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The Distribution of Loop Lengths in Graphical
Models for Turbo Decoding
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Fig. 1

The ADG model for a K = 6, N = 12, rate 1/2 turbo code.

Abstract— This paper analyzes the distribution of loop
lengths in graphical models for turbo decoding. The prop-
erties of such loops are of significant interest in the context
of iterative decoding algorithms based on belief propaga-
tion. We estimate the probability that there exist no loops
of length less than or equal to c at a randomly chosen node
in the acyclic directed graphical (ADG) model for turbo
decoding, using a combination of counting arguments and
approximations. When K, the number of information bits,

is large, this probability is approximately e−
2c−1−4

K , for c ≥ 4,
where nodes for input information bits are ignored for conve-
nience. The analytical results are validated by simulations.
For example, for turbo codes with K = 64000, a randomly
chosen node has a less than 1% chance of being on a loop of
length less than or equal to 10, but has a greater than 99.9%
chance of being on a loop of length less than or equal to 20.

Keywords—Belief propagation, graphical models, iterative
decoding, turbo code.

I. Introduction

Turbo codes are a new class of coding systems that of-
fer near optimal coding performance while requiring only
moderate decoding complexity [1]. It is known that the
widely-used iterative decoding algorithm for turbo codes is
in fact a special case of Pearl’s local message-passing al-
gorithm [2] for efficiently computing posterior probabilities
in acyclic directed graphical (ADG) models (also known as
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“belief networks”) [3], [4]. Figure 1 shows the ADG model
for a rate 1/2 turbo code with N = 12 codeword bits and
K = 6 information bits. (For real turbo codes, K can be
much larger, e.g. K = 64000.)

Pearl’s algorithm is provably convergent to the true pos-
terior probabilities provided that the graph structure of the
ADG model does not contain any loops in the undirected
version of the ADG (i.e., the graph where directionality of
the edges is dropped). This “loop-less” condition ensures
that there is only one path of message-passing from one
node to another. Otherwise, the information from one node
can be over-counted at another node. It is well-known that
message-passing in such graphs with loops can converge to
incorrect posterior probabilities (e.g., [5]). Thus, we have
the “mystery” of turbo decoding: why does a provably in-
correct algorithm produce an extremely useful and practi-
cal decoding algorithm? In the remainder of this paper we
take a step in understanding this by characterizing the dis-
tribution of loop lengths. The motivation is as follows: if
it turns out that loop lengths are “long enough” then there
may be a well-founded basis for believing that message-
passing in graphs with loops of the appropriate length are
not susceptible to the “over-counting” problem (i.e., that
the effect of long loops in practice may be negligible). This
is somewhat speculative and we will return to this point
in Section V. An additional motivating factor is that the
characterization of loop length distributions in turbo codes
is of fundamental interest by itself. For example, the loop
length distributions may be related to the weight distribu-
tions of the code, although it must be pointed out that the
loop length distributions, by themselves, are not sufficient
for designing codes with good weight distributions.

In Section II, we derive analytical approximations for the
probability that there are no loops of length c or less at a
randomly chosen node in the ADG model for turbo codes.
In Section III, we provide numerical results based on the
analytical approximations and compare them with the sim-
ulation results. In Section IV we briefly discuss extending
the techniques to various extensions of turbo codes and
to other codes with similar iterative decoding algorithms.
Section V contains a discussion of what these results may
imply for iterative decoding in a general context and Sec-
tion VI contains the final conclusions.

II. Theoretical Analysis

When characterizing the distribution of loop lengths in
the ADG model we drop the X, Y nodes (since they are
not on any loops ) and the directionalities of the edges.
Figure 2(a) shows the resulting loop graph of the turbo
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(b)

Fig. 2

The loop graph underlying the turbo code of Figure 1: (a)

The X, Y nodes are dropped and the directionalities of the

edges are also dropped, (b) The U nodes are also dropped.
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Fig. 3

A loop in Figure 2(b).

code in Figure 1. To simplify our analysis further, in Fig-
ure 2(b), the U nodes are also dropped. Results on this
simplified loop graph can be easily extended to the orig-
inal loop graph. In what follows, we will look at graphs
such as Figure 2(b), in which

1. there are two parallel chains, each having K nodes,
2. each node is connected to one (and only one) node on
the other chain, and
3. the 1-to-1 connections between the nodes on the two
chains are chosen randomly, e.g., by a random permutation
of the sequence {1, 2, . . . ,K}.

To count the loops of various lengths in graphs like Fig-
ure 2(b), we define a loop of length c to be a sequence of
c consecutive edges with no repeated node except that the
starting node is also the ending node. We label the edges
in a loop (see Figure 3 for an example) as follows:

1. →: “Left-to-right on a chain” (e.g., S1
2S

1
3 in Figure 3).

2. ←: “Right-to-left on a chain” (e.g., S2
6S

2
5).

3. |: “Going from one chain to another” (e.g., S1
4S

2
6).

For example, the loop S1
2–S

1
3–S

1
4–S

2
6–S

2
5–S

1
2 will be labeled

→→|←|. In general, starting from a given node, a loop

will have two label sequences, as it can be traversed in two
directions. A label sequence for a loop must satisfy the
following conditions:

1. The label “→” cannot be adjacent to “←”. Note that
the first and the last edges are adjacent to each other in a
loop.
2. The label “|” cannot be adjacent to another “|”.
3. The number of “|” labels must be even.

A label sequence satisfying the above conditions will be
called a candidate loop labeling.

A. Number of candidate loop labelings

Let NL(c,m) be the number of possible candidate loop
labelings of length c and with m “|” labels.
First, we calculate the number of ways of putting m “|”

labels on a loop of c edges so that no two “|” labels are
adjacent to each other. This number is

(

(c− 1)− (m− 1)

m

)

+

(

(c− 3)− (m− 2)

m− 1

)

=
c

c−m

(

c−m

m

)

. (1)

When the m edges are labeled “|”, there will be m seg-
ments of unlabeled edges (delimited by the “|” labels).
Each segment can be labeled either → or ←, so there will
be 2m ways of labeling these m segments.
So the total number of ways of labeling the edges of a

loop of length c and with m “|” labels is c
c−m

(

c−m
m

)

× 2m.
Every loop has two labeling sequences (by traversing in two
directions), so we divide the total number by 2:

NL(c,m) =
c

c−m

(

c−m

m

)

× 2m/2 (2)

= 2m−1 c

c−m

(

c−m

m

)

.

B. Probability of finding a given candidate loop labeling at

a randomly chosen node in a loop graph

Given a specific candidate loop labeling L of length c and
with m “|” labels, and given a randomly chosen starting
node A in a specific loop graph, we calculate the probability
that the specific loop L exists at A.
Without loss of generality, suppose L begins with a label

“→” or “←”. (If L begins with the label “|”, the last label
will be “→” or “←”, so we can start with the last label and
traverse in the reverse direction.) We traverse a1 edges (in
the direction of the corresponding labels in L) on the same
chain as the starting node, “chain 1”, then we go to the
other chain, “chain 2”, via a “|” edge. Once on chain 2, we
traverse b1 edges on it (also in the direction of the labels),
then come back to chain 1 via another “|” edge. This group
of 4 steps is repeated m

2 times. Let at, bt, 1 ≤ t ≤ m
2 be

the number of edges on chains 1 and 2 respectively for the
i-th group, where at, bt ≥ 1.
After the last 4-step group, there are am

2
+1 ≥ 0 labels

at the end of L. If the last label of L is “|”, am
2

+1 = 0,
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otherwise am
2

+1 > 0, and we have a stand-alone step to
traverse am

2
+1 edges on chain 1.

We find a loop if every step of the above process is suc-
cessful. A step is unsuccessful if it arrives at a previously
traversed node (except for the last step where arriving at
the starting node A is required), or it attempts “→” at the
right boundary of a chain, or “←” at the left boundary of
a chain. When calculating the probabilities of success of
the steps, the following facts are relevant:
• The starting node A is a randomly chosen node and can
be anywhere on a chain.
• When going from node S1

i on chain 1 to chain 2, because
the connections between nodes on the two chains are chosen
randomly, we can arrive at any node S2

j on the other chain
except the nodes that are known to be connected to chain-
1 nodes other than S1

i (and similarly for going from a node
on chain 2 to chain 1).
The probabilities of success for the steps in the t-th 4-

step group are as follows:
1. Traversing at edges on chain 1: The at+1 nodes on the
at edges should not contain any node traversed by a previ-
ous group. The previous t− 1 groups left behind between
1 and t segments of consecutive un-traversed nodes. So the

probability of success p
(1)
t is

1−
(t− 1)at

K −
∑t−1

i=1(ai + 1)
≤ p

(1)
t ≤ 1−

at

K −
∑t−1

i=1(ai + 1)
.

(3)
2. Going to chain 2: This step will be unsuccessful if we ar-
rive at any previously traversed node on chain 2, although
we need not worry about the 2(t − 1) nodes on edges la-
beled “|” (these nodes are known to be connected to some
other different nodes on chain 1).

p
(2)
t = 1−

∑t−1
i=1(bi − 1)

K − 2(t− 1)
. (4)

3. Traversing bt edges on chain 2: This is similar to step 1.

1−
(t− 1)bt

K −
∑t−1

i=1(bi + 1)
≤ p

(3)
t ≤ 1−

bt

K −
∑t−1

i=1(bi + 1)
.

(5)
4. Coming back to chain 1: This is similar to step 2.

p
(4)
t = 1−

1 +
∑t

i=1(ai − 1)

K − (2t− 1)
. (6)

To be successful, the stand-alone step at the end must ar-
rive at the starting node A after traversing the am

2
+1 edges

on chain 1. So its probability of success can be approxi-
mated as:

p
(1)
m
2

+1 ≈
1

K −
∑

m
2

i=1(ai + 1)
. (7)

If am
2

+1 > 0, the probability of success of the whole process
is

p(K, c,m) ≈





m
2
∏

t=1

p
(1)
t p

(2)
t p

(3)
t p

(4)
t



 pm
2

+1(1). (8)

If am
2

+1 = 0, the 4th step of the last 4-step group will end

the whole process, so p
(4)
t for t = m

2 will be different from
Equation (6), and the term pm

2
+1(1) is not needed. But the

final result will be approximately the same as Equation 8
above.
Note that

∑
m
2

+1
i=1 ai +

∑
m
2

i=1 bi = c − m, ai, bi ≥ 1 for
1 ≤ i ≤ m

2 , and am
2

+1 ≥ 0, Equation (8) can be bounded
by

1

K −m

m
2
∏

t=1

[

(

K + 2tm− tc− 3t+ 3

K + 2m− c− 2t+ 2

)2

(

1−
c− 2m

K − 2t+ 2

)(

1−
c− 2m+ 1

K − 2t+ 1

)]

≤ p(K, c,m) (9)

≤
1

K − c+m

m
2
∏

t=1

[

(

1−
1

K − 2t+ 2

)2

(

1−
1

K − 2t+ 1

)]

.

The ratio between the upper bound and the lower bound is
close to 1. For example, when K = 64000, c = 10,m = 4,
the ratio is 1.0002. Given that the bounds are so close
in the range of K, c, and m of interest, in the remainder
of the paper we will simply approximate p(K, c,m) by the
arithmetic average of the upper and the lower bounds.

C. Probability of no loops of length c or less

Denote the candidate loop labelings of length c as L1, L2,
. . . , and let Li mean that Li is unsuccessful. The proba-
bility that none of the possible candidate loop labelings is
successful can be approximated as follows:

p(no loops of length c)

= p(L1, L2, . . .)

≈
∏

i

p(Li)

=
∏

m:2≤m≤c/2
m is even

(1− p(K, c,m))NL(c,m). (10)

In this independence approximation we are assuming that
the successes of the candidate loop labelings are indepen-
dent of one another. This is not strictly true, but appears
to be a good approximation to first order.
Similarly, the probability that there are no loops of

length c or less will be approximated as follows:

p(no loops of length c or less)

≈

c
∏

i=4

p(no loops of length i), (11)

where we make another independence assumption that the
events “no loops of length i”, for 4 ≤ i ≤ c, are independent
of one another (again, not strictly true, but likely to be a
good first order approximation).
Using Equations (9), (10), and (11), we can now analyt-

ically estimate p(no loops of length c or less).
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c psimulation (a) ptheoretical (b) a− b
4 0.99994900 0.99993750 0.00001150
5 0.99979300 0.99978127 0.00001173
6 0.99950100 0.99950013 0.00000087
7 0.99904100 0.99906295 -0.00002195
8 0.99814200 0.99818917 -0.00004717
9 0.99618000 0.99622599 -0.00004599
10 0.99201000 0.99203233 -0.00002233
11 0.98391600 0.98388264 0.00003336
12 0.96872700 0.96844956 0.00027744
13 0.93864800 0.93862939 0.00001861
14 0.88064100 0.88075430 -0.00011330
15 0.77345100 0.77414022 -0.00068922
16 0.59722500 0.59830123 -0.00107623
17 0.35751600 0.35878319 -0.00126719
18 0.12877900 0.12942941 -0.00065041
19 0.01655100 0.01676785 -0.00021685
20 0.00025700 0.00027848 -0.00002148

TABLE I

Simulation vs. theoretical estimates of the probability of

no loops of length c or less, at a randomly chosen node in

the ADG model of turbo codes with K=64000, as a function

of c. The U nodes are ignored.

III. Numerical and Simulation Results

For each value of chain length K = 1000, 2000, 10000,
64000, we constructed 10000 different graphs (i.e., each
graph has a different random permutation) of the corre-
sponding length, and for each graph, we counted the loops
of length c = 4, 5, . . . , 20, at 100 randomly chosen nodes.
In total, the loop counts at 1, 000, 000 nodes are collected
to generate an empirical estimate of the true p(no loops of
length c or less) for each value of K.

The simulation estimates, together with the theoretical
estimates and their differences, for K = 64000, are shown
in Table I. The difference in error is never greater than
about 0.005 in probability. Note that neither the simu-
lation estimates nor the theoretical estimates are exact.
Thus, differences between the two may be due to either
sampling variation or error introduced by the approxima-
tions.

Figure 4 shows the plot and log plot of the simulation
and theoretical estimates for K=1000, 2000, 10000, and
64000. There appears to be a “soft threshold effect” in the
sense that beyond a certain value of c, it rapidly becomes
much more likely that there are loops of length c or less
at a randomly chosen node. The location of this threshold
increases as K increases (i.e., as the length of the chain
gets longer).

To characterize the curves in the plot, we look at the
limiting case when K is very large, i.e., K À c. In this
case, the total number of candidate loop labelings of length
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Simulation (* symbols) vs. theoretical estimates (solid lines)

of the probability of no loops of length c or less, at a

randomly chosen node, as a function of c, for K=1000, 2000,

10000, and 64000.

c is

NL(c) =
∑

m:2≤m≤c/2
m is even

NL(c,m)

=
∑

m:2≤m≤c/2
m is even

2m−1 c

c−m

(

c−m
m

)

≈ 2c−2, (12)

and the probability of successfully finding a loop labeled
with a given candidate loop labeling is approximately 1

K , so
the probability of no loops of length c or less at a randomly
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chosen node is

p(no loops of length c or less)

≈
c
∏

i=4

(

1−
1

K

)2i−2

=

(

1−
1

K

)2c−1−4

≈ e−
2c−1−4

K . (13)

This probability equals 0.5 at c0.5 = log2(K log 2 + 4) + 1,
which provides an indication of how the curve will shift to
the right as K increases. Roughly speaking, to double c0.5,
one would have to square the chain length from K to K2.

IV. Other Results

Up to this point we have been ignoring the U nodes when
counting the loops. The results can readily be extended
to include these U nodes by counting each edge labeled
with “|” (that connects nodes from different chains) as two
edges.
Various extensions of turbo codes are also amenable to

this form of analysis. For example, for the case of a turbo
code with more than two constituent encoders, one can gen-
eralize the notion of candidate loop labeling and count ac-
cordingly. As another example, we applied the same tech-
niques of counting loops to turbo codes with S-random per-
mutation [6]. In both simulation and analysis the S-random
construction is shown to eliminate very short loops and for
larger loops results in only a small systematic decrease in
the probability of such loops [7].
For other codes with similar iterative decoding algo-

rithms to turbo codes, the same techniques of analysis
can be applied. For example, for low density parity check
(LDPC) codes [8], [9], we find that the loop length distri-
bution shows qualitatively similar behavior to that of turbo
codes, although the analytic approximations are less accu-
rate than for the turbo codes (when compared to simulation
results) [7].

V. Connections to Iterative Decoding

For turbo codes we have shown that randomly chosen
nodes are relatively rarely on a loop of length 10 or less, but
are highly likely to be on a loop of length 20 or less (for a
block length of 64000). It is interesting to conjecture about
what this may tell us about the accuracy of the iterative
message-passing algorithm in this context.
It is possible to show that there is a well-defined “dis-

tance effect” in message propagation for typical ADG mod-
els. Consider a simple model where there is a hidden
Markov chain consisting of binary-valued Si state nodes,
1 ≤ i ≤ K. In addition there are observed Yi’s, one
for each state Si and which only depend directly on each
state Si. p(Yi|Si) is a conditional Gaussian with mean Si

and standard deviation σ. One can calculate the effect of
any observed Yi on any hidden node Sj , j < i, in terms
of the expected difference between p(Sj |Yj , . . . ,Yi+1) and

p(Sj |Yj , . . . ,Yi), averaged across many observations of the
Y ’s. This average change in probability, from knowing Yi,
can be shown to die off exponentially as a function of dis-
tance along the chain. Furthermore, one can show that as
the channel becomes more reliable (σ decreases), the dom-
inance of local information over information further away
becomes stronger, i.e., Yi has less effect on the posterior
probability of Sj , on average.
The exponential decay of information during mes-

sage propagation suggests that there may exist graphs
with loops where the information being propagated by a
message-passing algorithm (using the completely parallel,
or concurrent, version of the algorithm) can effectively “die
out” before causing the algorithm to over-count. Of course,
as we have seen in this paper, there is a non-zero probability
of loops of length c ≥ 4 for realistic turbo graphs, so that
this line of argument is insufficient on its own to explain
the apparent accuracy of iterative decoding algorithms.
It is also of interest to note that that iterative decoding

has been empirically observed to converge to stable bit de-
cisions within 10 iterations or so. As shown experimentally
in [10], even beyond 10 iterations of message-passing there
are still a small fraction of nodes which typically change
bit decisions. Combined with the results on loop length
distributions in this paper, this would suggest that it is
certainly possible that over-counting is occurring at such
nodes. It may be possible to show, however, that any such
over-counting has relatively minimal effect on the overall
quality of the posterior bit decisions.

VI. Conclusions

The distributions of loop lengths in the graphical mod-
els for turbo decoding were analyzed and simulated. Short
loops (e.g., of length c ≤ 8) occur with relatively low prob-
ability at any randomly chosen node. As the loop length
increases, there is a threshold effect and the probability of
finding a loop of length c or less approaches 1 (e.g., for
c > 20). For turbo codes, as K, the number of information
bits, becomes large, the probability that a loop of length
c or less exists at any randomly chosen node behaves ap-

proximately as e−
2c−1−4

K , c ≥ 4. In summary, the results in
this paper demonstrate that the loop lengths in the graph-
ical models of turbo codes and LDPC codes have a specific
distributional character. We hope that this information
can be used to further understand the workings of iterative
decoding.
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