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ABSTRACT
Location-based data is increasingly prevalent with the rapid
increase and adoption of mobile devices. In this paper we
address the problem of learning spatial density models, fo-
cusing specifically on individual-level data. Modeling and
predicting a spatial distribution for an individual is a chal-
lenging problem given both (a) the typical sparsity of data
at the individual level and (b) the heterogeneity of spa-
tial mobility patterns across individuals. We investigate
the application of kernel density estimation (KDE) to this
problem using a mixture model approach that can interpo-
late between an individual’s data and broader patterns in
the population as a whole. The mixture-KDE approach is
evaluated on two large geolocation/check-in data sets, from
Twitter and Gowalla, with comparisons to non-KDE base-
lines, using both log-likelihood and detection of simulated
identity theft as evaluation metrics. Our experimental re-
sults indicate that the mixture-KDE method provides a use-
ful and accurate methodology for capturing and predicting
individual-level spatial patterns in the presence of noisy and
sparse data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining, Spatial databases and GIS

Keywords
spatial; kernel density estimation; anomaly/novelty detec-
tion; probabilistic methods; social media; user modeling

1. INTRODUCTION
Human location data is increasingly available in the mod-

ern mobile world, often in the form of geolocation tags at-
tached to human behavioral data such as phone calls, text
messages, social media activities, and more. With the wides-
pread availability of this data there is increasing interest
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Figure 1: Geolocated Twitter tweets in southern
California. Points over the ocean and sparsly popu-
lated areas are largely a result of noise in the geolo-
cation data rather than actual locations.

across a variety of fields of study in creating accurate mod-
els to characterize the spatial distributions of populations
and individuals. For example, Sadilek et al. [23] analyze
the spread of infectious diseases through geolocation data
from Twitter, opening up potential new approaches for real-
time computational epidemiology. Cranshaw et al. [9] use
Foursquare check-in data to identify local spatial clusters
within urban areas, with potential applications in urban
planning to economic development and resource allocation.
From a commercial perspective, location-based services and
personalization are becoming increasingly important to in-
dividual mobile device users, with an increasing number of
applications that are location-aware, including maps, local-
ized search results, recommender systems, and advertising
[28].

In this paper we focus on the problem of developing ac-
curate individual-level models of spatial location based on
geolocated event data. The term “event” here can be inter-
preted in a broad context—examples include communication
events such as phone calls or text messages, check-in events,
social media actions, and so on. The goal is to be able to
accurately characterize and predict the spatial pattern of
an individual’s events. The problem is challenging for two
main reasons. Firstly, there is often relatively little data for
many of the individuals making it difficult to build accu-
rate models at the individual level. Secondly, there is often
considerable variety and heterogeneity in the spatial pattern
of events of individual users, rendering techniques such as
clustering less than ideal for individual-level modeling.



Figure 2: Gowalla checkins in southern California.

The primary contribution of our paper is a systematic
approach for individual-level modeling of geolocation data
based on kernel density estimates. Kernel density approaches
have been relatively unexplored to date in the context of spa-
tial modeling of geolocation data. While in principle they
provide a flexible and general framework for spatial den-
sity estimation, direct application at the level of individual
event data will tend to lead to significant over-fitting (be-
cause of the sparsity of data at the individual level). We
propose a hierarchical extension of the traditional kernel ap-
proach that can avoid the over-fitting problem by systemati-
cally smoothing an individual’s data towards the population
data. We demonstrate how adaptive bandwidth techniques
provide better quality density estimates compared to fixed
bandwidths. Using two large geolocation data sets from
Twitter and Gowalla (see Figures 1 and 2) we show that
the proposed kernel method is significantly more accurate
than baselines such as Gaussian mixtures for such data, in
terms of the quality of predictions on out-of-sample data.

This paper is organized as follows. Section 2 provides an
overview of existing approaches for modeling human location
data and elaborates on the challenges of developing spatial
models in practice. In section 3 we review kernel density
estimation and discuss the use of adaptive bandwidth meth-
ods and in section 4 we describe our proposed mixture-KDE
approach for modeling and predicting individuals’ locations.
In section 5 we present empirical experiments using two dif-
ferent geospatial/check-in data sets and using both test log-
likelihood and accuracy in detection of simulated identity
theft. Section 6 discusses scalability and online algorithms
for the proposed approach and we conclude with a brief dis-
cussion in Section 7.

2. BACKGROUND AND RELATED WORK

2.1 Notation and Problem Definition
In this paper we consider data available in the form of

individual-level geotagged events, E = {E1, . . . , EN} where
Ei = {e1

i , . . . , e
ni
i } and eji is the jth event for the ith in-

dividual, 1 ≤ i ≤ N . Each event eji consists of a tuple
< i, x, y, t >, where x and y are longitude and latitude
respectively and t is a time-stamp, e.g., geotagged tweets
based on GPS location.

One approach in analyzing such data is to focus on the
problem of sequentially predicting a user’s behavior in terms
of their short-term trajectory, e.g., predicting where a user
i’s next event ej+1

i is likely to occur in terms of location

< x, y > given their event history {e1
i , . . . , e

j
i}, where events

may be minutes or hours apart (e.g., Song et al. [27] and
Scellato et al. [24]). In this paper we focus on a different
problem, that of modeling a user’s spatial patterns over a
longer time-period in a more aggregate sense. Specifically,
we focus on learning probability density models of the form
fi(x, y) that represent the spatial density of user i’s events.
Given an event has occurred for individual i, the probability
that it lies in any area A is

∫ ∫
fi(x, y)dxdy where the inte-

gral is over the region defined by A (see also [16]). In this
context we focus in this paper on modeling fi(x, y) rather
than fi(x, y, t), and only use the time dimension t to or-
der the data. e.g. for online training and prediction. In
principle it should be possible to extend the 2-dimensional
spatial modeling methods proposed in this paper to include
the temporal dimension, allowing for inclusion of circadian
and calendar-dependent aspects of an individual’s behavior.

2.2 Modeling of Discretized Locations
A widely-used approach in location modeling is to restrict

attention to a finite set of known fixed locations, effectively
discretizing space and turning the problem into a multivari-
ate data analysis problem where each location represents a
single dimension. One can use such representations to gen-
erate a sparse matrix consisting of individuals as rows and
locations as columns, where each cell i, j contains the count
of the number of events for individual i that occurred at lo-
cation j. The locations (columns) can be defined in different
ways. For example, one can define the columns by identify-
ing a set of specific locations such as shops, restaurants, and
so forth (e.g., see [5, 6, 9]). An alternative approach is to
discretize the spatial domain into disjoint cells (e.g., via clus-
tering), and then associate a discrete set of venues with each
cell (as in Cranshaw et al. [10] who used Foursquare check-
in venues) or to aggregate the counts of geolocated events
within each cell (as in Lee et al. [20] and Frias-Martinez et
al. [15]). The advantage of these discretized representations
is that they allow the application of broad set of multivariate
data analysis tools, such as clustering techniques or matrix
decomposition methods. However, they do not explicitly
encode spatial semantics and, as such, do not provide the
ability to make predictions in continuous space, which is a
primary aim in our work.

2.3 Continuous Spatial Models
In the context of continuous models, a number of authors

have explored such models for individual location data in
prior work. For example, Gonzalez et al. [16] and Brock-
mann et al. [4] explored general distributional patterns of
human mobility from location data. Eagle and Pentland
[12], Li et al. [21], and Cho et al. [7] demonstrated how dif-
ferent aspects of individuals’ daily routines can be effectively
extracted from traces of location data.

A simple approach to modeling an individual’s spatial
density fi(x, y) is to use a single Gaussian density function,
i.e.,

fG(x, y|µ
i
,Σi) = fG(ei|µ

i
,Σi)

=
1

(2π) |Σi|
1
2

e−
1
2

(ei−µi
)′Σ−1

i (ei−µi
) (1)

where ei = (x, y) is a 2-dimensional longitude-latitude pair,
µ
i

is a 2-dimensional mean vector, and Σi is a 2× 2 covari-
ance matrix. The unimodal and elliptical density contours



Figure 3: On the left (a): Geotagged events in the
area between Los Angeles and Las Vegas near the
city of Barstow, CA. (b): The contour lines of a
Gaussian mixture model with 2 components. Figure
best viewed in color.

of a single Gaussian are too simple to accurately represent
human location data in practice. With this in mind, a fi-
nite mixture of C Gaussian densities can provide additional
flexibility, defined as

fMG(ei|θi) =

C∑
c=1

πicfG(e|µ
ic
,Σic) (2)

with parameters θi consisting of the C mixing weights
π1, . . . , πC ,

∑
c πc = 1, and means µ

ic
and covariance ma-

trices Σic, 1 ≤ c ≤ C. For example, as described in Cho et
al. [7], a two-component (C = 2) spatial model may be a use-
ful model for capturing the bimodal variation due to “home”
and “work” components in an individual’s spatial data.

While the mixture model can provide additional modeling
power beyond that of a single Gaussian, it has a number of
practical limitations. Firstly, the number of components C
required for an accurate density model may vary consider-
ably across different individuals, and automatically and reli-
ably determining the number of components is a non-trivial
problem. Secondly, the number of data points per individ-
ual is usually skewed towards small counts. For example, in
our Twitter data set 60% of the individuals have associated
with them 5 or fewer events over a 2 month period (July and
August 2013). This makes it challenging, if not impossible,
to fit mixture models, even if the number of components
C for each individual is known and fixed. A third limita-
tion of the Gaussian mixture approach is a more pragmatic
one. Human mobility is constrained by our environment
resulting in sharp transitions in spatial densities, due both
to natural topography (mountains, oceans) and man-made
artifacts (roads, city centers, etc.). Figure 3(a) shows Twit-
ter data for a region near Barstow, California. The spatial
density of the data shows significant local variation, includ-
ing regions of high density for the town of Barstow (bottom
left), for the military base (top center), and along the var-
ious major roads, with very low density in the surrounding
desert. Figure 3(b) shows a fitted mixture density model
with two components: it is unable to capture many of the
high density patterns and “wastes” considerable probability
mass over sparsely populated desert regions.

3. KERNEL DENSITY ESTIMATION FOR
SPATIAL LOCATION DATA

To address these limitations, we investigate the use of ker-
nel density estimation (KDE) methods as outlined in detail
in the next section. There has been limited prior work inves-
tigating the application of KDE methods in the context of
human location data. Zhang and Chow [29] illustrated the
advantages of KDE techniques (over Gaussian mixture mod-
els) for data from location-based social networks, but used
1-dimensional kernel densities on distances rather than 2-
dimensional spatial models, and Hasan et al. [18] illustrated
the use of 2-dimensional spatial KDE models for exploratory
analysis of check-in data. KDE methods have also been used
in application areas such as epidemiology [2], ecology [14],
and marketing [11], for modeling spatial densities of popu-
lations of individual entities, but not for modeling spatial
densities of individuals themselves.

3.1 Kernel Density Estimation
Kernel density estimation is a non-parametric method for

estimating a density function from a random sample of data
[25]. Let E = {e1, . . . , en} be a set of historical events where
ej =< x, y > is a two-dimensional location, 1 ≤ j ≤ n, and
where we have suppressed any dependence on individual i
for the moment and dropped dependence on time t. We
will refer to E as the training data set. A simple approach
for estimating a bivariate density function from such data
is to use a single fixed bandwidth h for both spatial dimen-
sions and a Gaussian kernel function K(·). This results in a
bivariate KDE of the following form:

fKD(e|E, h) =
1

n

n∑
j=1

Kh(e, ej) (3)

Kh(e, ej) =
1

2πh
exp

(
−1

2
(e− ej)tΣ−1

h (e− ej)
)

(4)

Σh =

(
h 0
0 h

)
where e is the location for which we wish to compute the
density and h > 0 is a fixed scalar bandwidth parameter
for all events in E. It is well known that the resulting den-
sity estimate fKD can be highly sensitive to the value of the
bandwidth h, producing densities that are sharply peaked
around the training data points ej when h is too small, and
producing an overly smooth estimate that may omit impor-
tant structure in the data (such as multiple modes) when h
is too large [25].

There are a number of techniques that can be used to
evaluate the quality of a particular value for the bandwidth
h. One straightforward data-driven option is to measure the
log-probability (or log-likelihood) of a set of test data points
not used in constructing the density estimate, i.e.,

L(h) =
1

nt

nt∑
r=1

log fKD(er|E, h) (5)

where the nt events er are data points not included in the
training data E (e.g., a validation set). Larger values of L(h)
are preferred since it means that higher probability is being
assigned to new unseen data. Hence, a simple approach to



Figure 4: Left plots: Events in the city of Laguna Beach in southern California (top row) and in an area
between Los Angeles and Las Vegas (bottom row). Points on the map represent observed events. Middle
plots: Contour of the log-probability of a KDE model with fixed h = 10 meters. Right Plots: Contour of the
log-probability of a KDE model with fixed h = 400 meters. Best viewed in color.

bandwidth selection (at least for a single bandwidth param-
eter h) is to perform a grid-search on h using a validation
set. We will use the above out-of-sample log-probability
score function L(h) later in the paper for both bandwidth
selection and for comparing different types of density mod-
els.

One could also use various “plug-in” estimates for h, such
as that of Silverman [25, pages 86-88]. These estimates are
optimal (e.g. in a mean integrated squared error sense) if the
true underlying density being estimated is Gaussian, and can
work well in practice for other related smooth non-Gaussian
densities. However, for spatial location data we found that
“plug-in” estimates for h were much too large and signifi-
cantly oversmoothed the KDE results in a very poor fit due
to the highly multimodal nature of location data.

At this point in the discussion it is worth noting that, in
addition to its advantages in terms of flexibility, kernel den-
sity estimation has some well known drawbacks that have
tended to limit its use in practice in the past, particularly
in machine learning and data mining. The first drawback is
that it is particularly susceptible to the curse of dimension-
ality, essentially requiring an exponential number of data
points as a function of data dimensionality d. This is not
an issue for location-data modeling since we are in the low-
dimensional regime of d = 2. A second drawback of kernel
densities (as with related “neighbor-based” methods) is the
need to store all of the training data in memory at prediction
time. This was arguably a relevant point 10 years or more
ago when memory was relatively expensive, but in current
times it is relatively inexpensive (both computationally and
financially) to keep millions (or even hundreds of millions)

of points accessible in main memory at prediction time. We
will return to this point in more detail later in the paper—
here it is sufficient to note that kernel density estimation is
practical for 2-dimensional problems with millions of data
points.

3.2 The Adaptive Bandwidth Method
A limitation of the approach described above is that the

smoothing is homogeneous, i.e., the amount of smoothing is
constant through the 2-dimensional region since the band-
width h is fixed for all events. This does not reflect the
realities of human-location data where dense urban areas
will tend to have high event density and sparsely-populated
rural areas will have low event density. This limitation is
clearly visible in Figure 4. The two plots in the center use
the same small fixed bandwidth of h = 10 meters, which
works well for the relatively dense area of Laguna Beach
(upper plot), but works poorly (overfits) for the rural area
near Barstow, CA in the lower plot. If the bandwidth is in-
creased to h = 400 meters, as in the two plots to the right,
we find that this produces a more acceptable result in the
lower plot (the rural area) but is vastly oversmoothing in
the upper plot.

One approach to address this issue is to use an adap-
tive kernel bandwidth, several methods of which have been
proposed in the literature, that relaxes the assumption of a
constant fixed bandwidth parameter. Breiman et al. [3] sug-
gested adapting the kernel bandwidth hj to each data point
ej . Using this idea, we let hj be the Euclidean distance to
the kth nearest neighbor to ej in the training data. Hence



Bandwidth AvgLogL

Fixed

h = 10−2 −0.592

h = 10−3 −0.157

h = 10−4 0.139

h = 10−5 −0.326

Adaptive

k = 2 0.046

k = 5 1.275

k = 10 1.196

k = 20 0.354

Table 1: Average log-probability scores on held-out
events, comparing the fixed and the adaptive ap-
proaches for kernel density estimation for Twitter
geolocation data.

we can define an adaptive bandwidth kernel density estimate
as:

fKD(e|E) =
1

n

n∑
j=1

Khj (e, ej) (6)

where Khj is defined as in Equation 4 replacing h with hj .
Table 1 shows the results from a series of tests on a val-

idation data set, comparing the fixed and adaptive band-
width approaches using different values for (a) the fixed
bandwidth h, and (b) the number of neighbors k (for the
adaptive method). We trained the models using 100,000 ran-
domly selected events from our Twitter data set (described
in more detail later in the paper) and then computed the log-
probability score (Equation 5) using a set of nt = 100, 000
randomly selected held-out events. From the results, we can
see that the adaptive bandwidth models dominate the per-
formance of the fixed bandwidth methods. As a sidenote,
the “plug-in” methods performed significantly worse (results
not shown).

4. MODELING AN INDIVIDUAL’S LOCA-
TION DATA

So far, our predictive model fKD(e|E, h), does not depend
on the identity of an individual i. However, our primary goal
in this work is to be able to build accurate predictive spatial
density models at the individual level.

4.1 Mixtures of Kernel Density Models
To address this task, we could apply the adaptive kernel

density methods described above at the level of an individual
(rather than for aggregations of events across a population of
individuals), computing fKD(e|Ei) in Equation 6 where we
now condition on just the individual’s event data Ei rather
than the events for the population E.

A significant challenge with building individual-level mod-
els in this manner is the “cold-start” problem, given that
we typically have very little data for many of the individu-
als for whom we wish to make predictions. To address this
data sparsity problem we propose a multi-scale kernel model
where we use a mixture of (a) an individual’s potentially
noisy kernel density estimate with (b) more robust coarse-

scale models1 . More specifically we define a mixture-KDE
for individual i as

PMKD(e|E) =

C∑
c=1

αcfKD(e|Ec) (7)

where α1, . . . , . . . , αC are non-negative mixing weights with∑
c αc = 1, and fKD(e|Ec) is the cth component of the mix-

ture. Here component c is a kernel density estimate com-
puted as a function only of a subset of points (or events) Ec.
The component density estimates, fKD, can be any density
model, including fixed or adaptive bandwidth KDEs. We
use adaptive bandwidth KDEs, with k = 5 (following Table
1), for all of the components in the mixture-KDEs used in
this paper.

As a specific example consider a model for individual i
where C = 2, with the first component being the individual-
level kernel density with E1 = Ei, and the second compo-
nent being a population-level kernel density estimate with
E2 = E. This mixture will have the effect of smoothing
the individual’s density towards the population density, with
more or less smoothing depending on the relative size of the
α weights. Note that this mixture is significantly different in
nature to the use of a Gaussian mixture for an individual’s
data (e.g., as in [7]). In that approach, each component typ-
ically represents a different spatial location around which an
individual’s activity is centered (such as“home”and“work”),
whereas in the mixture-KDE each mixture component is re-
sponsible for a broader spatial scale of activity.

For C components, where C > 2, we can have the first
component be an individual level density, and the Cth com-
ponent be the population density, where the intermediate
components c = 2, . . . , C − 1 can represent different spa-
tial scales (such as neighborhoods, cities, states, and even
countries). Given that the data sets we are using in this
paper are from the Southern California region, we chose to
use a 3-level model (C = 3), with the first and last com-
ponents being the individual and population level models
respectively, and the c = 2 model representing (approxi-
mately) the “home city” for an individual (more details on
this intermediate scale component are provided later in the
paper). This process of selecting additional spatial compo-
nents, that are “between” the individual and the full popula-
tion, is somewhat arbitrary—we chose a single intermediate
component in the work below, but other choices could be
explored for other applications.

From a generative perspective, one interpretation of Equa-
tion 7 above for the mixture-KDE is as follows. Assuming
that the first component is based only on individual i’s data,
individual i has a probability α1 of generating events in the
future in a manner similar to his/her past behavior, and
a probability αc (c = 2, . . . , C) of generating events in ac-
cordance with the larger “subpopulations” defined by events
Ec. In this paper, in the absence of additional metadata
about the individuals, we defined the larger subpopulations
solely on spatial characteristics (component 2 being roughly
a city, and component 3 being the whole southern California
region). However, one could also define the larger subpop-

1A potential alternative option would be a Bayesian hierar-
chical model—however Bayesian modeling with kernel den-
sities is not straightforward given that kernels don’t have
parameters that can be “shrunk” as in the usual Bayesian
approach.



ulations based on metadata (if it were available), such as
demographics, social ties, and so forth.

Another way to interpret the mixture-KDE model is that
it provides a relatively simple weighting mechanism to allow
us to upweight data points from individual i in the kernel
density estimate and downweight points that don’t belong
to the individual. Given that kernel densities are defined
as weighted sums over all points, the mixture-KDE can be
thought of as a form of kernel density estimate where the
points are given an additional level of weighting depending
on what component they belong to. As a sidenote, in the
results presented here we allow data points to belong to
multiple sets Ec, e.g., a data point for individual i can be
included in the kernel density estimate for all C components.
The other option would be to only allow points to belong to
a single component. Either option is fine in theory: from
the weighted kernel perspective it only changes (in effect)
the manner in which we are assigning weights to each point
in the overall weighted sum.

4.2 Training the Model
Given a set of components fKD(e|Ec), c = 1 . . . C, the

next step is to compute the mixing weights α1, . . . , αC in
Equation 7. To do so, we randomly sample a validation set,
disjoint from the training set, and use it to learn the weights
as follows. For each event in the validation set, its density
value under each component c is computed (using the train-
ing set for the KDE computation). This results in a fixed set
of component density values on the validation data points
and we can optimize over the convex set of mixing weights
αc to find the highest-likelihood combination. We used the
Expectation-Maximization (EM) algorithm since it is easy
to implement and converges quickly (one could use other op-
timization techniques such as gradient descent)—this is in
essence the same as using EM for learning finite mixtures
(such as Gaussian mixtures) but where the parameters of
the component densities are known and fixed and one is just
learning the mixture weights (see also Smyth and Wolpert
[26]). An alternative to using fixed α’s would be to allow
the weights to vary by individual, in particular as a function
of the number of data points for each individual. Prelimi-
nary exploration of this idea suggested that any additional
predictive power that might be attained would likely not be
justified by the additional complexity.

5. EXPERIMENTS AND RESULTS

5.1 Data Sets
For our experiments, we use two geolocation/check-in data

sets: Twitter and Gowalla. Twitter is a popular micro-
blogging service that allows the posting of short texts (up to
140 characters) and pictures. Using the Twitter API [1] we
collected over 4 million public tweets from 230,450 unique
individuals in the Southern California area over the period
of July-August 2013. In the experiments in this paper we
use data only from weekdays, i.e. Monday trough Friday.
To remove repeated and bursty events we replaced tweets
occurring with the same hour and within 50 meters of each
other with a single effective tweet. Figure 1 shows the spatial
distribution of our data set. The Gowalla data is the same
data used by Cho et al. [7], containing 145, 558 events from
7, 653 unique individuals on weekdays between January and
October, 2010, in the southern California area as shown in

Figure 2. Training, validation, and test sets were extracted
from both data sets for our experiments (details provided
later).

5.2 Models Evaluated
We evaluated each of the following individual-level mod-

els in our experiments. By an “individual-level model” we
mean a model that is fit to each individual i using only their
data Ei, and then used for predicting future events for that
individual i.

Gaussian: A Gaussian density model. We used maximum
likelihood estimates for the mean and maximum a posteriori
(MAP) estimates for the covariance matrices (e.g., see [22],
chapter 4.6.2):

µ = µ̂MLE , Σ = λΣ0 + (1− λ)Σ̂MLE , λ =
n0

n0 + ni

where the prior parameters were set to n0 = 3 and σ = 5
kilometers (for the diagonal on the prior covariance) via a
grid search over the log-likelihood on a validation set across
all individuals.

Gaussian Mixture Model (GMM): Two different Gaus-
sian mixture models with C = 2 and C = 4 components.
The models were fit using the EM algorithm. Again, we used
maximum likelihood to estimate the µc and MAP estimates
for the Σc. Parameters for the priors were also determined
on a validation set.

Fixed KDE: A fixed bandwidth kernel density estimate
using Equation 3. The validation set was used to determine
a single fixed bandwidth, h = 5.3 kilometers, for all users.

Adaptive KDE: An adaptive kernel density estimate us-
ing Equation 6. The validation set was used to determine a
nearest-neighbor value of k = 5 for all users.

In addition, for our log-likelihood experiments we evaluated
a single “global” population model (Population KDE) using
an adaptive kernel density estimate (k = 5) based on all
data points in the training set (i.e., not an individual-level
model).

For our mixture-KDE model we used 3 components, the
first and last corresponding to individual i and to the full
population, respectively. Each component is an adaptive
bandwidth KDE with k = 5 neighbors. For the middle com-
ponent we divided the southern Calfornia area into 81 re-
gions corresponding to a 9×9 array of equal-sized grid boxes.
Each individual i was associated with the region that con-
tains the majority of their individual events—thus, the c = 2
component in the model represents the scale of a local re-
gion or city. A similar approach was used in prior work for
finding the “home” location of an individual [7]. Using EM
to determine the mixture weights resulted in the following
values for the α’s: 0.85 for α1 (the individual level), 0.12
for α2 (the region level), and 0.03 for α3 (the population
level) for the Twitter data set, and α1 = 0.5, α2 = 0.3 and
α3 = 0.2 for the Gowalla data set.

5.3 Evaluation using Log-Likelihood
The training set for the Twitter data consists of all events

recorded for the month of July, 2013. The test set for Twit-



Individual Event
Model Mean Median Mean Median

Gaussian -0.586 0.151 -0.242 1.357
GMM (C = 2) -0.469 0.221 0.001 1.676
GMM (C = 4) -0.474 0.279 -0.015 1.712

Fixed KDE -1.025 -0.714 -0.869 -0.688
Adaptive KDE -7.154 0.446 (∗) -4.908

Population KDE 2.014 0.563 0.784 0.237
Mixture-KDE 4.279 4.312 5.293 6.302

Table 2: Average log-probabilities on the test data
for individuals and events from the Twitter data set.

Individual Event
Model Mean Median Mean Median

Gaussian -1.513 0.008 -1.133 1.027
GMM (C = 2) -1.532 0.308 -0.956 1.412
GMM (C = 4) -1.522 -0.479 -0.958 1.471

Fixed KDE -1.136 -0.749 -1.092 -0.742
Adaptive KDE (∗) -0.247 -3.288 1.355

Population KDE 3.388 1.237 4.021 0.923
Mixture-KDE 6.599 6.296 6.568 2.619

Table 3: Average log-probabilities on the test data
for individuals and events from the Gowalla data set.

ter is all of the events in August 2013 for a randomly se-
lected set of 2000 individuals, selected from the individuals
that have at least 2 events in July. To create the Gowalla
training set we used the data from the months of January
to June, 2010. The test set for Gowalla is all of the events
from the months of July to October, 2010 for a randomly se-
lected set of 1000 individuals, selected from the individuals
that have at least 2 events in the months of January to June,
2010. A validation set was generated for each of the Twitter
and Gowalla data sets by setting aside approximately 37,000
and 25,000 randomly selected events from each training data
set.

We built models on the data from our training data set
and computed the test set log-probability score of the events
in the test set, under each model. We report results both in
terms of the mean and median log-likelihood per event, and
the mean and median log-likelihood per individual (the lat-
ter giving equal weight to individuals, the former to events).
The mean and median scores, for both individual and event-
level scores, are shown in Tables 2 and 3 for the Twitter and
Gowalla data sets respectively. A (∗) indicates that the test
log-likelihood was not computed due to numerical under-
flow. The mixture-KDE model clearly outperforms all other
methods, on both data sets, for all metrics, assigning sig-
nificantly higher log-probability to the test events than any
of the other modeling approaches. Figures 5 and 6 show
the comparison between the mixture-KDE approach and the
GMM (on the left) and fixed KDE (on the right) when look-
ing at each individual separately, again clearly showing the
improvement of the mixture-KDE approach over the other
methods.

5.4 Evaluation using Simulated Identity Theft
We now compare the different models by using a simu-

lated real-world application based on identity theft. Over

Figure 5: Upper plots (a) and (b): scatter plots for a
sample of test set log-probability scores for Twitter
individuals with (a) individual Gaussian mixtures
(C = 4) versus the mixture-KDE, and (b) individ-
ual fixed-KDE versus the mixture-KDE. Lower plots
(c) and (d): histograms of the score differences per
event for the mixture-KDE minus the score of the
corresponding model on the y-axis in the upper plot.

8 million people are victims of identity theft every year in
the United States alone, with an annual cost exceeding 4
billion dollars and over 32 million hours spent by individ-
uals to resolve the problem [8]. To simulate identify theft
we replaced the geolocation events for an individual over a
specific time-window with the geolocation events of a differ-
ent individual and then tested the ability of our models to
detect the resulting anomalous spatial patterns of events.

We used the Twitter data set for our experiment since the
Gowalla data set did not show any significant differences for
this problem between the different models (single Gaussian,
mixtures of Gaussians, various forms of KDEs). We believe
this may be due to the fact that our data set for Gowalla has
fewer individuals than Twitter, and that these individuals
use many of the same checkins, limiting the effectiveness of
Gowalla data for detecting “identity switching”.

Focusing on the Twitter data set, we defined the training
set to be all events in the month of July, 2013. The test
set consists of two types of event streams in August, 2013:
events for normal “control” individuals and events with sim-
ulated identity theft. The control individuals are a randomly
selected set of 950 individuals that have at least 2 events in
July and at least 10 events in August. The individuals with
simulated identity theft correspond to a set of 50 randomly
selected individuals with at least 2 events in July. For each
of these 50, we then replaced their real test data events in
August, with the set of events from a different randomly
selected individual, among individuals who have at least 10
events in August. In this manner, our test data has 50
event sets where the spatial distribution for each sets will in
general look different (in a realistic manner, as if a different
individual were using the Twitter account), compared to the
event sets for the “true” individual in the training data from
July.

To evaluate the different models we computed a surprise
index Si for each individual i, defined as the negative log-
probability of individual i’s events in the test data set rela-



Figure 6: Upper plots (a) and (b): scatter plots for a
sample of test set log-probability scores for Gowalla
individuals with (a) individual Gaussian mixtures
(C = 4) versus the mixture-KDE, and (b) individ-
ual fixed-KDE versus the mixture-KDE. Lower plots
(c) and (d): histograms of the score differences per
event for the mixture-KDE minus the score of the
corresponding model on the y-axis in the upper plot.

tive to a model constructed on historical data:

Si = − 1

ni

ni∑
r=1

log f̂i(e
r
i ) (8)

where eri is the rth event in the test data set for individual
i, and f̂i is the density estimate for individual i constructed
using the training data. The larger the surprise score Si,
then the more anomalous the events eri are relative to the
model f̂i. In these experiments we used all of the models
that we used in the log-likelihood experiments as described
earlier in the paper, except for the population model which
is unable to generate rankings at the individual level.

We used a grid search on the validation set (defined in a
similar manner to the training-test setup above) to deter-
mine various parameters of the models, where the parame-
ter values were selected to optimize precision on the identity
theft task. In general, optimizing for precision results in dif-
ferent parameter values for the various models compared to
optimizing for likelihood. The priors of the Gaussian mix-
ture model resulted in n0 = 0.1 and σ = 5 kilometers. The
optimal parameters for the individual KDE were estimated
to be a fixed bandwidth of h = 3 kilometers and k = 5 for
the adaptive method. The optimal mixture weights for the
mixture-KDE model were α1 = 0.9 (the individual level),
α2 = 0.08 (the region level), and α3 = 0.02 for the popula-
tion model.

For each model, we then ranked all of the individuals in
the test data by their surprise index Si and computed pre-
cision relative to the known ground truth in terms of which
individuals correspond to simulated identity theft and which
to the controls. Table 4 shows the precision at 20, the frac-
tion of simulated identity theft cases correctly detected in
the top 20 ranked individuals. These precision numbers are
the result of averaging over 50 different randomly generated
test sets, using the methodology described earlier. The rows
correspond to different models and the columns correspond
to 3 different scenarios: computing the surprise-index per
individual based on their first n events (in time) for each

n = 1 n = 5 n = 10
Gaussian 0.612 0.470 0.325

GMM (C=2) 0.320 0.240 0.160
GMM (C=4) 0.240 0.170 0.130
Fixed KDE 0.500 0.500 0.460

Adaptive KDE 0.432 0.309 0.274
Mixture-KDE 0.531 0.747 0.816

Table 4: Average precision (over 50 runs) for the top
20 ranked individuals in the test data, as a function
of the number of observed test events nt per indi-
vidual.

n = 1 n = 5 n = 10
Gaussian 0.379 0.341 0.240

GMM (C=2) 0.260 0.220 0.150
GMM (C=4) 0.240 0.190 0.150
Fixed KDE 0.330 0.370 0.320

Adaptive KDE 0.296 0.188 0.142
Mixture-KDE 0.459 0.589 0.644

Table 5: Average precision (over 50 runs) for the top
20 ranked individuals in the test data, as a function
of the number of observed test events per individual,
for “cold-start” individuals (as defined in the text).

individual in the test set, with n = 1, n = 5, n = 10. Table 5
shows the same information for a“cold-start”scenario, where
now test sets are generated for simulated identity theft and
normal individuals (using the same general procedure as be-
fore) who are constrained to have between 2 and 5 events in
their training data (compared to any number greater than
or equal to 2 for the general case).

The results in the two tables show that the mixture-KDE
model dominates all of the other methods, with a Wilcoxon
signed rank p-value of p < 0.02, except for the Gaussian
model in the non-cold-case situation for n = 1. This may
be due to the fact that for a simulated identity theft case, a
sampled new event has a high probability of coming from a
popular area.

The mixture-KDE model improves as it sees more events
in the test set (as n increases from left to right in the ta-
ble). However, the other methods all decrease in precision
as n increases. On closer inspection we found that this was
being caused by their sensitivity to false alarms, i.e., with
more data points per individual there is a higher chance that
a control individual (a false alarm) will have an event in the
test data that is not close spatially to the individual’s events
in the training data, resulting in a high-surprise score and a
high rank for that individual. The mixture-KDE is more ro-
bust to this type of variation, consistent with results earlier
in the paper in terms of log-likelihood.

6. SCALABILITY AND ONLINE COMPU-
TATION

6.1 Scalability
Our experience suggests that kernel density models are

quite scalable for two-dimensional data, and can likely be
scaled to millions of individuals and hundreds of millions
of events relatively easily. To compute the density of a new



Individual Event
Model Mean Median Mean Median

Mixture-KDE 4.279 4.321 5.293 6.302
Online 4.892 4.913 5.788 6.531

Individual Event
Model Mean Median Mean Median

Mixture-KDE 6.599 6.296 6.568 2.619
OnLine 6.987 6.742 7.432 3.022

Table 6: Predictive log-probability scores, averaged
over individuals and events for a) Twitter (top table)
and b) Gowalla (bottom table). “Online” is the on-
line version of the Mixture-KDE model as described
in the text.

point e, given a training data set E, we need to compute the
contribution of each training point to e’s density, as shown
in Equation 3. In general, storing the N training data points
requires O (N) space and computing the density for a new
event will result in time complexity O (dN) where d is the
dimension of the data (here d = 2). In our implementation
of the KDE models for the results in this paper we used k-d
trees, as described in [17], to further speedup our KDE im-
plementation. This effectively computes only contributions
from nearby points to e, based on a k-d tree partition of
the 2-dimensional space, resulting in a significant reduction
in computation time. We coded our algorithm for kernel
density estimation in Java2 and ran the code on an 8-core
2.4GHz Intel Xeon CPU with 8 hyper threads and 48 GB
of RAM memory. Using one million events as training data
points, the average time for computing the density of a new
event is 8 milliseconds, making the model tractable for large
data sets. Additional speed-ups could be achieved for exam-
ple by distributed computation since the density contribu-
tion from different subsets of points are independent from
one another. Hence, one can “split” the training data set
into disjoint groups and aggregate the density contributions
in parallel.

6.2 Online Prediction
The results presented up to this point in the paper have

used a batch approach to training and testing. A useful fea-
ture of the kernel density approach, including the mixture-
KDE, is that it is quite easy to implement an online version
that can sequentially be updated as new events arrive in
streaming fashion. When a new event e arrives we simply
add it to the training set. For the adaptive bandwidth ap-
proach, every time the training set changes, we need to find
the k neighbors of the new point, as well as potentially need-
ing to find new neighbors for all N existing points. In prac-
tice, however, only a very small fraction of existing points
will need to have their neighbors updated. Other parame-
ters of the mixture-KDE model, such as mixture weights for
the components, are likely to change relatively slowly over
time, and can be periodically updated on validation subsets.

Tables 6(a) and 6(b) show predictive log-probability scores
for the same training and test data used earlier for likeli-
hood experiments, but now, each sequential test event is
included in the training data in an online fashion before

2The code is available for download at http://www.datalab-
.uci.edu/resources/

computing the log-probability of the next event. The online
model shows a significant systematic improvement in pre-
dictive scores compared to the batch model, suggesting that
online adaptation is beneficial with human location data.
This certainly makes intuitive sense, as we expect individual
behavior to be non-stationary and changing over time. In a
practical application of an online model one would likely in-
corporate some downweighting (e.g., via exponential weight-
ing) or windowing of events that are further back in time,
allowing the model to adapt to changes in individual behav-
ior.

7. CONCLUSIONS
In this paper we proposed and investigated a systematic

framework for modeling human location data at an individ-
ual level using kernel density estimation methods. We found
that adaptive bandwidth methods had distinct advantages
for this type of data over fixed bandwidth methods. To ad-
dress the problem of data sparsity at the individual level we
introduced the idea of mixtures of kernel density estimates
at different spatial scales. This allows smoothing of an in-
dividual’s model towards the aggregate population model,
motivated by the desire for better generalization to new
data. Experimental results on both Twitter and Gowalla
data sets systematically illustrated the benefits of our ap-
proach in terms of predictive power: kernel methods were
systematically better than mixture models, adaptive band-
width methods were systematically better than fixed band-
width methods, and mixing individual and population esti-
mates via the multi-scale mixture-KDE model outperformed
all other approaches.

There are a number of extensions that could be further
explored. One example is the discrete-location effect in
data sets such as Twitter and Gowalla, namely that certain
specific longitude-latitude locations are over-represented in
the data. This suggests that additional gains in accuracy
could be gained by modeling such locations as discrete delta-
functions (with probability weights) in the kernel model,
rather than using the simpler standard kernel approach. An-
other aspect we did not pursue in this paper is including
time in our models—for many applications (such as identity
theft detection) it would beneficial to have a distribution
over time as well as space for individual events. Initial ex-
periments in this direction suggestion that including time is
not as straightforward as simply extending the spatial ker-
nel densities from 2 to 3 dimensions—the temporal dimen-
sion, not surprisingly, has distinctly different characteristics
than the spatial dimensions. Nonetheless we anticipate that
spatio-temporal kernel density models can be developed in
a relatively straightforward manner.
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