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ABSTRACT
Node-ranking algorithms for (social) networks do not re-
spect the sequence of events from which the network is
constructed, but rather measure rank on the aggregation
of all data. For data sets that relate to the flow of infor-
mation (e.g., email), this loss of information can obscure
the true relative importances of individuals in the network.
We present EventRank, a framework for ranking algorithms
that respect event sequences and provide a natural way of
tracking changes in ranking over time. We compare the per-
formance of a number of ranking algorithms using a large
organizational data set consisting of approximately 1 million
emails involving over 600 users, including an evaluation of
how the email-based ranking correlates with known organi-
zational hierarchy.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database applications—
data mining ; G.2.2 [Discrete Mathematics]: Graph the-
ory—network problems; J.4 [Computer Applications]: So-
cial and Behavioral Sciences—sociology

General Terms
Algorithms, Experimentation, Measurement, Verification

Keywords
Network ranking algorithms, network temporal evolution,
social network analysis

1. INTRODUCTION AND MOTIVATION
There exist a variety of algorithms that rank entities in a
social network according to criteria that reflect structural
properties of the network. These criteria are generally in-
tended to measure the “influence”, “authority”, “prestige”,
or “centrality” of the entities in the community represented
by the network. Examples of such ranking algorithms in-
clude betweenness centrality [2], eigenvector centrality [9]
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Figure 1: A network representing a sequence of mes-
sages

(and related algorithms such as PageRank [3]), HITS [6],
and voltage-based rankers [12].

Each of these algorithms makes the implicit assumption that
the network is a static object, i.e., that the entity and re-
lationship sets, and the rank of each in the community, do
not change over time. However, in some cases, this assump-
tion is clearly false [4]. Examples include research citation
networks (researchers may gain prestige over time if they
publish papers that are cited by many people, and may lose
it if they stop publishing), and email networks (correspon-
dents’ participation in email, and thus the extent to which
they are “in the loop”, may change on several time scales,
depending on such factors as patterns of email access, vaca-
tions, and changes of status in an organization).

It is, of course, possible to repeatedly apply one of the above
ranking algorithms to successive “snapshots” of the data
(that is, subsets of the data restricted to a particular inter-
val) to yield a sequence of rank values that vary over time
[5]. However, in the context of data sets that relate to the
flow of information (e.g., email), the sequence of events can
be significant in determining the relative importances of in-
dividuals in the network, and this information is lost when
events are aggregated into a single snapshot of the network.
Thus, rank values on networks which represent an aggre-
gation of data over time can be thought of as representing
summary statistics (e.g., sums or means) of the ranks over
time.

One can also, given a static picture of a network, assign
weights to edges that reflect the amount of elapsed time since
each associated event occurred [13]. However, while this may
yield a better model of the edge weights at a given time than
a simple summation of the number of events in which the
individuals mutually participated, it still fails to capture the
information represented by the sequence of messages.
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Figure 2: A message sequence that could have re-
sulted in the network in Figure 1

For an illustration of this information loss, consider the ex-
ample network shown in Figure 1, in which the directed edge
< X, Y > exists if X has emailed Y , and the value associ-
ated with < X, Y > denotes the number of messages that
X has sent to Y . Any of the ranking algorithms mentioned
thus far would conclude that the ranks of A and C were the
same; in the terminology of social network analysis, A and
C are structurally equivalent.

However, the sequence in which email is sent carries informa-
tion about the underlying communication of information; we
can model correspondents as having a state, which changes
in response to the receipt (and possibly the sending) of a
message. Suppose that we have two emails eXY from X to
Y , and eY Z from Y to Z; we denote the time of an email by
t(eUV ). If t(eXY ) < t(eY Z), then the content and timing of
eY Z may reflect the state change caused by eXY . However,
if t(eXY ) > t(eY Z), then eY Z cannot reflect any information
contained in eXY .

Figure 2 represents one possible sequence of messages that
could have resulted in the collapsed network shown in Figure
1; there are, of course, many such sequences. This sequence
suggests that, at time t9, A should be considered to be more
important than C, both because A has been a message par-
ticipant more recently, and because the sequence suggests
that A may be receiving information from D and E as well
as from B. It is also important to point out that at time
t4 the opposite is true (that is, we would consider C to be
more important than A).

We will discuss two different types of measures for temporal
ranking: transient, which is a measure of the current rank
at a particular time t, and cumulative, which is a measure
of rank that encompasses the interval [t0, t].

In this paper, we will describe a framework for such mea-
sures. Our examples and model will focus specifically on
email traffic data, but we believe that this framework may
have wider application to ranking entities in data sets which
consist of sequenced events that induce (or reflect) a network
of relationships.

2. MODEL
We can model the functioning of algorithms such as PageR-
ank or the voltage ranking algorithm as the flow of “poten-

tial” in a network from each entity to neighboring entities;
possession and/or transfer of this potential is the basis for
these measurements of rank. This potential flow can be
modelled by repeated multiplication of the vector of origi-
nal potential values (generally a uniform distribution) by a
matrix M which represents the network.

We borrow this metaphor of potential flow to describe the
functioning of the models in our framework: the potential
values at time ti+1 may be calculated based on those at time
ti by multiplying the potential vector by a matrix Mi which
represents the effect of the message sent at time ti. Thus,
transient rank may be defined as the amount of potential
present at time t, whereas cumulative rank may be defined
in terms of the mean potential value for the interval [0, t].

There are two key distinctions between existing models and
those arising from the framework that we propose. First,
algorithms such as PageRank generate rankings that cor-
respond to a stationary distribution of potential over enti-
ties, but by design, our models generate ranks that do not
converge to a single value, because the matrices Mi, which
represent messages with different senders and recipients, are
not all identical. Second, algorithms such as PageRank use
potential flow as a model of a random traversal of the net-
work; by contrast, our models use potential flow to model
exactly those transitions which correspond to the events for
which we have evidence, in the sequence in which the events
occurred: potential flows if and only if a message is sent.

The definition of rank in a social network is generally some-
what subjective; ranking algorithms generally do not have
a “ground truth” to which their output can be compared
to determine accuracy of the ranking model, although ranks
for smaller social networks can be validated in part by com-
paring their results with those of surveys of entities in the
network. As such, the validity of a ranking model is gen-
erally evaluated first in terms of its axiomatic properties.
While not quite a complete axiomization, we nonetheless
present here a list of desiderata that we believe should be
satisfied by any model whose purpose is to calculate entity
ranks based on email traffic.

Note that in the list below, a message participant is either
a sender or a recipient of a specific message m; all other
entities are non-participants of m.

1. Ranks should be comparable across time. (Ideally this
would mean that at each step that ranks are automat-
ically normalized, but at least they should be able to
be normalized at any time.)

2. Receiving a message from an individual of rank r should
lead to an increase in rank at least as large as that from
receiving a message from an individual of rank q < r,
all other things being equal.

3. Sending a message should not fail to have an effect
because the sender has no “potential”.

4. The ranks of the participants of m should not decrease
in response to m. (There might be circumstances in
which sending and receipt should have no effect on
participants’ ranks.)



5. The ranks of the non-participants of m should not in-
crease in response to m. (Again, it may be permissible
for non-participants’ ranks to remain constant.)

6. Rank value evolution should be sensitive to message
sequence.

These requirements might appear more stringent than those
of other ranking algorithms, but this is essentially a reflec-
tion of the fact that we wish to model the effect of individual
successive events (in this case, emails) on rank values, as op-
posed to modeling the effects of all such events in parallel.

The potential flow for a message in this framework will take
the following general form: the non-participants send some
of their potential to the sender; the sender retains some frac-
tion of this potential (which causes the sender’s potential
to increase) and distributes the rest among the recipients
(which causes each of the recipients’ potential to increase).
This scheme satisfies each of the requirements enumerated
above: potential is conserved, which means that the tran-
sient ranks are automatically normalized (and thus compa-
rable across time); the sender always has potential to send
(unless there are no non-participants, in which case the mes-
sage is effectively spam and should have no effect on anyone’s
rank); the participants gain potential (or at least lose none);
and the non-participants lose potential. If we process mes-
sages in chronological order, then models in this framework
will automatically satisfy all our stated requirements.

We denote the potential of correspondent c ∈ C at time ti by
Ri(c), which takes on values in the interval (0, 1). R0(c) ≡
1
|C| , and in general Ri(c) is recursively defined as

c ∈ Pi : Ri−1(c) + αi ·
R̄i−1(c)P

d∈Pi

R̄i−1(d)
(1)

c 6∈ Pi : Ri−1(c) ·
„

1− αi

TNi−1

«
(2)

where mi is the message sent at time i, Pi is the set of
participants of message mi, αi is the total amount of poten-
tial that the message mi contributes to the participant set,
R̄(d, ti) is the additive inverse of d’s potential, i.e., 1−Ri(d),
and TNi−1 denotes the total amount of potential held by the
non-participants of mi, that is,

P
d 6∈Pi

Ri−1(d).

The αi values characterize the potential values’ volatility–
that is, larger values indicate that non-participants retain
less of their potential–and are constrained as follows:

0 ≤ αi ≤ TNi−1 (3)

The definition of αi may depend on a number of factors, such
as the size of Pi relative to |C|, the elapsed time since the
most recent message that the sender received from any of the
recipients, the number of messages that the recipients have
sent to the sender for which replies are pending, the elapsed
time since the most recent message that the sender has sent,
and so forth. Note that if αi = 0, then the potential values
do not change at time step ti, and if αi = TNi−1 , then the
potential values of the non-participants go to 0 (and further
transfer of potential in response to subsequent messages will
not occur as long as their participant sets are equal to Pi).
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Figure 3: g(∆ts, 5)

We observe that, in general, as Pi grows, the total amount
of potential available (TNi−1) decreases; also, the changes in
potential value to d ∈ Pi decrease (because αi is smaller,
and because the number of correspondents among which αi

is divided is larger). In particular, if Pi = C, then mi does
not result in any transfer of potential. This ensures that
messages with wide distribution (“spam”) have little or no
effect on potential.

The potential αi is distributed among the elements of Pi

in proportion to the additive inverse of their potential val-
ues: thus, the lower the potential of a participant, the more
potential is assigned to it. (Senders and recipients, in this
portion of the model, are treated equivalently; a more com-
plex model might give senders or recipients more “credit”
for their participation.)

In this paper, we explored two models for defining αi. In the
first (“baseline”), αi was set to a constant fraction f ∈ (0, 1)
of TNi−1 for various values of f :

αi = f · TNi−1 (4)

The second (“reply”) model for αi, elaborates the baseline
model for αi by discounting it according to functions of two
factors: ∆ts (the elapsed time since the last message sent by
the sender of mi), and ∆tr (the elapsed time since the last
message received by the sender from any recipient of mi):

αi = f · TNi−1 · g(∆ts, G) · h(∆tr, H) (5)

where g and h both take on values in the interval (0, 1).

We define g as

g(∆ts, G) =
tanh( 10∆ts

G·π − π) + 1

2
(6)

where G is a positive constant that specifies the amount of
time required for a sender to “recharge” to the point that
her next message will have half the maximum possible effect.
Figure 3 shows that this functional form for g guarantees
that its output increases with ∆ts, while being restricted
to the range (0, 1). This modification is motivated by our
desire to prevent individuals who send messages much more
frequently than the norm (specified by G) from dominating
the rankings.

We define h as

h(∆tr, H) = 2−
∆tr
H (7)



where H is a positive constant that specifies the “half-life”
of a message (the amount of time required for the effect
of a reply to drop to half the maximum); this boosts αi for
messages that are quick replies to other messages. (Since we
do not have access to the email headers in the experimental
data used below, we assume that a message sent from s to
a set of recipients D is a “reply” if any c ∈ C has sent a
message to s since the last message that s sent to D.) This
refinement to the model reflects observations that have been
made to the effect that the speed of response to email can
carry information [11].

It is possible to model G and H as functions of the charac-
teristics of individual participants, or of pairs of individuals,
rather than as global features; H, in particular, is likely to
depend in practice on individuals’ attitudes regarding email
etiquette. However, we do not have enough information for
the data set used in this paper to be able to model individual
characteristics in this way.

We note that there are many other plausible approaches to
defining a set of update equations and parameters and we
do not claim that the specific methods proposed above are
in any way unique or optimal. Later for example we will
look at the sensitivity of the results to whether or not a
reply component is included in the model, the setting of the
parameter f , and so forth.

The time complexity of handling a single message is nomi-
nally O(n); however, we can increase the efficiency by lazily
updating the potential values of non-participants (that is,
only updating the potential values of Pi at time ti). We do
this by storing (a) the sequence of αi values, and (b) for each
correspondent c, the index of the last message for which c
was a participant. We then can apply all “skipped” αi values
at once when the next message for which c is a participant
is processed (or after all messages have been processed, if
there is no such message).

Based on this model, we define the following measures of cu-
mulative rank for a correspondent c: sum of “outgoing” po-
tential (that is, changes to c’s potential caused by c sending
a message), sum of “incoming” potential, and sum of tran-
sient ranks (that is, sum of potential values at each step);
we refer to these hereafter as So, Si, and Sr respectively.
Note that So and Si are analogous to the HITS “hub” and
“authority” scores, respectively, or to outdegree and inde-
gree.

3. EXPERIMENTS
Our experiments were performed on approximately 1 mil-
lion emails spanning 21 months of an organization’s email
server log, for 628 individuals. Emails to and from extra-
organizational entities were removed, as were all “broadcast”
emails. The server log data for each message included a mes-
sage ID, the identities of the sender and recipients, and the
time at which it was sent. For each message, the sender was
removed from the set of recipients, if it was present. We also
had access to the organizational hierarchy for 378 members
of the organization, so we could calculate both the depth
of each individual in the hierarchy (their distance from the
top) and the number of subordinates that they supervised.
We did not have access to the content or the message head-

ers; thus, we knew neither how much (original) information
a message mi contained, its similarity or relations to other
messages that the participants may have sent or received,
nor whether it was in fact a reply to an existing message.

For privacy reasons, we do not refer to specific individuals
in this data set by name.

We tested various values of f ({0.001, 0.01, 0.1, 0.9}) for both
models for αi. For the second model we set H to 1 day, based
on observations made in [11], and set G to 1 hour.

We performed three separate sets of experiments: measur-
ing the relations between our algorithms’ rank ordering and
properties of the organizational hierarchy, comparing our
algorithms to others on the basis of their fidelity to the or-
ganizational hierarchy, and measuring the sensitivity of our
algorithms’ performance to parameter values.

The experimental code was written in Java, using the JUNG
[8] libraries for network representation and analysis; some of
the post-analysis used MATLAB. A single model instance
required approximately 8 minutes to process the messages
on a dual 2.5 GHz Apple PowerMac with 2.5 GB RAM (1.5
GB of which was allocated to Java heap space).

4. RESULTS AND DISCUSSION
As previously observed, there exists no ground truth to
which we can compare the results of our ranking algorithms
to determine their correctness. This is particularly true
for the transient rank measurements (Ri(c)), since network
ranking algorithms are generally applied to static networks
representing all data. For this reason, evaluation of our
models focused primarily on the derived cumulative rank
measurements defined earlier: Si, So, and Sr.

We represented the organizational hierarchy as a tree in
which A is a child of B iff A is supervised by B; we then
defined the depth in the hierarchy to be the number of steps
from the root of the tree (that is, the person in charge of
the organization), A’s subordinates as the individuals in the
subtree rooted at A (not counting A itself), and A’s super-
ordinates as the individuals on the path from A to the root
of the hierarchy.

We derived ranks for HITS (hub score and authority score),
PageRank (with random restart probability α of 0.1), and
weighted indegree and outdegree by applying them to the
network where X is connected to Y if X has ever emailed
Y . We defined the weight of an edge < X, Y > to be the
sum of the weights of each message from X to Y (normal-
ized appropriately for HITS and PageRank); the weight of a
message was in turn defined as (a) proportional to 1

|Pi|
(for

HITS and PageRank) or (b) 1 (for weighted in- or outde-
gree, i.e., each individual is ranked according to the number
of messages sent or received).

The following analyses focus primarily on the HITS author-
ity score, PageRank, indegree, and Si and Sr (sum of incom-
ing potential and sum of transient ranks) models for ranking.
These “inflow”-based and direction-agnostic ranking meth-
ods generally performed much better in this context than
their “outflow”-based counterparts, so for reasons of space



the “outflow”-based results are largely omitted.

4.1 Rank and organizational hierarchy
Figure 4 shows the results of plotting the measured rank
(from 0 to 627) against the hierarchy depth for several dif-
ferent ranking algorithms, where the distribution of ranks
are presented as a box-plot1 for each depth and each panel
illustrates the results for a different ranking method. We
observe the following:

• All of the ranking methods show that rank as deter-
mined from email is strongly dependent on tree depth
in the organizational hierarchy: individuals who are
highly ranked in the email data tend to be near the
root node of the organizational tree, and vice-versa.

• The HITS authority ranking is the only one where the
median rank does not monotonically increase with tree
depth (there are 2 reversals). All of the other ranking
methods are monotone in this sense–indeed their ranks
are all strongly correlated with each other, while the
ranks of HITS authority are much less correlated.

• It should be noted that tree-depth is not necessarily
by itself a good predictor of importance in an organi-
zation. For example, at depth 2 in the tree are indi-
viduals who are likely to be administrative assistants
or advisors to the individual at the root node, but who
have no subordinates. We can see the existence of such
individuals as outliers in several of the ranking plots
for depth 2. (Below we look at a more subtle measure
of organizational importance, namely the number of
subordinates for each individual in the tree).

Figure 5 shows the results of plotting the rank values against
the number of subordinates (for those with ≥ 1 subordi-
nates) for the same ranking algorithms. We found that using
the log of the number of subordinates produced a more inter-
pretable plot compared to use the number of subordinates
directly (which resulted in a very skewed plot)—in addition,
the correlation between rank values and log-subordinates
(for different methods) was significantly higher than for sub-
ordinates directly.

We see in Figure 5 a clear dependence between rank val-
ues and log(number of subordinates), with the exception
again of HITS (authority ranking). In fact the dependence
is weakly linear, as the correlation coefficients indicate (hov-
ering around 0.4 and 0.5 for the higher correlations). Again,
the InDegree, PageRank, baseline, and reply models were
all highly correlated with each other with correlation coeffi-
cients of 0.8 and above (not shown).

Figure 5 confirms the results using tree-depth earlier: ranks
based on email traffic are strongly correlated with the num-
ber of subordinates, at least for this data set. This is not
particularly surprising, but nonetheless is informative to see

1The box summarizes the distribution of a value: the hor-
izontal lines show the lower quartile, median, and upper
quartile values; the vertical lines show the extent of the data;
outliers are plotted separately[10].
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Figure 6: A sample hierarchy, with A’s subordinates
and superordinates highlighted.

borne out in practice. Outliers in these plots could for ex-
ample be examined to see who they correspond to in the
organization, e.g., employees who are low in the organiza-
tion tree but who are ranked highly based on email traffic,
or vice-versa.

4.2 Comparing rank algorithms
We hypothesize that an individual A should in general have
higher rank than her subordinates and lower rank than her
superordinates in the hierarchy tree. (We do not compare an
individual to others than her sub- or superordinates, since
it is not obvious that any consistent relationship ought to
obtain between them.) Figure 6 highlights the subordinates
(B, C) and superordinates (H, J) of A in a sample hierarchy
tree.

On this basis, we say that, for a given algorithm, A is in-
verted with respect to its superordinate H if A’s rank is
higher than H’s, and inverted with respect to its subordi-
nate B if A’s rank is lower than B’s. We can then compare
the performance of different ranking algorithms to one an-
other based on measuring the inversions induced by each;
an algorithm that corresponded perfectly to the hierarchy
would have no inversions. Note that in general there are
many different such rankings for a given tree; for instance,
one can swap the ranks of sibling leaves (in Figure 6: B and
C, or E and F ) without affecting the number of inversions.

We can derive error measures from these inversions for each
individual c in a few different ways: a simple summation
of inversions, which we denote by I(c); a weighted sum of
inversions, based on rank difference or on depth difference
(in which an inversion counts more if the rank/depth differ-
ence is greater), which we denote by IR(c) and ID(c) respec-
tively; or a normalized count IN (c). IN takes on values in
[0, 1], where 0 indicates no inversions and 1 indicates that
all sub- and superordinates of c are inverted with respect to
c); the additive inverse of this value is can be interpreted
as an accuracy score. Note that I, IR, and ID place more
emphasis on individuals with many subordinates, while IN

weights each individual equally.

Table 1 shows the result of calculating mean values for I,
IR, and IN . (IR and ID turn out to be strongly correlated
for this data set, so for simplicity we do not include figures
for ID here.) We observe the following:
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Figure 4: Rank versus depth for HITS (authority score), indegree, outdegree, PageRank, baseline model
(f = 0.9, Si, Sr), reply model (f = 0.001, Si, Sr)
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Figure 5: Rank value versus number of subordinates for HITS (authority score), indegree, outdegree,
PageRank, baseline model (f = 0.9, Si, Sr), reply model (f = 0.001, Si, Sr)



Ī ĪR ĪN

HITS (authority) 1.17 48.88 0.88
PageRank (α = 0.1) 0.80 41.14 0.92
indegree 0.54 39.38 0.95
baseline, Si (f = 0.9) 0.41 16.05 0.96
baseline, Sr (f = 0.9) 0.63 33.33 0.94
reply, Si (f = 0.001) 0.50 18.94 0.96
reply, Sr (f = 0.001) 0.55 30.15 0.95

Table 1: A comparison of the mean inversion scores
of several ranking algorithms.

• Si for the baseline and reply models outperforms all
other ranking algorithms for all error measures.

• Sr for the baseline and reply models performs compa-
rably to the indegree measure for I and IN , and slighty
outperform indegree for IR.

• PageRank and the HITS authority score are outper-
formed by a significant margin. (The HITS hub score,
not shown here, did rather worse than either.)

4.3 Sensitivity analysis
We evaluate the sensitivity of the rank orderings of models
in this framework to the choice of input parameter values by
building models using different parameter values, and then
measuring the differences in rank orderings between each
pair of models. We define the difference between two rank
orderings as the mean absolute difference in rank ordering
between each pair of individuals:

d(Aj , Ak) =

P
c∈C

|OAj (c)−OAk (c)|

|C| (8)

where Aj and Ak are two different models, and OAj (c) de-
notes the index of the rank assigned to c.

For a given entity set C, we observe that d(Aj , Ak) takes on
its maximum value when Aj produces an ordering that is
the reverse of Ak’s:

dmax(Aj , Ak) =

|C|/2P
k=1

(2k − 1)

|C| =
|C|
2

(9)

For this data set, therefore, the maximum mean difference
is 628/2 = 314; the figures below should be interpreted in
the light of this information.

Figure 7 shows the result of cross-comparison of three rank-
ing algorithms based on the basic model (Si, So, and Sr),
over variations in f . While varying f clearly has an effect on
ranking–larger differences in f yield larger mean differences
between the corresponding algorithms–the effect is small:
the largest difference is ≈ 2% (6.02/314) for any pair of
algorithms.

Figure 8 shows the result of cross-comparison of three rank-
ing algorithms based on the reply model (Si, So, and Sr),
over variations in the parameters G and H, which are de-
fined here to be functions of a single variable x: G = 1800x,
and H = 43200x; larger values of x suggest an atmosphere

x 0.5 1 2 4

0.5 0.00 6.16 11.02 25.70
1 6.16 0.00 6.88 21.15
2 11.02 6.88 0.00 16.11
4 25.70 21.15 16.11 0.00

Table 2: Comparison of reply model algorithms (f =
0.001, varying x), for ranking method Sr.

in which email is generated and replied to at a slower pace.
These figures indicate that varying x has a significant effect
on rank ordering (again, larger differences in x yield larger
mean differences in ordering): the largest mean difference in
this case is ≈ 20% (65/314).

The results shown in Figure 8 were generated using f = 0.1.
We tested f = 0.001 as well, and found that the results for
Si and So (not shown here) were essentially identical, but
that the results for Sr were markedly different; these results
are shown in Table 2. We observe that a 100-fold reduction
in f results in an approximately 2-fold reduction in mean
difference magnitude for all values of x tested.

5. CONCLUSION AND FUTURE WORK
We have presented EventRank: a new framework, based on
a set of clear requirements, for models that rank individu-
als in a social network derived from events occurring over
time; these models respect event sequence and also provide a
way of tracking rank changes over time as new events occur.
Our experiments employed a novel method for evaluating
the fitness of ranking algorithms when applied to a commu-
nity with a known hierarchy, which involved evaluating the
consistency of the rank ordering with the partial ordering
specified by the organizational hierarchy.

Our preliminary investigation of this network, applied to an
organizational email data set, has yielded promising results:
our algorithms performed at least as well as the existing
algorithms to which we compared them, and the orderings
were shown to be a better fit with the organizational hier-
archy.

Directions for future work include the following:

• application of these models to additional data sets, for
further validation

• extension of the framework to incorporate header and
content data; the reply model could be made more
sophisticated, for example, if we knew which messages
were in fact replies [7]

• application of this model to other types of event data,
including undirected relations; the existing model does
not depend on the fact that email events are directed

• investigation of methods for determining good values
for f , G, and H based on requirements and time scales
of interest

• analysis of transient rank values to automatically dis-
cover patterns in relative ranks of individuals over time,
e.g., upward and downward trends in ranks for specific



f 0.9 0.1 0.01 0.001

0.9 0.00 4.44 5.79 6.02
0.1 4.44 0.00 1.81 2.12
0.01 5.79 1.81 0.00 0.44
0.001 6.02 2.12 0.44 0.00

f 0.9 0.1 0.01 0.001

0.9 0.00 3.72 4.69 4.87
0.1 3.72 0.00 1.30 1.64
0.01 4.69 1.30 0.00 0.50
0.001 4.87 1.64 0.50 0.00

f 0.9 0.1 0.01 0.001

0.9 0.00 2.18 3.12 3.37
0.1 2.18 0.00 1.26 1.58
0.01 3.12 1.26 0.00 0.42
0.001 3.37 1.58 0.42 0.00

Figure 7: Comparison of baseline model algorithms, varying f : Si, So, and Sr respectively.

x 0.5 1 2 4

0.5 0.00 6.27 10.32 20.69
1 6.27 0.00 5.54 16.05
2 10.32 5.54 0.00 12.08
4 20.69 16.05 12.08 0.00

x 0.5 1 2 4

0.5 0.00 8.54 15.38 65.82
1 8.54 0.00 12.45 60.01
2 15.38 12.45 0.00 55.92
4 65.82 60.01 55.92 0.00

x 0.5 1 2 4

0.5 0.00 12.55 25.52 42.08
1 12.55 0.00 14.17 31.66
2 25.52 14.17 0.00 20.37
4 42.08 31.66 20.37 0.00

Figure 8: Comparison of reply model algorithms, f = 0.1, varying x: Si, So, and Sr respectively.

individuals, periodic burstyness in ranks for individu-
als at certain times of year, etc.
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