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ABSTRACT
Many social networks can be characterized by a sequence of dyadic
interactions between individuals. Techniques for analyzing such
events are of increasing interest. In this paper, we describe a gener-
ative model for dyadic events, where each event arises from one of
C latent classes, and the properties of the event (sender, recipient,
and type) are chosen from distributions over these entities condi-
tioned on the chosen class. We present two algorithms for inference
in this model: an expectation-maximization algorithm as well as a
Markov chain Monte Carlo procedure based on collapsed Gibbs
sampling. To analyze the model’s predictive accuracy, the algo-
rithms are applied to multiple real-world data sets involving email
communication, international political events, and animal behavior
data.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition—Statisti-
cal Models

General Terms
Relational data, collapsed Gibbs sampling

1. INTRODUCTION
Social network analysis is the study of interactions among sets

of entities, e.g. people, organizations, or nations. The dominant
traditional approach to the statistical modeling of social networks
focuses on graph-based representations with edges that persist in-
definitely, such as friendships between individuals [10], or models
where edges can be born and have long and indefinite durations,
such as co-author relations from publication data [6] or online so-
cial networks [18].

In contrast, we focus on social network data that can be viewed
as a set of relational events [5, 4]. Each event is an instantaneous
or finite-duration action involving two or more entities. For ex-
ample, one might model instant messaging data as a set of rela-
tional events, where each event is an instantaneous directed edge
with a sender node and a receiver node. This type of relational
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data has received far less attention in the data mining and social
network literature than static network data. Nonetheless dynamic
network data is becoming increasingly common, particularly in a
world with many different digital modes of time-stamped commu-
nications, e.g., Facebook comments, email messages, and instant
messaging.

In particular, in this paper, we investigate the problem of pre-
dicting the rate at which individuals will send and receive events
in the future, given historical event data. We focus on dyadic in-
stantaneous events. We will assume a stationary Poisson process
for event generation—the extension to non-stationarity is likely to
be important for practical applications but is beyond the scope of
the present paper. For each event let s ∈ S denote the identity of
the sender, r ∈ R denote the identify of the receiver, and a ∈ A
denote the type of the event. We begin by initially focusing on the
common situation where the sets of possible senders and receivers
are the same (S = R and |S| = n) and there exists a single type of
event (|A| = 1)—we will return to the more general situation later
in the paper.

Let λsr be the (unknown) Poisson rate of event generation be-
tween sender s and receiver r. Assuming independence of the pair-
wise Poisson processes, the superposition of independent Poisson
processes is itself Poisson with rate λ =

P
s

P
r λsr: this is the

rate at which events are generated in the network as a whole. One
can show the probability that the next event in the network corre-
sponds to edge (s, r) can be written as

P (s, r) =
λs,rP

s′
P
r′ λs′,r′

=
λs,r
λ

i.e., the probability of the edge (s, r) occurring next is equal to
the Poisson rate of (s, r) divided by the total rate for the network
[21]. The set of P (s, r) probabilities sums to 1. Thus, one repre-
sentation of the network process is that (a) events occur globally
in the network with rate λ, and (b) the probability that each such
event involves a specific pair s, r is determined by a multinomial
distribution over n2 possible pairs.

We focus on the problem of modeling P (s, r) for event data (and
more generally P (s, r, a) where a indicates event type). Note that
we can convert these probabilities to event rates λs,r simply by
multiplying our estimate of P (s, r) by the network rate λ. For
large networks with many events, estimating the global rate of event
generation λ will be relatively easy. In contrast, estimating P (s, r)
will generally be much more difficult since there are n2 such event-
pairs.

A simple baseline approach to estimating the P (s, r) matrix is
to simply count the number of entries observed for each pair s, r in
the historical data set and then use a frequency-based estimate for
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Figure 1: Number of edges for which we observe a given num-
ber of events in a data set of international dyadic events [15].

prediction, or a smoothed version of the same, e.g.,

P̂ (s, r) =
Ns,r + αP

s′
P
r′(Ns′,r′ + α)

, 1 ≤ s, r ≤ n (1)

where Ns,r is the number of observed events from s to r in the
training data, and α is a smoothing parameter (e.g. from a sym-
metric Dirichlet prior). A fundamental problem in this context is
sparsity: many pairs s, r will have observed counts of Ns,r = 0
even though there may be a non-zero probability of actor s send-
ing an event to actor r. For example, in a particular university, re-
searcher A and researcher B might never have communicated in the
past, but they may well communicate in the future. The problem is
particularly acute in the so-called “cold-start” scenario, where we
are observing a new network (e.g., a new class of students at a uni-
versity) when we have very small amounts of sparse event data on
which to base our predictions. The use of smoothing parameters
in the probability estimates (e.g., the use of α above) will certainly
ameliorate the situation, but these smoothing parameters will tend
to spread the probability mass evenly over all possible events. This
will not be helpful for prediction in large sparse networks where
the probability of events between pairs is highly skewed, i.e., some
pairs of individuals will have a much higher probability of commu-
nicating, as seen in Figure 1.

A natural idea in this context is to learn groupings of the individ-
uals and “borrow strength” from relevant groups when estimating
individual pair probabilities. For example, say graduate student A
is in group 1 and graduate student B is in group 2. If there is evi-
dence that groups 1 and 2 collaborate then we might predict that A
and B will communicate in the future, even if they have not done so
in the past. A well known approach of this type in social network
analysis is stochastic blockmodeling. A blockmodel is defined as a
mapping of approximately equivalent actors into blocks, along with
a statement regarding the relations between the blocks [2]. Stochas-
tic blockmodels have a rich history in the statistical modeling of
social networks [8, 13, 26], both for exploratory analysis and an-
swering substantive questions. Statistical learning approaches can
be used to infer both likely partitions of actors and the probability
of block-wise interactions [25].

However, stochastic blockmodels are typically used to model

static binary relationships among individuals, e.g., binary edges in-
dicating friendship. In contrast, we are interested in the relative
frequency of events over time between pairs of individuals. Specif-
ically we model pairwise probabilities P (s, r), namely the proba-
bility that the next event in the network will occur between s and r,
rather than modeling the probability that an edge exists in a static
context between s and r, e.g., P (es,r = 1).

The specific contributions of this paper can be summarized as
follows. We propose a latent class model that is similar in spirit
to stochastic blockmodels but that is designed to model relational
event data. We demonstrate the capabilities of the model on both
simulated and real data sets, interpreting the latent class informa-
tion that the model extracts from data. Furthermore, we show how
one can directly assess the predictive accuracy of these models and
illustrate how our proposed approach can be readily extended to
make inferences in the presence of missing event information, e.g.,
learning from events where we know the sender of an event but do
not know the receiver.

The organization of this paper is as follows. After presenting the
model formally, we discuss two methods for performing inference.
A simple illustration of the model’s use on simulated data is pre-
sented, followed by an evaluation of its predictive performance on
multiple real world data sets. We conclude with a discussion of the
empirical results and future directions.

2. THE MARGINAL PRODUCT MIXTURE
MODEL

Motivated by dyadic interaction, we propose a model for events
with a sender, receiver, and action type. Formally, we consider
a possible set of events E = {(s, r, a) : s ∈ S, r ∈ R, a ∈
A} where S,R,A are the sets of possible senders, receivers, and
action types respectively. The observed data then form a sequence
of T events, which we denote D = {ei : ei ∈ E, i = 1, . . . , T}.

As discussed earlier, our goal is to estimate the probabilities
P (s, r, a) that the next event in the network will be from sender
s to receiver r and of type a, i.e., a multinomial consisting of
ns × nr × na probabilities that sum to 1. Rather than modeling
individual triples (s, r, a), the approach we take is to hypothesize
the existence of a finite set of latent classes (or clusters) for events,
each characterized by conditionally-independent marginal distribu-
tions over senders S, receiversR, and actionsA. This allows us to
approximate the full array P (s, r, a) with a parsimonious mixture
of simpler distributions that require far fewer parameters to specify
than the unconstrained model with O(ns × nr × na) parameters.

We assume that events are exchangeable within a latent class of
events. We further assume the event’s sender, receiver, and action
type are conditionally independent given the latent class. Under
this model, each new edge arises from latent class c with probabil-
ity πc; next, the attributes of the edge are drawn from associated
multinomial distributions over likely senders, receivers, and action
types for the given class (where θ, φ, ψ respectively parameterize
each of these distributions). For example, φc,s = P (s|c) is the
probability of selecting sender s given class c. We use standard
non-informative Dirichlet priors on these multinomials, allowing
for straightforward derivation of posterior distributions of interest.

This results in the following simple generative model for sets of
relational events with C latent classes, where ~α, ~β, ~γ, and ~δ are the
parameters of associated Dirichlet priors:

1. Draw the class distribution ~π ∼ Dirichlet(~α)

2. Draw distributions: ~θc ∼ Dirichlet(~β), ~φc ∼ Dirichlet(~γ),
~ψc ∼ Dirichlet(~δ) for all c ∈ {1, . . . , C}



α π c r

s

a

θ

φ

ψ

β

γ

δ

T C

Figure 2: Graphical model for the MPMM.

3. For each event

(a) Draw c ∼ Multinomial(~π), the event’s class

(b) Draw s|c ∼ Multinomial(~θc), the event’s sender

(c) Draw r|c ∼ Multinomial(~φc), the event’s receiver

(d) Draw a|c ∼ Multinomial(~ψc), the event’s type

The graphical model is shown in Figure 2. Note that the pa-
rameter vector ~π has dimension C, and for each c the vectors ~θc,
~φc, and ~ψc have dimension ns, nr , and na respectively. From the
above generative model we can immediately derive the likelihood,
where Φ is the set of all parameters in the model:

P (D | Φ) =

TY
t=1

CX
c=1

P (ei = (si, ri, ai), ci = c|Φ)

=

TY
t=1

CX
c=1

P (si|~θc)P (ri|~φc)P (ai|~ψc)P (c|~π)

=

TY
t=1

CX
c=1

θc,siφc,riψc,aiπc (2)

One may interpret the above expression as follows: each event’s
probability incorporates the product of the probabilities of its sender,
receiver, and action type given its latent class; we then sum over the
possible latent classes, weighting by the probability of each class.
Note that for each latent class c the model predicts the probability
of edge (s, r, a) as the product of marginal distributions. Thus the
model can be conceptualized as a marginal product mixture model
(MPMM) and is related to recent work on factorized representa-
tions for multi-view data sets [20].

It is informative to look at the representational capabilities of this
model compared to traditional blockmodels as used in social net-
work modeling. For example, consider the sociomatrix in Figure
3a, where each element (s, r) denotes the probability of the next
event being sent by actor s and received by actor r. This pattern
of interactions could be described by a blockmodel (as shown in
Figure 3c) in terms of a partition of the senders, a partition of the
receivers, and block-wise probabilities. This blockmodel would
require 6× 7 = 42 parameters to capture these blockwise interac-
tions. In our model, however, we see a more parsimonious expla-
nation in terms of classes of activity. As shown in Figure 3b, there
are four classes of events where events within each class occur with
the same probability.

The model is general enough to handle several useful special
cases. For instance, the model allows for asymmetric behaviors
among nodes; a given individual might initiate more events under
one class and receive more events under another class. When there

is a single event type, then na = 1: step 3d of the generative model
is ignored and the derivations and algorithms require trivial modifi-
cation. When events are undirected, we use a single set of parame-
ters for both senders and receivers. Also, the situation |S ∩R| = ∅
(ie. a bipartite graph) requires no modifications to the model.

While the MPMM makes strong assumptions regarding the con-
ditional independence of edge attributes and does not incorporate
any sequential dependence, we show such methods can be useful
for exploring and modeling large, real-world data sets.

3. INFERENCE
We wish to infer the parameters of the model and the latent class

assignments for events, given observed data D and the likelihood
of Equation 2. This is a typical mixture model likelihood for which
there is no closed-form for the posterior distribution and there-
fore we must resort to approximate inference methods. We present
two algorithms for learning the posterior distribution of the latent
class assignments as well as point estimates of the parameters Φ: a
collapsed Gibbs sampler (CGS) and an expectation-maximization
(EM) algorithm.

3.1 Collapsed Gibbs Sampling
First we provide a Markov chain Monte Carlo algorithm that uses

Gibbs sampling to iteratively simulate the conditional posterior dis-
tribution of the latent classes. For each event, we need the distri-
bution over possible classes conditioned on everything else. Note
that since the model uses conjugate priors we can integrate out ~π,
~θc, ~φc, and ~ψc for all c in closed form (and avoid the uncertainty
associated with them while sampling). We are left with the follow-
ing conditional distribution which may be used to sample the latent
assignment for observation i:

P (ci = c|c¬i,D,Φ) ∝
`
M¬i
c + α

´„ U¬i
c,si

+βPns
s=1 U

¬i
c,s+nsβ

«
„

V ¬i
c,ri

+γPnr
r=1 V

¬i
c,r+nrγ

«„
W¬i

c,ai
+δPna

a=1W
¬i
c,a+naδ

«
where Mc =

P
i I(ci = c), Uc,s =

P
i I(ci = c, si = s),

Vc,r =
P
i I(ci = c, ri = r), and Wc,a =

P
i I(ci = c, ai = a).

The parameters α, β, γ, and δ are smoothing parameters from sym-
metric Dirichlet priors. Note c¬i ≡ {cj : j 6= i}, so M¬i

c =P
j 6=i I(cj = c) for example. The derivation of the above sam-

pling equation follows closely to that of collapsed Gibbs sampling
for latent Dirichlet allocation [11]. Given the class assignments for
all events, we can compute estimates for the model parameters.

π̂c =
Mc + αP
cMc + Cα

θ̂c,s =
Uc,s + βPns

s=1 Uc,s + nsβ

φ̂c,r =
Vc,r + γPnr

r=1 Vc,r + nrγ

ψ̂c,a =
Wc,a + δPna

a=1Wc,a + naδ

Algorithm 1 shows the procedure in full. We assess conver-
gence by monitoring the log-likelihood of the training data under
the model. While 20-30 iterations often appears sufficient for con-
vergence, in all the experiments that follow we use 1000 iterations.

We obtain better predictive performance by running multiple chains
of the CGS algorithm and averaging over the posterior predictive
distributions for the next edge (we will refer to this as MCGS).
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Figure 3: (a): A matrix of observed counts for all possible events where darker shades indicate higher frequency. (b): MPMM
models the data via a low-dimensional representation indicating groups of events. This structure is apparent after reordering the
rows and columns. Stochastic blockmodels can model such data either by having (c) many small homogeneous blocks or (d) with a
few inhomogeneous blocks; the latter misses some of the structure.

Algorithm 1 CGS Algorithm for MPMM
for i = 1 to T do

Initialize ci with random integer between 1 and C
end for
Compute count matrices M,U, V,W
while not converged do

for i = 1 to T do
Decrement M [ci], U [ci, si], V [ci, ri],W [ci, ai]
for c = 1 to C do
η[c]← (M [c] + α)

“
U [c,si]+βP

c U [c,si]+nsβ

”
“

V [c,ri]+γP
c V [c,ri]+nrγ

”“
W [c,ai]+δP

c W [c,ai]+naδ

”
end for
ci ← IndexOf(RandomMultinomial(1, η))
Increment M [ci], U [ci, si], V [ci, ri],W [ci, ai]

end for
end while
π̂ ← Normalize(M + α)

θ̂ ← NormalizeColumns(U + β)

φ̂← NormalizeColumns(V + γ)

ψ̂ ← NormalizeColumns(W + δ)

3.2 Expectation-Maximization Algorithm
As an alternative to CGS, we derive an EM algorithm that pro-

vides the marginal posterior density for the latent class assignment
for each event. The algorithm iteratively maximizes the expected
complete-data loglikelihood (which includes the latent class infor-
mation) thus giving us the maximum likelihood estimates for the
parameters. After randomly initializing the P (ci = c) we itera-
tively perform the following computations for all c ∈ {1, . . . , C}:

E-step:

P (ci = c|si, ri, ai,Φ) ∝ θc,siφc,riψc,ai

M-step:

θ̂c,s =

PT
i=1 I(si = s)P (ci = c) + βPT

i=1 P (ci = c) + nsβ

φ̂c,r =

PT
i=1 I(ri = r)P (ci = c) + γPT

i=1 P (ci = c) + nrγ

ψ̂c,a =

PT
i=1 I(ai = a)P (ci = c) + δPT

i=1 P (ci = c) + naδ

We continue iterating until the log-likelihood between iterations

changes by less than ε = 1e − 8 for the experiments in this paper,
and repeat this 5 times.

3.3 Scalability
Space and time complexity of the learning algorithms is impor-

tant for large data sets. Inference and prediction for the MPMM is
well-suited to sparse data since the likelihood is only defined over
events that occurred, rather than over all events that could have oc-
curred. Because of this, the training time for our proposed approach
scales linearly in the number of observed events T . In contrast,
other statistical network models (such as stochastic blockmodels
[19] and latent-space models [12]) scale as O(n2) or worse, since
the likelihood is defined over all pairs of individuals, whether an
edge between them exists or not. For large sparse networks, scal-
ing as O(T ) is likely to be much more computationally efficient
than scaling as O(n2). For CGS, the space complexity is O(T +
C(ns+nr +na)) and the time complexity isO(TC) per iteration
as each Gibbs scan requires only a single pass through the data set.
The time complexity for the EM algorithm isO(TC(ns+nr+na))
per iteration and the space complexity isO(TC+C(ns+nr+na)).

4. AN ILLUSTRATIVE EXAMPLE
Finding latent event classes may be a helpful tool for exploratory

data analysis in large data sets, in a manner similar to how topic
models can facilitate the grouping of collections of documents by
latent topics [11].

To illustrate the use of our model for exploratory data analysis,
we use a data set of international events involving entities from 450
countries over the 2000-2005 time period [15]. This data has been
used by political scientists to explore international relations and
policy. The authors used an automated system for coding 3,575,897
events from Reuters news reports. Each of these events takes the
form: [entity A] [action] [entity B]. Actions in this data set con-
sist of 247 possible types, such as judicial action, military action,
and so forth. This data is well suited to the MPMM approach; not
only does it contain a very large number of possible edges (roughly
13, 000×13, 000×247) which is difficult to model using standard
social network analysis methods, but it also distinguishes between
different types of activity.

To illustrate how the MPMM can work on bipartite graphs, we
consider a subset of the data concerning US international relations,
restricting senders to be US-based and recipients to be foreign. Af-
ter applying MCGSwithC = 50 (see Section 5.1 for a discussion of
hyperparameter settings), we can explore typical senders, receivers,
and action types as shown in Table 1 for three particular classes.



Top Senders Pr. Top Receivers Pr. Top Actions Pr.
Class A
United States : Government agents 0.47 Greece : NA 0.05 Sports contest 0.59
United States : Athletes 0.29 Australia : Government agents 0.02 Agree or accept 0.14
United States : Nominal agents 0.04 United Kingdom : NA 0.02 Optimistic comment 0.04
United States : Police 0.04 Canada : Government agents 0.02 Comment 0.03
United States : Occupations 0.04 France : NA 0.01 Control crowds 0.03
United States : Ethnic agents 0.03 Belgium : Government agents 0.01 Improve relations 0.01
Class B
United States : Military 0.88 Iraq : Government agents 0.17 Comment 0.19
United States : Government agents 0.08 Iraq : National executive 0.07 Military raid 0.14
United States : Military hardware 0.01 Iraq : Military 0.05 Military clash 0.10
United States : Officials 0.00 Iraq : Ethnic agents 0.05 Military occupation 0.10
United States : Police 0.00 Iraq : Intangible things 0.04 Shooting 0.10
United States : Motor vehicles 0.00 NA : Insurgents 0.04 Political arrests and detentions 0.04
Class C
Top Senders Pr. Top Receivers Pr. Top Actions Pr.
United States : National executive 0.73 Palestine : National executive 0.22 Discussions 0.44
United States : Diplomats 0.15 Israel : National executive 0.12 NA 0.22
United States : Government agents 0.06 Israel : Government agents 0.09 Call for action 0.09
United States : Human actions 0.01 Egypt : National executive 0.06 Demand 0.04
United States : Artists 0.01 Palestine : Government agents 0.04 Collaborate 0.03
United States : Occupations 0.01 India : Government agents 0.03 Host a meeting 0.03

Table 1: Excerpts from the sender, receiver, and action type distributions for latent classes of international dyadic events as learned
by the MPMM.
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Figure 4: Proportion of assignments per week for latent classes
from a data set of international political events [15], with typi-
cal senders, receivers, and action types shown in Table 1.

The first is a class of events mostly concerning the 2004 Olympics,
the second concerns the Iraq war, and the third primarily concerns
the Middle East conflict. Action types are also clustered simultane-
ously; the action types with the MPMM upon inspection the action
types seem appropriate given each class (e.g. “Sports contest” ac-
tions should grouped in a class that often includes “Athletes”). The
“Comment” action type encompasses information from interviews
or public statements.

Although the MPMM uses only sets of counts (rather than se-
quential or temporal information) we can nonetheless retroactively

examine the timeline of class assignments for each event after we
have fit the model. In Figure 4 we plot the number of events per
week assigned to each of the three latent classes from Table 1.
Note that spikes in the plot have correspondence with known world
events, such as the beginning of the Iraq war early in 2003 and the
Olympic Games in 2004.

5. EXPERIMENTAL METHODS
In this section we empirically study the MPMM’s predictive abil-

ity, using baseline models and different data sets.

5.1 Algorithms and Settings
We consider several models for comparison. A trivial baseline

approach for relational event data is to predict all possible events
with equal probability. We will refer to this baseline as Uniform.

Another simple approach is to make predictions using the ob-
served frequency of each event. For a data set of T events, one
can view the aggregated counts, ~Y , as a Multinomial(T ,~p) ran-
dom variable, where ~p has length nrnsna. We denote this method
Multinomial.

The maximum likelihood estimate (MLE) for ~p is ~Y /T . This es-
timate is asymptotically unbiased but it will suffer from high vari-
ance when applied to finite sparse data sets since many cells will
have no data. By placing a Dirichlet prior on ~p we can smooth our
probability estimates over unobserved events. In practice we let
~p ∼ Dirichlet(η) with η = Q

nsnrna
whereQ determines the prior’s

effective sample size. In our experiments we set Q = 100 to keep
the effect of the prior consistent across experiments. To place the
MPMM on equal footing with this baseline, we set the MPMM hy-
perparameters accordingly, letting α = 2 and β = γ = δ = η1/3.
It is straightforward to show that, with these hyperparameters, the
priors for both Multinomial and MPMM assign the same prob-
ability to a particular edge (s, r, a).

Other models, such as the infinite relational model (IRM) [14],
often assume entities belong to one or more latent clusters. Such
models can be adapted to the type of event data considered in this



paper by modeling the probability of each combination of clus-
ters. In our experiments we compare our model to the IRM ap-
proach by using a single relation on three domains. Specifically,
we model Ys,r,a =

Wks,kr,ka
|ks||kr||ka| where ks is the cluster assigned to

s by the IRM, |ks| is the size of the cluster, and Wks,kr,ka |θ ∼
Multinomial(T, θ), where θ ∼ Dirichlet(α). Following [14] we let
α = β|ks||kr||ka| where |ks| is the size of cluster ks and β = .1.

5.2 Prediction
Since we have defined a probabilistic model for how events are

generated, we can compute the predictive probability of a future
event using parameters estimated from training data. For exam-
ple, suppose we want to know the probability of a particular event
(s, r, a). Substituting model parameter estimates into Equation 2,
we can compute

p̂s,r,a = P (s, r, a|D, π̂, θ̂, φ̂, ψ̂) =
X
c

π̂cθ̂c,sφ̂c,rψ̂c,a

In the case of MCGS, each p̂si,ri,ai is computed by averaging Z
estimates of p̂, taking the last sample obtained from Z independent
CGS chains, where Z = 20 in the experiments below.

5.3 Evaluation
To evaluate the predictive performance of our model, we com-

pute the average log probability of observed events in a heldout test
set of T observations (e.g., for general motivation see [9]):

Ltest =
1

T

TX
i=1

log(f(Yi|Ytrain)) =
1

T

TX
i=1

log(p̂si,ri,ai)

If model A has a larger value of Ltest compared to model B, this
is evidence that model A is a better predictive model than model
B, and is assigning higher probabilities to edges that actually occur
in the test set and lower probabilities to those that do not occur
(compared to model B). Alternative performance scores could also
be used, although such scores (such as mean-squared error) often
put an over-emphasis on events that did not actually occur (i.e., all
pairwise “non-events” at each time-step).

6. EXPERIMENTAL RESULTS
The top row of Figure 5 is a visual representation of a particu-

lar MPMM which we used in simulation experiments. The 4 panels
correspond to na = 4 different action types. The rows and columns
in each panel represent ns = nr = 100 senders/receivers. Darker
shades indicate a higher probability of that edge occurring. The
shaded rectangles correspond to 4 different latent classes of events,
A, B, C, D. For example, the third action type (third panel) is asso-
ciated with latent classes B, C, and D.

We created synthetic training data sets of various sizes by sim-
ulating from the MPMM with these parameters, and compared the
predictive performance of different models on independent test data.
The lower-left panel in Figure 5 shows how the predictive perfor-
mance (test log-likelihood) on the test data varied for each model as
a function of training data size (on a log-scale). The different im-
plementations of MPMM (EM, CGS, MCGS) were not significantly
different from each other, so we only show MCGS for clarity. The
upper line in the graph is the test log-likelihood for the model with
the “perfect” true parameter values (no learning). The lower line is
the performance of the Uniform model (which ignores the train-
ing data). Between these two extremes, we see that the MPMM
dominates the Multinomial, as we would expect given that the
data is being generated from an MPMM. The multinomial model
initially has poorer predictive ability as the training set size goes

from 102 to 103—this may be due to initial overfitting on small
training data sets as the effect of the smoothing prior weakens. As
it sees more data (beyond 103) it starts to improve and gradually
catches up with the best-performing MPMM models. We used dif-
ferent values of C with MPMM to show its effect on predictive
performance; since we generated the synthetic data using 4 latent
classes, it is unsurprising that using C = 3 does not perform as
well.

To gain some intuition for the MPMM, it is helpful to consider
predictions made for a given node. Figure 5 shows the probability
of a particular actor (number 30) initiating an edge to each of the
possible receivers for the synthetic data set. The probabilities are
quite different for each model: with the MPMM, we are effectively
smoothing over the set of typical receivers for those edges where
actor 30 takes part. The true distribution is included for compari-
son.

We additionally consider three different real-world data sets. The
first consists of T = 200, 000 records of emails from a European
university collected over 83 days among ns = nr = 2562 individ-
uals [7]. To create an action type, a, we discretized the log of the
size of the email message (in kB) into na = 10 bins.

The second data set involves dominance acts among ns = nr =
63 red deer stags in Scotland [3]. Red deer engage in aggressive
acts to enforce a social hierarchy. The data consists of T = 1200
observed aggressive actions (e.g. glaring, kicking, and mounting),
where na = 10. Each event had a clear “winner” and “loser”,
which we code as the sender and recipient, respectively.

The third data set is the international events data discussed earlier
in the paper. We evaluated the algorithms on the same subset of
events considered in Section 4, comprising a total of na = 81
senders from the USA, nr = 2695 non-US recipients, and na =
178 actions (types of events). The total number of events is T =
40031.

The left panel of Figure 6 shows the predictive performance of
different models as a function of training set size for the 3 data sets:
the red deer data set (with a test set of 200 observations), the email
data set (with a test set of 100,000 observations), and the interna-
tional political events data set (with a test set of 10,000 observa-
tions). We take the mean of the posterior predictive distribution
over 20 chains of the CGS algorithm for MPMM using C = 3, 20,
and 50. Hyperparameter selection is dicussed in Section 5.1. For
each of 10 runs, the training and test sets are randomly sampled
and we plot the mean test log-likelihood across runs (with the er-
ror bars showing 95% confidence intervals). With large amounts of
training data the Multinomial baseline steadily improves as ex-
pected, but the MPMM has significantly better predictive power for
a wide range of training set sizes. For the red deer data set, the IRM
outperforms the Multinomial baseline, but does not perform as
well as the MPMM.1

7. PREDICTION WITH MISSING DATA
We also measure the predictive performance of the MPMM when

some of the events are only partially observed. Missing data is a
well-studied issue in social network analysis, but most effort has
been motivated by survey data, e.g. accounting for censoring, net-
work boundaries, and so on [16]. Both CGS and EM can be ex-
tended in a straightforward manner to make inferences over miss-
ing sender, recipient, or type information. Here we just show results
using EM as the inference technique.

The right-hand side of Figure 6 compares the predictive perfor-

1We were unable to obtain experimental results for the IRM on the
two larger datasets (email and international political events).
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for actor 30 on a training set of 10000 events with the hyperparameters used in the experiment at left. The MPMM approximation
provides a better fit over the typical recipients.

mance on test data of learning MPMMs with fully-observed data
versus partially-observed data. For this experiment we split each
of the real data sets into (a) a test set of the same size used in the
previous experiments, and (b) training sets of various sizes. All
models were given a fixed number of events that were fully ob-
served (corresponding to the left most data point in the graphs on
the right-hand side of Figure 6). The “Complete” model was then
given additional observations (corresponding to increasing values
along the x-axis). The “Incomplete” models were also given ad-
ditional observations, again corresponding to the x-axis, but in this
case the additional events had missing recipient IDs (i.e., events are
only partially observed). All models were trained using EM with
C = 5, where for partially observed data the recipient IDs were
treated as missing and probability distributions over recipients for
each event were estimated and maintained in a standard EM fash-
ion.

The goal of the experiment was to determine if the MPMM ap-
proach could extract useful information from event data even when
information such as recipient IDs were missing. The figures show
that the test log-likelihood indeed increases as additional partially

observed data is provided to the learning algorithm. The perfor-
mance improvement is not as good as that obtained with fully-
observed data (top line for each data set) but nonetheless is sig-
nificantly better than models that ignore the partially observed data
(the left-most points on the graphs). Note that probabilistic models
are particularly useful in the context of missing information—for
non-probabilistic modeling approaches it would be difficult to in-
corporate the partially observed data into a learning algorithm.

8. DISCUSSION AND RELATED WORK
The model proposed here is simple in that each event’s sender,

receiver, and action type are assumed to be conditionally inde-
pendent given the latent class for that event. However, in return
for these strong assumptions, we get relatively straightforward and
scalable inference algorithms, making the learning algorithms prac-
tical as a tool for analyzing large event data sets.

Extending the model to allow for time-dependence is a natural
direction for future work. For example, it is straightforward to
add Markov dependence for the latent classes, resulting in a hidden
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Markov model—this kind of temporal dependence may be useful
for networks where the entire network undergoes “global” changes
in behavior (e.g., modeling patterns in team sports). Similarly, it
would be straightforward to make the hidden process dependent on
exogenous time-series representing external influences on the net-
work, or dependent on time directly such as time of day, day of
week, or time of year. Modeling dependence at the individual ac-
tor and event level is somewhat more challenging, and approaches
such as network-based sufficient statistics may be useful [5].

Also of interest are extensions to models that can handle events
with durations, e.g., the special case of events that are “born” and
assumed to persist indefinitely, e.g. the growth of a friendship
graph on a social networking site. One approach for modeling
such phenomena is to combine models of user-centric activity (as
in Leskovec et al. [18]) with stochastic models such as the mixed
membership stochastic blockmodel [1] (see below) or MPMM to
automatically share statistical strength among similar groups of
nodes or edges.

The approach we present in this paper differs from much of the
prior work on block modeling in that here we model latent classes
of events, rather than latent classes of individuals. The Bayesian
formulation of the stochastic blockmodel (first proposed by Hol-
land, Laskey, and Leinhardt [13] and developed further in Snijders
and Nowicki [25] and Nowicki and Snijders [19]), focuses on the
assignment of nodes to latent classes as well as estimation of block-
wise interaction rates. In that model, each node i is first assigned to
a latent class: zi ∼ Multinomial(1, θ). Each possible edge is drawn
using a K ×K matrix, η, that describes the probability of the two
blocks interacting: Yij ∼ Bernoulli(~ziT η~zj), 1 ≤ i, j ≤ n.

The Infinite Relational Model (IRM) of Kemp et al. [14] extends
the Nowicki and Snijders approach [19] to networks with edges
having more than two nodes (i.e., not just sender and receiver).
Kemp et al. use a Chinese Restaurant Process (CRP) for assigning
each node to a latent group; this nonparametric method allows the
number of latent classes to be flexible and data-dependent. Kuri-
hara, Kameya, and Sato [17] further extended the IRM to model
events by picking the sender and receiver from a multinomial dis-
tribution over possible nodes.

The Mixed Membership Stochastic Blockmodel (MMSB) of Airoldi
et al [1] departs from the Nowicki and Snijders [19] blockmodeling
approach by instead allowing nodes to probabilistically choose the
latent group. In a graph of friendships, some edges for a given node
might arise from shared academic interest while other ties might
arise from shared sports interest. To accomplish this, the model in-
troduces multinomial distributions for each node, πi, from which a
latent class is drawn,

zi|πi ∼ Multinomial(πi), Yij ∼ Bernoulli(~ziT η~zj)

for 1 ≤ i, j ≤ N . Shafiei and Chipman [22] extended the MMSB
with a mechanism for choosing the event’s sender (based on their
“friendliness” score) and then use the latent class assignments to
determine which receivers are chosen for the email. For each email,
all nodes sample a single class assignment, zi ∼ Multinomial(πi),
akin to the MMSB.

In contrast to the block-oriented models above, the MPMM ap-
proach discussed in this paper directly models and clusters the events
in the network rather than the relationships among latent groups of
individuals.

One can also interpret the MPMM as a mixture model for con-
tingency tables. Specifically, we model the marginal distributions
for each domain name with a mixture of multinomials, and enforce
that the classes for each dimension are linked. Similar models in-
clude the Interaction Component Model (ICMc) [23] though our

model applies directly to dyadic event data and can handle directed,
weighted networks with edge types. Nonparametric versions of
such models are also of interest, as in Rogers et al. [20].

Sinkkonen et al [24] presented a general framework for latent-
variable modeling of relational data that includes models such as
the MPMM we presented in this paper—their focus was more on
static co-occurence data rather than the type of event data that is of
primary interest here.

9. CONCLUSION
Relational event data is increasingly common in large social net-

work data sets. In this paper we proposed the MPMM as an inter-
pretable and computationally tractable statistical model for analyz-
ing such data. We illustrated how the model can be used to analyze
large sets of events that have a sender, receiver, and action type,
presented two algorithms for performing inference, evaluated pre-
dictive accuracy of the model on real data, and demonstrated how
the model can be used to systematically handle practical issues such
as missing data.
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