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Abstract

Sets of local patterns in the forms of rules and co-occurrence
counts are produced by many data mining methods such
as association rule algorithms. While such patterns can
vield useful insights it is not obvious how to synthesize
local sparse information into a coherent global predictive
model. We study the use of a cross-entropy approach to
combining local patterns. Each local pattern is viewed as a
constraint on an appropriate high-order joint distribution
of interest.  Typically, a set of patterns returned by
a data mining algorithm under-constrains the high-order
model. The cross-entropy criterion is used to select a
specific distribution in this constrained family relative to
a prior. We review the iterative-scaling algorithm which
is an iterative technique for finding a joint distribution
given constraints. We then illustrate the application of
this method to two specific problems. The first problem is
combining information about frequent itemsets. We show
that the cross-entropy approach can be used for query
selectivity estimation for 0/1 data sets. The results show
that we can accurately answer a large class of queries using
just a small set of aggregate information. The second
problem involves sequence modeling using historical rules,
with an application to protein sequences. We conclude
that viewing local patterns as constraints on a high-order
probability model is a useful and principled framework for
prediction based on large sets of mined patterns.

1 Introduction

Several data mining and rule induction methods provide
partial information specified as conditional probabilities
(e.g., probabilistic rules) or joint probabilities (e..g.,
frequent itemsets). Such partial information provides
useful insight into the data, but it is not obvious
how to combine such pieces of knowledge for other
purposes. We consider the discrete-valued problem,
thus, we assume that a vector-valued random variable
r = (x1,%a2,...,24) takes values from some finite

alphabet. We are interested in estimating the joint
distribution P(z) = P(z1,z2, ..., z4), or some function
of P(z) such as a conditional distribution, given sets of
local rules containing information of the form P(z; =
alz; = b,xxy = ¢) and/or P(z; = a,z; = b,xx = c).
In general, if for example each z; can take m distinct
values, specification of P(r) will require O(m?) different
entries in the joint probability table. It is clear that
estimating the full joint distribution from data is often
impractical given even moderate values of m and d,
because of the exponential growth of the number of
different probabilities which must be specified.

The primary focus of many current data mining algo-
rithms is to extract low-order information in an efficient
manner. For example, association rule algorithms [1]
essentially compute all conditional probabilities of the
form p(z; = 1| z;, = LA---Azj, = 1) which are above a
given threshold and for which p(z;, = 1A---Az;, = 1),
the support, 1s also above a prespecified threshold.
These types of patterns are local to small sets of vari-
ables and specific values of these variables. There are
numerous similar rule-finding algorithms that can effi-
ciently produce large lists of such local patterns. Typi-
cally the patterns are chosen based on the fact that they
differ from the expected norm, 1.e., they are informative
in some sense relative to a uniform prior distribution on
P(z1,29,...,24).

We study the problem of how to combine such local
partial information into a single global model which can
be used for prediction. We retain the good properties of
both worlds: we get understandable local patterns and
still are able to use them in prediction or estimation
tasks. While there are already some approaches to
combining local patterns for specific problems like
classification (e.g., [5]), we focus explicitly here on a
probabilistic framework. We will not discuss how the
patterns or rules can be found from the data since
there is a large body of techniques available to do this
already. Instead we focus on the problem of once given
the patterns, how can one combine them for prediction?

Combining local patterns to form a global model
for P(z1,22,...,24) is worthwhile from two different
perspectives. Firstly, from a data mining perspective, it
offers a framework for linking sets of local patterns with



the more well-established world of global models, where
evaluation, prediction, estimation, model selection, and
so forth, can be handled in a coherent and consistent
manner. Secondly, from an applications perspective,
the ability to quickly find local patterns and then
use these to construct a model for P(z1,za,...,24)
can offer distinct advantages in accuracy, efficiency,
and interpretability compared to more conventional
approaches.

2 Problem Statement and the
Iterative Scaling Algorithm

In a data mining framework we will assume that our
patterns and rules are statements about frequency
counts in the data that can be represented as con-
straints. For example, if we know that the number of
co-occurrences of (z; = 1,25 = 1) in the training data
is njk, then we represent this as a constraint by writing
a constraint equation of the form

> P(x)k(zli) = d;. (1)

where the ith indicator function k(z|i) yields 1 if
z satisfies the ith constraint and 0 otherwise and
d; denotes the fraction of elements that satisfy this
constraint, 1 < ¢ < C, C being the total number of
such constraints. In this case the indicator function
is 1 when z; = 1 and z; = 1 and 0 otherwise, so
that the left-hand side of the above equation sums to
P(z; = 1,25 = 1). The right-hand side d; can be set
to njr/n, where n is the total number of data points,
thus constraining the probability on the left to take
this maximum-likelihood value. Let the total number
of such constraints be C' (this represents the number
of patterns returned by the data mining algorithm).
We can view the constraints as requirements that are
imposed on the otherwise unknown joint probability
distribution P(z) .

Typically this will underconstrain P(z), i.e., there is
an infinite set of probability distributions which satisfy
the constraints. To choose a specific P(z) we invoke
the principle that the P(z) which is chosen from within
this set is the one closest to a specified prior m(z) in
a cross-entropy sense, i.e., Pcp = argminp CFE(P, ),
where CE(P,m) = ). P(z) log% is the cross-
entropy between P and . In this paper we will choose
m(z) to be uniform, and thus, minimizing CE(P, ) is
equivalent to maximizing the entropy of P subject to
the given constraints. Maximum entropy has a long
history as a criterion for model selection that we will not
dwell on here (e.g., [4]): in a certain sense it picks the
distribution which adds the least additional information
beyond that already given.

Assume one of the constraints in Equation 1 is
k(z|0) = 1 for all z and dy = 1 to ensure that the
distribution sums up to 1. The method of undetermined
Lagrangian multipliers can then be used to find Pcg

satisfying the constraints. A slightly surprising (and
useful) theorem is that Pcg can be expressed in the
following general functional form:

C
Pep(w) = m(@)po [ uf“”
=1

where the p;, ¢ = 0,...,C are positive constants
satisfying for all ¢

po Y m()k(a |4) [T iV = ds (2)

The general problem is thus reduced to the problem of
finding a set of p; from the set of Equations 2. It can
be shown that a solution to Equation 2 exists and is
unique if and only if the constraints do not contradict
each other [3]. For example, if all the constraints only
consist of relative frequency counts in the data (as is
the case in results presented below), then they will be
consistent automatically.

The generalized iterative scaling algorithm is well
known in the statistical literature as an iterative tech-
nique which converges to the solution Pcg for prob-
lems of this general form (see, for instance, [3]). The
algorithm can be used to obtain a numerical solution
for the parameters satisfying the given constraints. A
high-level outline of the algorithm is as follows.

1. Choose an initial approximation to P(z)
2. While (Not all Constraints are Satisfied)
For (i varying over all constraints)
Update pg;
Update p;;
End;
EndWhile;
3. Output the constants y;

The update rules p; ; corresponding to constraint ¢ at
iteration ¢ will be:

Sie = > Pia)k(z |i) (3)

Hit+1 = ﬂz’,t;—i, (4)
where P, refers to our estimate of P at iteration ¢.
This algorithm is well-known in statistics (and related
applications such as statistical language modeling),
however, to our knowledge this paper is the first
illustration of its use in a data mining context.

3 Query Selectivity Estimation

In this section we present our first application, query
selectivity estimation for 0/1 relations. The method
actually amounts to combining association rules for
prediction. Suppose we are given a table r of Os and
1s; denote the schema (set of column headers) of the



table by R. A conjunctive query () over R is an
expression of the form A; = by A Ay = by - A A =
bi, where £ > 1, for each ¢ we have A; € R and
b; € {0,1}. The size of the answer to the query @
1s the number of rows of r that satisfy @), and the query
selectivity is the fraction of the rows that satisfy the
queries. Query selectivity estimation tries to find the
approximate size of the answer to a conjunctive query
without actually computing the query. This problem
has wide applications in database query optimization,
and scores of methods have been developed for this task
[10, 8].

A typical solution to the query selectivity problem
1s to maintain for each attribute A; € R information
about the selectivity ¢(A;, b;) of the conditions A; = b
for b; = 0,1 (obviously, for binary data only one number
per attribute is needed). The selectivity ¢(A;, b;) can be
viewed as a constraint on the margin of the variable A;.
Assuming independence of attributes, we can estimate
the selectivity of query @ by Hle ¢(Ai, b;). This
independence model is in fact the maximum entropy
distribution given only counts on individual attributes,
i.e.,1t can be viewed as a special case of the more general
approach presented below.

To use the cross-entropy approach to give better
estimates we need additional information to constrain
the distribution. The frequent sets from association
rules [2] provide a way of defining useful marginal
information. Given a set of attributes X C R, the
frequency f(X) of X in r is defined as the fraction
of rows of r that have a 1 in all the columns of X:
F(X) =t er|t[A] = 1forall A € X}|/n, where n
is the number of rows in table r. Given a threshold o,
the collection of o-frequent sets is the collection of all
subsets of R (and their frequencies) whose frequency is
at least o.

We use the cross-entropy approach to obtain im-
proved estimates for query selectivity as follows. Let
S be the collection of o-frequent sets for some given o.
Given a conjunctive query Ay = by A As = by--- A
Ar = by, first find all frequent sets X € § such
that X C {A, As, ..., Ar}, i.e., those frequent sets
which are subsets of the query attributes. Using these
marginal counts, then build the maximum entropy dis-
tribution for the state space consisting of all vectors
r = (x1,...,2x) of length k, where each z; is either 0
or 1. After this has been done, answer the conjunctive
query is simple: we just find P(z) for the particular z
corresponding to the query Q.

The method is applicable to any type of queries, not
Just conjunctive queries. As we build an estimate of the
whole joint distribution on the k attributes occurring
in the query, using this estimate we can compute
approximate answers to any query. The running time
per query of the method has the form O(Fk + IC2%),
where k is the number of variables in the query, F' is the
size of the frequent set collection, C' is the number of
frequent sets that are included in the set of variables of
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Figure 1: Relative performance of the independence
method and the maximum entropy method as a func-
tion of the true answer.

the query, and T is the number of iterations (typically 10
to 20 for the experiments below). The exponentiality in
k makes the method impractical for about £ > 10, but
for queries with a small number of variables the method
is quite fast. Note that the running time is independent
of the size of the original data set.

For brevity, we present results only on one data
set. The dataset contains information about the buying
behavior of certain customers. It has 249 attributes and
32711 rows. The data are relatively sparse, containing
98654 1s, and hence we would need about 130 kB to
represent the data (one byte for each one in the data set,
plus some overhead to indicate where each observation
starts). A textual representation takes 335 kB.

Using the independence assumption requires that we
store 249 numbers, about 1 kB, i.e., the fraction of 1s
for each attribute. For the maximum entropy method
we experimented by computing frequent sets using a
threshold of ¢ = 0.005 (selected to be small enough
to ensure that non-trivial combinations of frequent sets
are generated). This yielded 453 frequent sets for a
total of 702 constraints, and the space needed for this
representation of the dataset is about 4 kB. Thus the
maximum entropy method uses about 4 times as much
space as the pure independence assumption, but about
a fraction of 1/30 of the space needed for the whole
dataset. The threshold of 0.005 means that we know
the size of each “ls only” query Ay = 1A---AAg =1,
provided the answer is at least 165.

We generated random queries with £k =4 and k£ =5
conjuncts by selecting attributes A; at random and
adding the conjunct A; = 0 with probability 0.8 and the
conjunct A; = 1 with probability 0.2. Due to this query
generation method, the queries tend to have either a
relatively small or relatively large answer.

The maximum entropy method produces consistently



very good estimates of the actual query size. The
method performs significantly better than the estima-
tion based only on the the frequencies of single at-
tributes. For about 3/4 of the queries the query at-
tributes were such that maximum entropy method had
exactly the same information as the independent at-
tribute method, and in those cases the methods pro-
duced, of course, the same answer. In the remaining
25% of the cases the maximum entropy method typi-
cally produced much better approximations. Figure 1
shows for each of 1000 queries the difference between
the absolute errors for the maximum entropy method
and for the attribute independence method. The fig-
ure shows that the maximum entropy method only
rarely produces an estimate that is worse than the esti-
mate produced by the attribute independence method,
whereas for a large set of queries the use of the maxi-
mum entropy method gives significantly better answers.

As mentioned in the beginning of this section, the
approach we have described can obviously be used to
combine association rules for prediction. While some
work has been done on finding predictive association
rules (see, e.g., [7]), we are not aware of work on actually
combining association rules.

Given aset {X; = A} of association rules, let k be the
number of distinct attributes {Bjy, ..., Bg} occurring in
the sets X;. We build the joint distribution over the
2% different states. When we encounter an input row ¢
with values by, ..., by for the attributes B;, we use the
corresponding entry in the joint distribution to predict
the value of A. For brevity, we omit the details.

4 Modeling Sequences with
Probabilistic Rules

In this section we apply the methodology of the
earlier sections to probabilistic modeling of sequential
data. Again we consider discrete-valued variables with
alphabet 3. For any symbol w occurring in the sequence
we define the L-history of w, Hr (w), as the L symbols
preceding w in the sequence. For discrete-valued
sequences, there exist several data mining algorithms
which can extract sequential rules of the general form “if
event A happens in Hp (w) then w will occur at position
t with probability p,” or equivalently, conditional
probability statements of the form p(w|A € Hr(w)) =
p. Provided with a set of such probabilistic rules from a
training data set, we can view such rules as constraints
on the unknown joint distribution p(w, Hr(w)). Thus,
here we are interested in estimating the distributions of
the form Pr(w, Hr(w)) or P(w|H(w)).

As in the non-sequential multivariate case there are
many measures for defining interesting rules and many
algorithms for finding such sets from data. We used
the average mutual information between A and w as
a simple measure to find and rank different possible
rules (since we are primarily interested here in how to
combine such patterns rather than how they are found).

We also limited our attention to simple events of the
form “symbol v occurs k positions before w” in the
sequence. The maximum value of £ is defined to be
the history length. For example, for history-length 1 we
would only be considering bigram terms p(w(t)|w(t—1))
in our model.

The problem of estimating p(w|Hp(w)) given con-
straints in the form of rules described above is in its gen-
eral form equivalent to the problem discussed in Section
2 of choosing a specific distribution from a constrained
family of distributions. Once again one can invoke the
maximum entropy principle to choose among distribu-
tions and use the iterative scaling algorithm to solve the
assoclated optimization problem. For sequential data,
the problem is actually a little more complex in form
than the multivariate case sketched in Section 2. We
use the same approach as used with “trigger-models”
in natural language modeling [9]. For full details see
[6], where we also show that each iteration of the iter-
ative scaling algorithm scales roughly as NC' where N
is the length of the training sequence and C'is the total
number of constraints (rules).

We applied this approach to modeling of protein
sequence data. The purpose of this experiment was
to explore the utility of probabilistic rules for modeling
sequence structure beyond simple bigram models. We
picked a well-known set of 585 hemoglobin protein
sequences (about 85,000 symbols in total) available
on-line at http://www.isb-sib.ch/ and used various
combinations of prior, bigram, and rule-based models
for modeling the conditional distribution of the current
symbol given its history. The size of the alphabet X is
20. We generated a 10-fold cross-validated estimate of
the out-of-sample cross-entropy for each model, namely,
the sum of the negative log probabilities for each
observed symbol in the test sequence conditioned on its
history. The higher the probabilities a model assigns
to observed symbols the lower (and better) the cross-
entropy score will be. A simple baseline score can be
defined as the cross-entropy of a model with a uniform
distribution for p(w), namely log |X| = log(20) = 4.3219
bits. Thus, all decreases in reported cross-entropy are
relative to this baseline uncertainty.

The upper panel of Table 2 shows the average relative
decrease in cross-entropy using only priors and a bigram
model. As expected, bigrams do better than priors
alone on both the training and test data. The two pairs
of columns in the bottom panel of Table 2 show the
results for combining rules with priors, and combining
rules with priors and bigrams, respectively, where we
tried rules with different history lengths. In the “rules
with priors” there were no single-lag (bigram) terms
in the model, i.e., all rule events were at least 2
positions back. The rules clearly provide additional
information beyond priors or bigrams. The relative
decrease in entropy using rules is close to 1 bit and
almost 5 times higher than for the priors alone, and
2.5 times higher than for all bigrams alone (upper



Priors Priors and bigrams
Train  Test Train Test
5.94% 5.92% 13.05%  11.82%
History Priors and Priors, bigrams
length rules and rules
Train Test Train Test
2 11.84% 10.66% 16.71% 14.55%
3 14.80% 13.28% 19.18% 16.86%
6 18.62% 16.64% 22.39% 19.80%
1 20.63% 18.14% 24.06% 21.12%
16 21.61% 18.60% 25.22% 21.54%
21 22.12% 18.67% 25.68% 21.65%

Table 1: Relative percentage decrease in train and
test cross-validated cross-entropy for different models,
where |3| = 20 and at most the top 6 rules with mutual
information greater than 0.001 bit are retained for each
symbol w.

panel). Interestingly, models based on priors and rules
only (without bigrams, columns 2 and 3 of the lower
panel in table 3) consistently outperform the full bigram
model both in and out-of-sample. For models with
rules, the performance of the model improves as the
history length increases, and the methodology appears
relatively robust to overfitting on this data.

In [6] we report a variety of other experiments of
this nature on this data set using rule-based probability
models. The major drawback of the technique 1s
the computational complexity of iterative scaling; for
example, online modeling using the approach presented
here would be impractical. Possible generalizations are
numerous, such as allowing a more general language
for rules with multiple symbols, disjunctions, and so
forth. Parameters such as history lengths, numbers of
rules, bigrams, etc., could all be chosen automatically
in principle using cross-validated estimates of cross-
entropy.

5 Conclusions

Data mining algorithms are useful for efficiently finding
patterns in the form of conjunctive expressions (rules)
with attached frequencies of occurrence from large data
sets. However, the problem of combining these patterns
into a coherent global model has been relatively unex-
plored. In this paper we proposed a straightforward
approach to this problem by viewing the local patterns
as constraints on an unknown high-order distribution.
The iterative scaling procedure can then be used to find
the the distribution that is closest in a cross-entropy
sense to a specified prior. We illustrated the applica-
tion of this idea on two different problems, query se-
lectivity estimation and sequence modeling. In both

cases the method using local patterns provided signifi-
cant improvements over conventional alternatives. The
method we have proposed is applicable to various other
settings.
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