}; (2) given {A.(t)} and {s4.}, sample associations {z4; }; (3) given associations {z4; }, sample



50, 50y

40 40

30| 30

20 20

10| 10

12 18 24 0 12 18 24 0 12 18 24

(a) Sundays (b) Mondays (c) Tuesdays

Figure 2: Posterior mean estimates of rate functions for building entry log data, estimated individ-
ually for each day (dotted) and learned by sharing information among multiple days (solid) for (a)
Sundays, (b) Mondays, and (c) Tuesdays. Sharing information among similar days gives greatly
improved estimates of the rate functions, resolving otherwise obscured features such as the decrease
during and increase subsequent to lunchtime.

category magnitudes {~.} and a truncated representation of each f.(t) consisting of weights {w;}
and parameters {6, }.

4 Experiments

In this section we consider the application of our model to two data sets, one (mentioned previously)
from the entry log of people entering a large campus building (produced by optical sensors at the
front door), and the other from a log of vehicular traffic accidents. By design, both data sets contain
about ten weeks worth of observations. In both cases, we have a plausible prior structure for and
interpretation of the categories, i.e., that similar days will have similar profiles. To this end, we create
categories for “all days”, “weekends”, “weekdays”, and “Sundays” through “Saturdays”. Each of
these categories has a high probability (pz. = .99) of membership for each eligible day. To account
for the possibility of unusual increases in activity, we also add categories unique to each day, with
lower prior probability (pg. = .20) of membership. This allows but discourages each day to add a
new category if there is evidence of unusual activity.

4.1 Building Entry Data

To see the improvement in the estimated rate functions when information is shared among similar
days, Figure 2 shows results from three different days of the week (Sunday, Monday, Tuesday).
Each panel shows the estimated profiles of each of the ten days estimated individually (using only
that day’s observations) under a Dirichlet process mixture model (dotted lines). Superimposed in
each panel is a single, black curve corresponding to the total profile for that day of week estimated
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using our categorical model; so, (a) shows the sum of the rate functions for “all days”, “weekends”,

and “Sundays”, while (b) shows the sum of “all days”, “weekdays”, and “Mondays”. We use the
same prior distributions for both the individual estimates and the shared estimate.

Several features are worth noting. First, by sharing several days worth of observations, the model can
produce a much more accurate estimate of the profiles. In this case, no single day contains enough
observations to be confident about the details of the rate function, so each individually—estimated
rate function appears relatively smooth. However, when information from other days is included,
the rate function begins to resolve into a clearly bi-modal shape for weekdays. This “bi-modal” rate
behavior is quite real, and corresponds to the arrival of occupants in the morning (first mode), a lull
during lunchtime, and a larger, narrower second peak as most occupants return from lunch.

Second, although Monday and Tuesday profiles appear similar, they also have distinct behavior, such
as increased activity late Tuesday morning. This behavior too has some basis in reality, correspond-
ing to a regular weekly meeting held around lunchtime over most (though not quite all) of the weeks
in question. The breakdown of a particular day (the first Tuesday) into its component categories is
shown in Figure 3. As we might expect, there is little consistency between weekdays and weekends,
quite a bit of similarity among weekdays and among just Tuesdays, and (for this particular day) very
little to set it apart from other Tuesdays.

We can also check to see that the category memberships s4. are being used effectively. One of
the Mondays in our data set fell on a holiday (the individual profile very near zero). If we average
the probabilities computed during MCMC to estimate the posterior probability of the s4. for that
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Figure 3: Posterior mean estimates of the rate functions for each category to which the first Tuesday
data might belong. For comparison, the total rate (sum of all categories) is shown as the dotted
line. (a) The “all days” category is small, indicating little consistency in the data between weekdays
and weekends; (b) the “weekdays” category is larger, and contains a component which appears
to correspond to the occupants’ return from lunch; (c) the “Tuesday” category has modes in the
morning and afternoon, perhaps capturing regular meetings or classes; (d) the “unique” category (a
category unique to this particular day) shows little or no activity.
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Figure 4: Profiles associated with individual-day categories in the entry log data for several days
with known events (periods between dashed vertical lines). The model successfully learns which
days have significant unusual activity and associates reasonable profiles with that activity (note that
increases in entrance count rate typically occurs shortly before or at the beginning of the event time).

particular day, we find that it has near-zero probability of belonging to either the weekday or Monday
categories, and uses only the all-day and unique categories.

We can also examine days which have high probability of requiring their own category (indicat-
ing unusual activity). For this data set, we also have partial ground truth, consisting of a number
of dates and times when activities were scheduled to take place in the building. Figure 4 shows
three such days, and the corresponding rate profiles associated with their single-day categories.
Again, all three days are estimated to have additional activity, and the period of time for that activity
corresponds well with the actual start and end time shown in the schedule (dashed vertical lines).
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4.2 Vehicular Accident Data

Our second data set consists of a database of ve-
hicular accident times recorded by North Car-
olina police departments. As we might expect
of driving patterns, there is still less activity on
weekends, but far more than was observed in
the campus building log.

As before, sharing information allows us to  Figure 5: Posterior mean and uncertainty for a
decrease our posterior uncertainty on the rate single day of accident data, estimated individually
for any particular day. Figure 5 quantifies this (red) and with data sharing (black). Sharing data

idea by showing the posterior means and (point-  considerably reduces the posterior uncertainty in
wise) two-sigma confidence intervals for the the profile shape.

rate function estimated for the same day (the

first Monday in the data set) using that day’s

data only (red curves) and using the category-based additive model (black). The additive model
leverages the additional data to produce much tighter estimates of the rate profile.

As with the previous example, the additional data also helps resolve detailed features of each day’s
profile, as seen in Figure 6. For example, the weekday profiles show a tri-modal shape, with one
mode corresponding to the morning commute, a small mode around noon, and another large mode
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Figure 6: Posterior mean estimates of rate functions for vehicular accidents, estimated individually
for each day (dotted) and with sharing among multiple days (solid) for (a) Sundays, (b) Mondays,
and (c) Fridays. As in Figure 2, sharing information helps resolve features which the individual days
do not have enough data to reliably estimate.

around the evening commute. This also helps make the pattern of deviation on Friday clear, showing
(as we would expect) increased activity at night.

5 Conclusions

The increasing availability of logs of “human activity” data provides interesting opportunities for the
application of statistical learning techniques. In this paper we proposed a non-parametric Bayesian
approach to learning time-intensity profiles for such activity data, based on an inhomogeneous Pois-
son process framework. The proposed approach allows collections of observations (e.g., days) to
be grouped together by category (day of week, weekday/weekend, etc.) which in turn leverages
data across different collections to yield higher quality profile estimates. When the categorization
of days is not a priori certain (e.g., days that fall on a holiday or days with unusual non-recurring
additional activity) the model can infer the appropriate categorization, allowing (for example) au-
tomated detection of unusual events. On two large real-world data sets the model was able to infer
interpretable activity profiles that correspond to real-world phenomena. Directions for further work
in this area include richer models that allow for incorporation of observed covariates such as weather
and other exogenous phenomena, as well as modeling of multiple spatially-correlated sensors (e.g.,
loop sensor data for freeway traffic).
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