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Abstract

A database contains N items, each item belonging to one and only one of a finite set of
classes. The true class labels for these items are unknown. K experts each provide a set of
N classification labels for the N items in the database. In this paper it is shown that given
the experts’ labels, one can compute simple bounds on the average classification accuracy of
the experts relative to the unknown true labels. No assumptions are made about the labelling
patterns of the experts or the nature of the data. The bounds are useful in practical classification
problems where absolute ground truth is unknown and experts must subjectively provide labels
for feature data. The method is applied to the problem of assessing the collective accuracy of

geologists who count volcanoes in images of Venus.
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1 Introduction and Notation

Consider that a person (an observer) has a database of N items, each described by a feature vector
z;, 1 <17 < N. Each item belongs to one of m classes, m > 2: the classes are mutually exclusive
and exhaustive. It is assumed that for each item z; there exists a true label w; (a reference label)
which is unknown. For example, if the 2; were pixel measurements of an object of unknown class in
a remotely-sensed image, the true class label could in principle be obtained by visiting the ground

site and ascertaining the class of the object in an unambiguous manner (so called “ground truth”)

The observer is assumed to have no information whatsoever about the true class labels of the
items. Let K experts (K > 1) each provide a set of N labels for the N items, i.e., each expert
examines each item z; in turn and provides a subjective estimate of the true class label for that
item. Define e as the mean classification error rate, averaged across the K experts, relative to the



true labels, i.e., over all the experts, a certain fraction of items have been mislabelled relative to
the truth. By definition
1
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where, for the label of labeller k£ on the ith item, e;p = 1 if it is in error and e;; = 0 if it is correct.

The fact that e is defined as the mean error rate of K labellers rather than the error rate of any
one labeller is a key point and enables calculation of the bounds. Without knowing ground truth
one can not make any statements about the errors of an individual labeller. References to “errors”
will be assumed to mean “errors relative to ground truth” throughout the paper.

2 Motivation and Background for this Problem

Assessing the collective classification accuracy of a group of experts on a database is an important
issue in certain practical classification problems. For example, scientists subjectively label pixels or
regions in a remote-sensing image into a set of known ground-cover classes, or medical specialists
classify medical records into particular diagnostic classes. In such cases obtaining the true class
labels for the data is frequently either physically impossible or prohibitively expensive. For example,
in remote-sensing it may be impractical to visit the remote sites to ascertain ground truth. In
medical diagnosis it may be too expensive to perform the necessary tests or surgery to determine
with absolute certainty what disease the patient actually had. In classification-oriented applications,
as online data become more readily available, the proportion of the data for which the true class
labels are known is likely to continue to decrease. Quantitative statements about the accuracy of
human experts, such as the bounds derived here, are quite valuable in these types of problems.
In Section 4 we describe a particular application of the method to counting volcanoes in radar
images of Venus. The volcano counting problem originally motivated this work: it is a problem of
considerable geologic importance involving multiple expert opinions.

3 Bounds on e

3.1 A General Lower Bound on e

From Equation (1), the average error rate can be written as
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where e; = Zﬁ:l €k, is the total number of errors made on item 2z, 0 < e; < K.

Consider the ith item. Let n;; be the number of times that label j; was provided by the K
labellers for item z, 0 < n;; < K.

Let j* indidate the correct label for the item. Thus K — n;; is the number of errors made on



the ¢th item. Since j* is unknown, one has
e; > min{K — n;;}, 1<j< M. (3)
J

Thus,
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This bound is a function of the number of disagreements made by the labellers. If there are no
disagreements, the bound is 0. In the worst-case scenario the labellers agree on all items but are
incorrect in each case, yielding a lower bound of 0 while the true error rateis 1. In general, however,
the bound will be non-zero for practical problems, thus providing an indication of the overall error
rate of a set of experts. Note that at least one of the K labellers must have an error-rate greater
than or equal to the lower bound. Thus, for example, even if the labellers are considered experts
in their field, the bound will imply that at least one of them has an error rate greater than some
value, relative to ground truth. If this value is large (say greater than 10%) it may indicate the

need to re-evaluate the quality of the feature data z;, or the quality of the expert labelling process,
or both.

Equation (4) is the lowest bound one can obtain on the mean error rate without additional
information about the problem being available. For example, if K = 2 and one of the labellers is
always correct, then the bound is exactly the mean error rate.

3.2 A Lower Bound for Binary Classification

With binary classification, m = 2, we can index the labelling patterns by the number of labels
belonging to one of the classes (“detections”), 0 < d < K. Let ng be the number of labelling
patterns which have d detections (25{:0 ng = N if all items are labelled). For example, ny is the
number of items each of which were labelled as a detection by only one of the K labellers. For
binary labels, the bound reduces to:

e > LNi) (Ix—max{n”}) (5)
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With K = 2, i.e., two labellers,
_ ni
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where n; is the number of items labelled by the 2 experts where they disagree, i.e., one gets the
simple result that the mean error rate is lower bounded by half the fraction of disagreements. If
two labellers disagree on all items, their mean error rate must be 0.5 (which also equals the bound

in this case).



3.3 An Upper Bound on ¢

One can also derive a simple upper bound on e:
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This upper bound is always greater than or equal to (1 — %) Thus, it is of limited value in
practice, since it says that the mean error rate per labeller is no worse than 1 — %, which in turn,
for reasonably-sized m, is quite close to 1 (the trivial upper bound) .

4 Application of the Lower Bound

4.1 Catalog Generation in Scientific Applications

In a number of observational sciences such as astronomy and planetary geology, a common step
in the scientific process is to convert raw data (such as images) into a catalog of objects of in-
terest (Fayyad et al., 1996). Such catalogs form a standard data product which can be used by
other scientists as the basis for quantitative scientific studies (such as investigations of the spatial
clustering patterns of objects, etc.). Examples include counting stars and galaxies in telescope
images to generate a sky catalog, counting impact craters on the surface of the moon, counting and
characterizing sunspots in images of the Sun, and counting volcanoes in radar images of Venus.
Typically the cataloging is carried out by known experts in the field.

In each of these applications, the quality of the final catalog is inevitably a function of the
subjective nature of the cataloging process. In some applications there may be little variation
between the labels provided by different experts for the same object: in other applications the
variance may be quite high, indicating that the data in the catalog should be treated accordingly.
The variation in expert opinion may be due to visual ambiguity introduced by the resolution limits
of the data, perhaps the pixel-resolution of an imaging instrument.

4.2 Bounding the Mean Accuracy of Volcano Counting

The Magellan spacecraft orbited Venus from 1990 to 1994 and transmitted back to Earth a high
resolution synthetic aperture image map of the planet, approximately 30,000 1Mybte images in
total. The study of volcanic features on the surface of Venus is a key issue in planetary geology due
to the predominance of volcanism on the planet (Saunders et al., 1992). Generating a comprehensive
volcano catalog from the Magellan data is a prerequisite for more advanced studies such as cluster
analysis of the volcano locations. Of interest in the context of this paper is the accuracy of the
volcano labels provided by planetary geologists.



In previous work a pattern recognition system for automatically counting volcanoes in the
Magellan images of Venus has been developed: the pattern recognition system is described in detail
elsewhere (Burl et al., 1994a) and is not of direct interest here. As part of the development of the
pattern recognition system, several planetary geologists, considered experts in Venus volcanism,
provided labels for sets of Venus images as training and test data. Significant variability between the
geologist’s labellings was noticed, thus motivating work on the problem of quantifying classification
accuracy of both humans and algorithms in the absence of ground truth. The variability in the
labelling appears to be primarily due to the relatively low signal-to-noise ratio (relative to small
volcano structure) in the SAR images (Fayyad et al., 1996).

Each geologist examined sets of images independently and used mouse-clicks within a graphical
user-interface to indicate their estimate of where the volcanoes were located within a given image.
The first labelling experiment consisted of 4 images and 4 experts (geologists A, B, C, and D).
Between the 4 geologists, 269 estimated volcano locations were found in total in the 4 images.
Consider this to be the database of N = 269 items with binary labels: volcano or non-volcano.
One can think of each “item” as a local pixel window or region of interest. The lower bound on
mean error rate (using Equation (4)) was found to be 19.3%, i.e., the average error rate among
geologists A, B, C, and D, labelling volcanoes on these particular 4 Magellan images, is at least
19.3% relative to ground truth .

The second labelling experiment consisted of 2 geologists (A and B from the first experiment)
who each individually labelled 38 images (different from the first 4). In this case 512 possible
volcano locations were found in total. Again, considering this to be a database of N = 512 items
with binary labels results in a lower bound on the mean error rate of A and B of 24.1%. If only the
labellings of geologists A and B are considered on the 4 images in the first experiment, they made
at least 22.2% errors on average (for these 2 geologists on these 4 images).

Across different subsets of images, with different sets of geologists, the results for the volcano
problem have consistently shown a lower-bound on the mean error rate of about 20%. Thus, one
can state that at least one of the expert geologists is in error at least 20% of the time in terms of
volcano labelling, over a range of different Magellan images, relative to the ground truth. The true
mean error rate for the geologists could in fact be much higher than 20%.

4.3 Significance of the Results

There are two primary results from applying this approach in general:

1. From a scientific viewpoint, interpretation of subjectively-derived catalogs (such as volcano
catalogs derived from the Magellan data set) should take into account the level of disagreement
between the labellers. For example, statistics of scientific interest derived from the catalog,
such as the mean number of volcanos observed in a given region of the planet, must be
interpreted appropriately.

2. From a pattern recognition viewpoint, the bounds may indicate that subjectively-labeled
training and test data sets (for any one expert, or consensus of experts) could contain a



significant degree of noise in the labels. Methods for taking this noise into account both in
training and evaluation are described in Burl et al. (1994b) and Smyth et al. (1996).

5 Comments on Related Work

Previous work on modelling noise in class labels has largely relied on parametric models of the noisy
labelling process. For example, rating models assume that a set of labellers provide a discrete set of
ratings of the likelihood that an item belongs to a class, and from the ratings of multiple labellers
an overall combination model and posterior estimates for individual items are found (French ,1985;
Agresti, 1992; Uebersax, 1993). A key issue is the nature of the assumptions about the independence
of the different labellers.

In another distinct approach, the error patterns in class labelling are assumed to obey a par-
ticular model and the implications are analysed (Aitchison and Begg, 1976; Titterington, 1989;
Lugosi, 1992). For example, as the noise in the labelling process increases the effect on the estima-
tion performance of certain parametric classification methods has been investigated (Krishnan and
Nandy, 1990).

Both of these general approaches bear some relation to the problem discussed in this paper
and indeed the ratings approach has been used with success on the volcano data (Smyth et al.,
1996). However, the results in this paper are distinct from this prior work in the sense that the
bounds derived here make no assumptions whatsoever about the nature of the labelling errors, the
independence relationships between the K labellers, or the underlying distribution of the data.

6 Conclusion

Simple bounds were derived for the mean classification error rate of K labellers in the absence of
ground truth. The lower bound was applied to data from a remote-sensing image analysis problem.
The results confirmed that the subjective error rate for the problem is quite high. The method
has applications to classification problems where data must be labelled in a subjective manner by

experts and there is no ground truth available to calibrate their performance.
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