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Abstract

Pattern recognition methods and hidden Markov models can be effective tools for
online health monitoring of communications systems. Previous work has assumed that
the states in the system model are exhaustive. This can be a significant drawback
in real-world fault monitoring applications where it is difficult if not impossible to
model all the possible fault states of the system in advance. In this paper a method
is described for extending the Markov monitoring approach to allow for unknown or
novel states which can not be accounted for when the model is being designed. The
method is described and evaluated on data from one of the Jet Propulsion Laboratory’s
Deep Space Network antennas. The experimental results indicate that the method is
both practical and effective, allowing both discrimination between known states and
detection of previously unknown fault conditions.

1 Motivation

Online monitoring of complex communication systems and networks for the purposes of
automated fault detection is a topic of considerable practical importance. For example,
the Deep Space Network (DSN) (operated by the Jet Propulsion Laboratory (JPL) for the
National Aeronautics and Space Administration (NASA)) consists of three ground-based
antenna sites in Australia, Spain, and California. FEach site contains a single 7T0m antenna
and several smaller 26m and 34m antennas. These antennas provide the capability for 24-
hour communications with various unmanned interplanetary robotic explorers such as the
Pioneer, the Voyager, and Magellan spacecraft [1]. Fault detection and isolation is often a
complicated and lengthy process due to the fact that it can be difficult to establish the root
cause of a problem in the communications chain. As an example, a problem with the radio
receiver dropping carrier lock could be caused by a variety of factors such as problems with
the spacecraft itself, external environmental influences such as weather, irregularities in
the antenna pointing system, problems with the receiver hardware, incorrectly set tracking
parameters, and so forth.

Loss of a spacecraft signal during a planetary encounter may result in the irretrievable
loss of science data. Hence, there is considerable motivation to be able to quickly detect,
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isolate, and repair a fault. The same scenario applies to many commercial and military com-
munication systems: rapid detection of failures is essential as communications equipment
becomes more complex and various applications (such as medical imaging and electronic
financial transactions) have come to rely on communications as an essential component of
their day-to-day business.

In this paper, the general problem of real-time monitoring of a dynamic system is exam-
ined, with particular emphasis on the problem of detecting anomalous states which have not
been modelled a priori. There is an implicit assumption that the system being monitored
is not amenable to standard linear modelling so that the standard linear systems approach
to fault detection described in the control theory literature [2, 3, 4] is not applicable — this
is frequently the case with complex real-world systems. It will help the reader to imagine
that the particular system being monitored is in fact a sub-system of an overall larger sys-
tem: the primary purpose of monitoring the “subsystem” is to quickly determine if it in
particular is the cause of the problem, given that an overall anomaly has been detected. For
example, we will later focus on the problem of health monitoring the pointing subsystem
of a 34m DSN antenna — the overall larger system could be considered to be the complete
ground station (antenna/microwave/receiver/decoder) or indeed the entire communications
link between the spacecraft and JPL.

2 The Hidden Markov Model Method for Online Monitor-
ing
2.1 Basic Notation and Assumptions

Consider that we are monitoring a dynamic system for which observable measurements are
available at discrete time intervals. Denote the observable d-dimensional random variable
as Y where y € R? is a particular realization of Y. Without loss of generality assume
that the time interval is 1 so that at time ¢ we have seen a sequence of such measurements,
&t = {y(t),y(t —1),...,y(0)}, where & represents all the observed data up to time ¢, and
y(t) is the observed data at time ¢.

Let €2 be a discrete random variable taking values in the set {w1,...,wy,}. Assume that
the system at any time ¢ is in one and only one of the m states, wq,...,wn. For fault
diagnosis applications w; is typically chosen to be the normal operating state of the system
and the other states represent various possible fault conditions. The assumption that the
states are mutually exclusive is equivalent to the “single-fault” assumption, namely that
multiple faults do not occur simultaneously. This assumption is application dependent:
for the antenna monitoring application described later it is certainly true that multiple
simultaneous faults are thought to be extremely rare events and thus can are not a significant
factor in practice. The second assumption, that the set of fault states is exhaustive, is much
more restrictive and rarely likely to be true in practice: we will return to this aspect of the
problem later in the paper, but for the present we will assume that the states are exhaustive.

Now consider the observable Y in relation to the states. We will assume that the
conditional probability of Y given a particular state is stationary, i.e.,

p(Y(t1) = y|Q(t1) = wi) = p(Y (t2) = y|Q(t2) = wy), Vitq, to, 1<i<m.

For shorthand throughout the paper we will replace “Q(t) = w;” by w} and “Y(t) = y” by
y(t). Since the state-observable relation is not time-dependent, explicit reference to time ¢
in this context will be omitted.
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Figure 1: A diagram representing the operation of a 3-state hidden Markov model. The
observed data y is available at times t—1,¢,.... The dotted lines represent the possible state
transitions of the system between each time instant. The solid line represents one possible
state sequence; in this case, the system is in state w; at time ¢t — 1, remains in this state
at time ¢, moves to state ws at time ¢t + 1 and on to state wo at time ¢ + 2. The inference
problem is to infer the most likely states given only the observed data y(t — 1), y(%),....

The observable y can be considered to be a probabilistic function of the underlying
states, l.e., y is an observed measurement from the system, for example, the mean value of
a motor current signal over some time window. The underlying states are not themselves be
directly measurable, i.e., they correspond to hypothesized internal states of the system. We
will examine later, in more detail, specific examples of observables and underlying states.

At this point we will assume that the prior probabilities of the states p(w;) are known
and that either (a) the conditional probabilities of the observables given the states p(y|w;)
are known, or equivalently, (b) that the conditional probabilities of the states given the
observables p(w;|y) are known. Since the states have been assumed to be mutually exclusive

and exhaustive, the equivalence of knowing either (a) or (b) follows from Bayes’ rule:

p(wily) = P(y|wi)p(ws)

1<i<m,
= je1 P(ylws)p(w;)’

Section 2.3.2 will discuss how these conditional distributions may be estimated in practice.

Finally we will assume that the state variable €(¢) is a stationary discrete-time first-
order Markov process with transition matrix A. Entry a;; is the probability of the system
being in state j at time t given that the system was in state ¢ at time ¢ — 1, i.e.,

aij =pWhlwi™"), ¥Vt  1<ij<m (1)

Q(t) need not necessarily be assumed to be a first-order Markov process: the algorithms
and methodology described in the paper can be readily extended to higher-order and semi-
Markov processes.

What we have described so far is a first-order discrete-time hidden Markov model —
a diagrammatic representation is shown in Figure 1. The hidden aspect of the model
reflects the fact that the states are not directly measurable themselves, but are indirectly
observable via the y’s which are a probabilistic function of the underlying Markov process.



In general, the parameters of a specific model are often referred to generically as A =
{p(wl)a s ap(Wm),P(Q|W1)a s ap(gk‘)m)v A}

2.2 Inference of the State Probabilities given the Observed Data

Given a particular hidden Markov model with m states and fixed parameters A, one can
use this model to infer the posterior probabilities of each of the hidden states at time ¢,
given the observed data ® = {y(t),y(t —1),...,y(0)} up to and including time ¢. The
application might be an online system where we are observing the data in real-time and
wish to generate an alarm if p(w!|®) < 0.5 (for example). The solution to this problem
follows directly from the assumptions in the previous sections and an efficient algorithm for
recursively computing these state estimates has been developed in the speech recognition
literature (the “forward algorithm” — see Rabiner [5] for a tutorial overview). In particular
we have that

1 m
pGﬂ@>=zﬁ{gm@>§)%p@fH@4>, t>1,1<j<m (2)
=1

where
p(wf10°) =pwy),  1<i<m
and,
Ct = Z [p (g(t)hu}") Zaijp (wf_1|¢>t_1)] (3)
7=1 =1

is just a normalizing constant to ensure that the state probability estimates at time ¢ sum
to 1. Note that these equations are usually written in terms of « variables in the speech
recognition literature.

In a similar manner, at time ¢, one can calculate the probability of state j at time ¢t — k
given only the data which has occurred between time ¢ — k and time ¢, defined as:

Tk = {y(t),y(t —1),...,y(t —k + 1)}.

Analogous to the previous recursion, but now conditioning on data which occurred after
time ¢ — k one has

kit 1 & _ _ _
p(w D) = 25 D ap (Wi DR )p (gt — ko Dt ™),
=1

1<k<t, 1<i<m (4)

1
p@ﬁg=—
m

and L! is a normalization constant. This is known as the “backward recursion algorithm”
in speech-related work and is often written in terms of intermediate variables known as (’s.

Thus, for a state which occurred in the past at time t—k, one can calculate the probability
of that state given the data which occurred up to time ¢ — k, and after ¢t — k to time ¢, by

where



combining the p(w’™*|®**) and p(w!*|T**) in the following manner (see Rabiner [5] for
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1<k<t, 1<j<m. (5)

Equations (2), (4), and (5) are the basic estimation equations for online monitoring.

The computational complexity of the method described above can be calculated as
follows. At each time step, with m states, there are order of m? “forward” calculations
(essentially one matrix-vector multiplication, Equation (2)) and order of k x m? “backward”
calculations (k instantiations of Equation (4)) where k is the backward recursion depth.
Hence, the basic computational complexity of the Markov component is order of k x m?2.
The number of states will usually be relatively small in practical applications: for example,
m = 5 in the experiments described later in this paper. The backward recursion depth k
is somewhat application dependent (for example & = 5 is found to be quite sufficient in
the antenna monitoring application) but since the complexity scales linearly with &, the
value of k is not a significant factor computationally. In addition, the method requires the

calculation of m observable-state terms per time-step, such as p(g(t)w;-), 1 <j<m: the

computational complexity of this process is a constant times m.

2.3 HMM’s applied to online monitoring

Given the above monitoring equations it remains to determine the Markov model structure
and parameters in order to implement the method for a particular problem.

2.3.1 HMM transition matrix

The key point in our Markov monitoring approach (previously introduced in [6] and [7]) is
that the transition probabilities are not estimated from the data (as in speech modelling),
but rather are chosen a priori based on the long-term temporal characteristics of the sys-
tem and prior knowledge concerning the system failure modes. Note that the use of this
prior information is essential in applications of this nature in the sense that there is often
no alternative practical method by which to estimate these probabilities. For example, in
speech modelling one can use estimation algorithms (such as the Baum-Welch algorithm)
to estimate the probabilities via maximum likelihood methods directly from data. Such es-
timation algorithms can also be used to estimate the HMM parameters directly from data
for monitoring applications in cases where records of observed system data over long-term
time periods are available. However, in practice it is often the case with fault monitoring
applications there is no such sequence of data available describing transitions over time
from state to state and, thus, the HMM estimation algorithms are not directly applicable.
Instead, data are available from each state individually, as in the antenna monitoring ap-
plication described later in the paper. Hence, in such situations, prior knowledge must be
used to determine the transition probabilities in the matrix A.

In particular, the mean time spent in the normal state w; of the model should be equal
to the mean time between failure (MTBF) of the observed system. For a first-order Markov



system the expected length of time [ spent in state wi, given that it starts in state wq, is

E[l] = Zna’f{l(l—all)
n=1

1
1—ap
= MTBF

Hence,
1

MTBF’ (6)
In practice the MTBF of a particular system is typically either available from databases of
trouble reports or can be inferred from reliability design information (for a new system).
Given aq1, the ay; terms (where 2 < i < m) are chosen based on the relative likelihoods
of the known fault states and are subject to the constraint that Y i~, a;; = 1 —aj1. These
values are chosen based on prior knowledge about the relative probabilities of the particular
fault states in the model: this information may be available from a database of trouble
reports or can be inferred from first principles reliability analyses of the various fault states.
The remaining probabilities of the form a;;, 7 # 1, are dependent on whether the faults
under consideration are intermittent in nature or are such that the only way to return to
the normal state is by shutting down the system and repairing the fault. For example, if
fault 7 is intermittent, then there is a direct relation between a;; and the mean duration of
this fault as in Equation (6) above — the mean duration of the fault can again be estimated
based on reliability analysis. The probability of changing to another fault (from fault 7)
can be set equal to the probability of changing to that fault from the normal state w;
(as above), ie., a;j = a1, # 1,0 # 1,7 # 1. Finally, the probability of returning to the

a11=1—

normal state wy from state ¢ is simply a;; = 1 — E;z;" a;j. The exact nature of the HMM
matrix is dependent on the particular operational scenario under which the model is being
used. The important point is that the HMM matrix incorporates any prior knowledge one
may have regarding the general temporal properties of the system states: if there is no prior
knowledge regarding certain fault states, then the transition probability mass which has not
been already assigned to the other states should be divided equally between these states.
A more detailed discussion on the design of HMM parameters is given in [7].

2.3.2 Estimation of the Observable-State Conditional Dependencies

Earlier we showed that the problem of estimating the probability of any state at time ¢
based on a particular sequence of observed data (either before or after ¢, or both) can be
expressed in recursive form. A central component in the recursion is the calculation of the
instantaneous observable-state conditional probability, p(y|w;), namely the probability of
observing the data y supposing that the system is in state w; at time ¢.

Consider the problem of estimating p(y|w;) for a specific state w;. The density func-
tion can be either chosen directly in the form of an explicit parametric model (for ex-
ample, a multi-variate Gaussian model) or could be estimated implicitly from data via
non-parametric methods such as multi-variate kernel density estimation [8, 9]. In the para-
metric model case, the parameters of the model can in turn either be chosen based on
prior knowledge of the system characteristics under fault and normal conditions, or can be



estimated from data. The data-based estimation procedures (whether parameter fitting for
a specific model or the entirely non-parametric approach) requires that observed data is
available for state w;. This is usually not a problem for the normal state w;. Indeed data
can often be generated for common fault states which are easy to emulate in hardware —
later we will describe results using this data-dependent approach.

It is worth noting that the dimensionality of the observable variable Y can have a dis-
tinct effect on one’s ability to estimate the functional form of the model p(y|w;). The larger
the dimensionality the more parameters must be estimated (in the parametric case) and
the sparser the data (in the non-parametric case), hence, the “curse of dimensionality” may
apply. One approach to alleviating this problem is to use Bayes’ rule and work with the
posterior or discriminative probabilities of the states given the observables. It is straight-
forward to show that the recursive state estimation equations derived earlier (see Equation
(2)) can equally well be written in discriminative form [10]:

1 p(wily(t) & T ,
p<w§-|<1>t)—Ht () Z z]p(wf @ 1), t>1,1<j<m (7)

where
p(@dy(0)) =p(w;), 1<j<m,

H'! is a normalization constant as before to ensure that the state probability estimates at
time ¢ sum to unity, and p(w;) is the prior probability of state j. This is equivalent to the
previously derived recursion relation by virtue of Bayes’ rule:

p(wjly(®) _ py®)lw;)
p(wj) py(t)

In a manner exactly analogous to that of Equations (4) and (5), one can also derive equiv-
alent recursion relationships for using all the observed data to time ¢, ®¢, to estimate the
probability of a state at time ¢t — k.

The advantage of this discriminative formalism is that estimation of the discrimina-
tive probabilities tends to scale better (in terms of estimation) with dimensionality (of the
observables) and is less sensitive to particular distributional assumptions about the observ-
ables, than the alternative approach of modelling p(y|w;) directly. Candidates for estimating
such discriminative probabilities directly from data include logistic discrimination [11] and
feedforward neural network models [12].

3 Previous Results on Antenna Monitoring

In previous work [6, 7] we have described the application of the Markov monitoring approach
to online failure detection in antenna pointing systems which are used to steer large 34 and
70 meter ground antennas of the DSN during tracking of various deep-space spacecraft.
Figure 2 shows a block diagram of a typical signal path from a spacecraft back to mission
control at JPL. The ground antenna is but one link in a complex chain of communications
and signal processing equipment. When a problem occurs, it is important to quickly isolate
the cause of the problem whether it is within the ground station, in the spacecraft, or
elsewhere. Because of the complexity of the link, it is not unusual that problems can not
be tracked down in real-time, resulting in loss of telemetry data and early shut-down of the
track. Furthermore, post-event trouble-shooting may not be able to accurately recreate the



Spacecraft

Jet Propulsion Laboratory

Mission
Control

Deep Space Communications Link

GCF Ground Communcations
Facility, low-error rate link

Deep Space Network Ground Station

| e
34 meter antenna Amplifier

Figure 2: A simplified diagram of the downlink between a spacecraft and mission control at
the Jet Propulsion Laboratory. There are three DSN ground stations at remote locations
in California, Spain, and Australia.

exact problem symptoms, resulting in either ignoring the problem until it becomes so severe
the station cannot track a spacecraft or misdiagnosing the problem and perhaps replacing
the wrong hardware component. The antennas are probably the single most difficult piece
of equipment to monitor accurately. Standard linear models are not particularly effective in
practice due to the presence of various non-linearities in the mechanical gears and bearings
and environmental influences such as wind gusts.

An experiment was carried out whereby hardware faults were introduced into the point-
ing system of a 34 meter antenna at a DSN antenna complex (located in Goldstone, Cali-
fornia) in a controlled manner. Separate sets of data were collected on two different days;
a training set to train the model and a test set to evaluate its performance on unseen data.
For each data set, data from a variety of sensors (motor current, tachometer, counter torque
readings sampled at 50Hz) were recorded under known conditions. The four known con-
ditions corresponded to (a) normal conditions, (b) a noisy tachometer (corresponding to
brush or bearing wear), (¢) complete failure of a tachometer, and (d) a short-circuit in an
amplifier.

The input feature vector y consisted of 8 autoregressive-exogenous (ARX) coefficients
and 4 standard deviation measurements, resulting in a 12 dimensional feature space. The
features were estimated from non-overlapping sequential blocks of sensor data where each
block consisted of 200 consecutive sample vectors. The ARX model used the rate command
to the system as the driving term and the motor current as the response. A model of the

form
P

q
z(t)+ Y az(t—i) =D bju(t—j) +e(t)
i=1 j=1
was used where p = 6,q = 2, e(t) is an additive white noise process, and z(t) and u(t) are
the motor current and rate command respectively. The feature coefficients, a; and b;, are
completely re-estimated (via standard least-squares estimation) for each window.
Hence, from the original time series data sampled at 50Hz, a 12-dimensional feature



vector is produced every 4 seconds. This is the observable feature vector y for the HMM.
The training data consisted of 75 such feature vectors for each of the fault states, and 225
vectors for the normal state. We experimented with two different methods for estimating the
state-observable conditional dependencies. First we used a 3-component Gaussian mixture
model for each of the 4 states to directly model p(y|w;), i.e., 4 such models were used. The
mixture models were fitted via a standard iterative maximum likelihood procedure known
as the EM algorithm [13]. The component densities were constrained to have diagonal
covariance matrices to reduce the number of parameters which needed to be estimated.

The second model used was a discriminative model (i.e., it modelled p(w;|y) directly),
in particular, a feedforward single hidden layer neural network. The model had 12 inputs,
8 hidden units, and 4 output units (one for each class) and used non-linear sigmoidal
activation functions in both the hidden and output units (the sigmoid is of the form f(z) =
1/(14exp(—=))). The network weights were estimated (“trained”) via a conjugate-gradient
variant of the backpropagation algorithm to minimize the empirical log-likelihood [14, 15].
Under appropriate theoretical conditions it has been shown elsewhere [16, 17] that the
outputs of such a trained network converge to the true a posteriori probabilities as the
training sample size gets large. Hence, although in practice one only has a finite training
sample size, and the architecture of one’s network model may be biased, it is reasonable to
interpret the network outputs as estimates of the posterior probabilities of the states given
the observables.

Results with both the mixture and neural models (without any HMM component) are
shown in Figures 3a and 3b respectively. The vertical axes represent various posterior
probability estimates of the states p(w;|y), while the horizontal axis represents time in
minutes. The system begins in the noisy tachometer fault state, switches to the failed
tachometer state, switches back to the normal state, switches to the amplifier fault state,
and finally returns to normal. Note that neither model is particularly accurate in tracking
the states and that there is a tendency to switch around between states. This is a direct
consequence of ignoring the temporal aspect of the problem, i.e., ignoring the fact that
the fault and normal states do not occur randomly in time but tend to persist. It can
also be seen in Figure 3a that the mixture model’s probability estimates tend to be near
either 0 or 1 indicating sharp decision boundaries and perhaps overfitting (the widths of
the component Gaussian mixtures may be too small). The neural network model on the
other hand provides smoother estimates.

A simple HMM was designed to model temporal context. All states were chosen to
be equally likely and the probability of changing to a different state was assigned as 0.01,
resulting in a probability of remaining in the same state of 0.97. This corresponds to an
effective expected duration in any one state of 2 minutes for our simulated problem (note
that in a practical situation the transition probabilities would tend to be much closer to
0 or 1 in order to model realistic MTBF’s). The depth of the backward recursion (k in
equations (4) and (5)) was set to 5 time steps: thus there is a latency of 5 x 4 = 20 seconds
before the system produces its estimate of the state probabilities for time ¢. A latency of
5 time steps was chosen for two reasons. Firstly, it is roughly the maximum delay from an
operational standpoint which can be tolerated if the detection system is to be considered
to be operating in real-time. Secondly, we found empirically that while there could be
a significant difference between using 0 and 5 backwards steps (typically the transitions
between states are estimated much more precisely with 5 steps), there was no significant
difference in the estimates produced by the model when the backwards depth was increased
from 5 to 10 time-steps (the estimated state probabilities were virtually identical in both
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Figure 3: Model responses on test data sequence without hidden Markov monitoring. The
horizontal axis represents time in minutes, the vertical axes represent the model’s estimates
of the 4 possible system states: (a) 3-component Gaussian (diagonal covariance matrices)
mixture model trained via EM algorithm, (b) single hidden layer (12 hidden units) feedfor-
ward neural network model.

cases).

Figures 4a and 4b show the results obtained when this Markov transition matrix was
used to correlate the estimates from Figures 3a and 3b, the mixture model and neural
network state estimates, respectively. There is some improvement gained by introducing
the HMM for the mixture model, for example, the number of false alarms (fault probabilities
greater than 0.5 when the true state is normal) is somewhat reduced. However, overall the
quality of the state probability estimates produced by the mixture model are poor enough
that adding temporal context (in the form of the HMM) does not significantly improve the
overall quality of the model’s estimates.

For the neural-HMM combination (Figure 4b), however, there is a dramatic improvement
in performance. Apart from some mislabelling of the tachometer noise state, the model
tracks the states almost perfectly. The lack of stability evident in Figure 3b (without
the HMM) is completely removed, i.e., the introduction of appropriate temporal context
removes any ambiguity about the identity of the states. Of the 4 responses plotted in Figures
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Figure 4: Model responses on test data sequence with hidden Markov monitoring. The
horizontal axis represents time in minutes, the vertical axes represent the model’s estimates
of the 4 possible system states. The hidden Markov model used a;; = 0.97 and a;; = 0.01,7 #
J- (a) 3-component Gaussian (diagonal covariance matrices) mixture model trained via the
EM algorithm, (b) single hidden layer (12 hidden units) feedforward neural network model.

3 and 4, due to its combination of low false rate and accurate detection, the neural-HMM
combination in Figure 4b is the only one which is accurate enough for actual operational
use in DSN ground stations. These results are consistent with those reported previously for
other test data [7] where the neural HMM combination produced zero classification errors
in over 1 hour of monitoring, while a maximum-likelihood Gaussian classifier (coupled to a
HMM model) had an error rate of 16.92% for the same data.

4 Detecting Unknown States

4.1 Discriminative and Generative models

The assumption that there are m known mutually exclusive and exhaustive states (or
“classes”) of the system, ws,...,w,, bears further investigation. The “mutually exclusive”
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assumption is reasonable in many applications where multiple simultaneous failures are
highly unlikely. However, the exhaustive assumption is somewhat unrealistic. In particular,
for fault detection in a complex system composed of hundreds of thousands of components,
there are a myriad of possible fault conditions which might occur. The probability of oc-
currence of any single condition is very small, nonetheless there is a significant probability
that at least one of these conditions will occur over some finite time. As an example, for the
antenna application, there are a few well-known faults (such as tachometer failures) which
occur with regularity and can be assigned specific fault states in advance; however, it is not
practical to assign states to all the other minor faults which might occur.

Hence, the question must be asked as to whether or not a discriminant classifier trained
to distinguish data from m states, can identify data from a different, or novel state. The
answer lies in a simple application of Bayes’ rule. If the classifier is a pure discriminant,
i.e., it directly models the posterior probability p(w;|y), then it is implicitly relying on the
assumption that the states are exhaustive and cannot in principle detect novel data. A good
example of this type of classifier is a feedforward neural network using sigmoidal activation
functions. Essentially, if one gives such a trained network new data which is far away from
the training data in the feature space, it will produce a near certain classification decision
for one of the existing classes because of the semi-global nature of the sigmoid model [18].

On the other hand, a generative model directly models the data in the feature space
conditioned on each class, p(y|w;), and then determines posterior class probabilities by
application of Bayes’ rule. Examples of generative classifiers include parametric models
such as Gaussian classifiers and memory-based methods such as kernel density estimators
and near neighbor models. Generative models are by nature well suited to online adaptation,
in particular, adaptation of the structure of the model such as the inclusion of a new class.
Conversely, discriminant models are by nature difficult to adapt online. However, there
is a trade-off: because generative models typically are doing more modelling than just
searching for a decision boundary, they can be less efficient (than discriminant methods)
in their use of the data. For example, generative models typically scale poorly with input
dimensionality for fixed training sample size and tend to be less robust to mismatches in
terms of distributional assumptions about the observed data [10].

4.2 Hybrid Models with an “Unknown” State

To alleviate the fact that discriminative models may not detect novelty, but that generative
models may have poor discriminative capabilities in many dimensions, we propose a hybrid
classifier which uses both a generative and discriminative classifier in parallel. The model
is based on the simple idea of adding an “m + 1th” state to the model to cover “all other
possible states” not accounted for by the known m states and modifying the probabilistic
updating equations appropriately.

Let the symbol wyy _,,} denote the event that the true system state is one of the known
states, and let p(wyy,. m}ly) be the posterior probability that the data is from the known
state given the observed data y. Hence, one can estimate the true posterior probability of
individual known states as

p(wily) = palwily, wir,...mp)P(@i1,.. .y ly), 1<i<m (8)

where pa(wi|y,wy1,..m}) is the posterior probability estimate of state i as provided by a
discriminative model (such as the neural network described earlier). Thus, the posterior
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estimates of the hybrid classifier are conditioned on whether or not the data comes from
one of the m known classes.

The calculation of p(wyi,.. m}|y) can be obtained as follows. Assume for the moment
that p(y|lwm+1), P(Wm+1), and p(ylwyi, .. m)) are all known. Thus we have by Bayes’ rule
that

pylwn,...mpp(wg,. m})
Ylwmt1)P(Wm+1) + pYlwi,...my) 27 p(wi)

9)

w m =

and of course
P(wm+1|£) =1 _p(w{l,...,m}|g)

Since by definition p(wyy,. m)) = 1 — p(wm+1), we must define a prior probability of
being in an unknown state. A practical choice is that the system is as likely to be in an
unknown failure state as any of the known failure states — this is the method used to
determine the prior probability in the experiments reported here.

The p(y|wyi,..,m}) term in Equation (9) is provided directly by the generative model,
i.e., whereas the discriminative model provides direct estimates of pg(wi|y, w1, m}), the
generative model provides estimates of the data given the states — hence, the notion of
running a discriminative and generative model in parallel. The generative model need not
necessarily use the full dimensionality of the input space, particularly if the dimensionality
is large. A mixture model of the form

m

pylw,..m}) = Y f(ylwi)p(wi) (10)

=1

is a natural choice, where in turn, the individual f(y|w;) components in the mixture could
be chosen as unimodal parametric models (such as Gaussians), or mixture models (thus
giving a hierarchical mixture model overall), or nonparametric kernel density estimates.
The hierarchical mixture model provides a reasonable trade-off between model flexibility
and complexity in practice.

Finally, the density of the observable data given the unknown state, p(y|wm41), must
be defined in Equation (9). This requires the use of non-informative Bayesian priors for
P(Y|lwm41) over a bounded space of feature values, i.e., the maximum entropy choice of
priors which reflect the least amount of prior information. Typically this requires that we
have some knowledge of upper and lower bounds on the possible feature values — with no
prior knowledge on the nature of unknown faults a uniform density over this space is usually
appropriate. Note that the stronger the bounds which can be placed on the features, the
narrower the prior density, and the better the ability of the overall model to detect novelty.
If we only have very weak prior information (very wide bounds), this will translate into a
weaker criterion for accepting points which belong to the unknown category.

4.3 Hybrid Models within a HMM context

The extension of the hybrid model to a HMM is straightforward. The number of states
is now m + 1 instead of m, i.e., the “unknown” state is explicitly modelled within the
HMM. The necessary state-observable probabilities (as required for the HMM recursion) are
calculated directly from Equations (8) and (9), i.e., the parallel generative/discriminative
models are combined to provide estimates of both p(w;|y(t)),1 < i < m and p(wm+1]y(t))
at each time instant. The transition probabilities between the known and transient states
must be consistent with our choice of prior probability p(wm+1), i-e., the relative likelihood
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of an unknown state. In addition, the self-transition probability of the unknown state
reflects our prior belief concerning the typical duration of such states — in practice, multiple
unknown states with different self-transition probabilities could be used to represent a range
of possible conditions from short transient faults to longer-term “hard” failures.

5 Experimental Results on Detecting Novel States

5.1 Constructing Hybrid models in Practice

To test the hybrid model the following experiment was conducted using the same data as
described in Section 3. In the training phase of the model the training data for one of
the known states was omitted entirely, i.e., the model was trained on 3 states instead of
4. Then, using the approach of Section 4, a hybrid model to detect unknown states was
constructed in the following manner:

e A discriminative classifier (the same feedforward neural network as described in Sec-
tion 3) was trained using all 12 features to provide estimates of

Pd(wz‘|ﬂ, w{l,...,m})a 1<0<3.

e A generative model consisting of a hierarchical mixture model (Equation (10)) was
fitted to the training data using only 3 features derived from the motor current signal;
the two coefficients of a second-order autoregressive model (AR(2)), ¢1 and ¢, and the
standard deviation, . Hence, y = (¢1, ¢2,0). These features were chosen empirically
on the basis of their being the most informative about changes in the system state —
using all 12 features would not have been practical given that only 75 data points were
available for the fault states. The individual mixture components were themselves a
mixture of 3 Gaussian components with diagonal covariance matrices — the mixture
weights and component parameters were estimated via the EM algorithm.

e The prior probabilities of the 3 known states and the unknown state were set uniformly,
i.e., to 0.25.

o A 4-state HMM was designed; 3 known states plus 1 unknown state, all with equal
prior probability and, as before, with probabilities of 0.01 of changing to any another
state. kK =5 was again used as the backward recursion depth.

Finally, the prior density of the data given the unknown state, p(y|wm+1), was defined
as follows. First consider the AR parameters ¢; and ¢». In accordance with standard
time series theory, if the estimated process (as represented by the two coefficients) is to be
stationary, then the coefficients must obey the following restrictions [19]:

o1+ P2 <1,
P2 —P1 <1,

—-1< (}51 <1. (11)

It will be assumed that the estimated coefficients are in fact stationary. Equation (11) thus
provides bounds on the possible parameter values. A uniform density is specified over all
such allowable values of ¢1 and ¢3. Of course, this does not allow for the fact that in practice
(and in particular for fault conditions) there is no guarantee that the estimated coefficients
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will obey these bounds. The following approach is adopted: if the estimated coefficients
lie outside the bounds of the stationary region then the probability of the unknown state
P(Wm1ly) is set to 1.

The third parameter, the standard deviation of the voltage from the Hall effect sensor
which measures motor current, is normally about 20mv under normal conditions. Based
on experience from observing the motor current signal under a variety of conditions it is
estimated that under any fault condition the standard deviation should not exceed 1 volt.
Hence, in the absence of any other prior information, a uniform density is placed on the
standard deviation over this range 0 to 1 volt for ¢. This density is assumed independent
of the AR(2) coefficient density, i.e., the overall prior density is the product of the two.

5.2 Experimental Results

We conducted the experiment (of leaving a particular fault out of the training data set)
twice; first the noisy tachometer fault was omitted, then the amplifier fault.

Figure 5a shows the response of the discriminative model alone (the feedforward neural
network probability estimates coupled to a 3-state HMM) to the test data which contains an
“unknown” fault, namely a noisy tachometer. The figure shows that the noisy tachometer
fault is misclassified as a failed tachometer. Figure 5b shows the response when the hybrid
model is run on the same data. Although there is some confusion between the unknown state
and the failed tachometer state, the model clearly identifies that there is an unknown state
present, i.e., the probability of an unknown state is usually close to 1 during the presence
of the unknown noisy tachometer fault. Interestingly enough, the model also picks up a
possible unknown transient which occurred during the simulation of the failed tachometer
fault.

In the second experiment, the amplifier fault was removed from the training data but
was present in the test set. Figure 6a shows the response of the discriminative 3-state HMM
(no explicit model for unknown). Whereas in the previous experiment the unknown fault
condition was merely classified incorrectly as being a different fault, here the unknown fault
is almost completely missed, i.e., it is largely misclassified as being normal. This is exactly
the type of problem which can arise when using discriminative models when the assumption
that the states are exhaustive is not met, namely, novel states can go undetected simply
because they happen to sit on the “normal” side of the estimated decision boundaries.
Figure 6b shows the response of the hybrid model to the same data. Now, although the
unknown fault is not detected in its entirety, it is partially detected in the unknown category.
As before, some of the tachometer fault data is also classified as being of the unknown
variety, perhaps indicating various transients in the data.

6 Discussion of Related Work

The initial idea of treating the online monitoring of dynamic systems within the frame-
work of a HMM appears to have been proposed independently by Heck and McClennan
[20], Ayanoglu [21], and Smyth and Mellstrom [6]. Heck and McClennan [20] describe the
application of the HMM approach to monitoring tool wear, with a particular application to
drill-bit wear detection. In addition they propose the use of the HMM to provide predictive
estimates of time-to-failure, a particularly useful approach when failures are of a costly
and/or catastrophic nature. Ayanoglu [21] pursues a similar approach for failure detection
and prediction in in communication networks. In related work, Coast et al. [22] use HMM’s
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for online monitoring and classification of cardiac arrhythmia signals, while Provan [23]
also describes a novel application of essentially the same idea to the problem of medical
diagnosis and treatment of acute abdominal pain. None of this work using hidden Markov
monitoring dealt with the problem of detecting unknown states.

Previous work on novelty detection (within the context of classification/discrimination)
has tended to focus on learning closed decision boundaries for the known classes (e.g., Hell-
strom and Brinsley [24]) — this approach is not likely to scale up well as the dimensionality
of the input space increases, and may not be feasible at all with some classification models
(such as neural network models with semi-global response functions such as sigmoids). An
alternative approach, proposed by Dubuisson and Masson [25], is to use only a generative
model in the model and thus detect outliers via distance thresholds, e.g., the distance from
the mean in a parametric model, or the distance from the nearest training set point in
near-neighbor or kernel models. The disadvantage of threshold-based methods lies in the
selection of the thresholds themselves; without some hypothesis for data from the unknown
state there is no principled way to choose such thresholds.

In contrast, the probabilistic model for detection of unknown states which we have pro-
posed in this paper, while requiring significant prior knowledge on the part of the designer,
is a more principled approach in that it makes quite explicit the various assumptions which
surround the novelty detection issue. It forces the system designer to assign specific prior
hypotheses to the prior density of the data conditioned on a novel event. Hence, the prob-
lem is framed explicitly in terms of comparing specific hypotheses for known and unknown
events.

7 Conclusion

In this paper the Markov monitoring approach has been extended to allow for detection
of system states which were unknown a priori. This has significant impact for practical
applications where novel events are far more likely than in a controlled laboratory environ-
ment. The proposed model was tested on data from a real-world fault detection application
and clearly demonstrated its ability to detect previously unknown states — conversely, the
model which assumed that unknown faults had a prior probability of zero either misclassified
an unknown fault into another fault state or did not detect that any fault was present.
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Figure 5: Model responses on test data sequence with hidden Markov monitoring where the
tachometer noise has been omitted from the training data set. The horizontal axis represents
time in minutes, the vertical axes represent the model’s estimates of the possible system
states. The hidden Markov models used a;; = 0.98 (3-state model) or a;; = 0.97 (4-state
model) and a;; = 0.01,7 # j: (a) 3-state (no unknown state) single hidden layer (12 hidden
units) feedforward neural network discriminative model with HMM (b) 4-state (3 known
plus unknown state) hybrid generative/discriminative model with HMM, discriminative
model as in (a), generative model is a 9-component Gaussian (diagonal covariance matrices)
hierarchical mixture model trained via the EM algorithm.
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Figure 6: Model responses on test data sequence with hidden Markov monitoring where the
amplifier fault has been omitted from the training data set. The horizontal axis represents
time in minutes, the vertical axes represent the model’s estimates of the possible system
states. The hidden Markov models used a;; = 0.98 (3-state model) or a;; = 0.97 (4-state
model) and a;; = 0.01,7 # j: (a) 3-state (no unknown state) single hidden layer (12 hidden
units) feedforward neural network discriminative model with HMM (b) 4-state (3 known
plus unknown state) hybrid generative/discriminative model with HMM, discriminative
model as in (a), generative model is a 9-component Gaussian (diagonal covariance matrices)
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