
Discovering Chinese Words from Unsegmented Text

Xianping Ge, Wanda Pratt, Padhraic Smyth

Information and Computer Science,

University of California, Irvine

{xge,pratt,smyth}@ics.uci.edu

Abstract

In English written text, words are separated by spaces, but
in written Chinese text, there are no such separators be-
tween words. (See Figure 1.) Thus, effective information
retrieval of Chinese text first requires good word segmenta-
tion. In this paper, we investigate an efficient algorithm to
discover the words and their occurrence probabilities from
a corpus of unsegmented text without using a dictionary.
Using the probabilities of the words, word segmentation is
done according to the maximum likelihood principle. Com-
paring the segmentation output by the algorithm with the
correct segmentation, recall/precision of 65.65%/71.91% is
achieved. If some simple post-processing is performed, re-
call/precision can be boosted up to 97.72%/91.05%.

1 Introduction and related work

Segmentation of Chinese text into words is a nontrivial task
because the words have variable lengths, the same character
may occur in many different words, and many characters are
single-character words by themselves. [1] reviews previous
works on Chinese word segmentation and studies the effect
on information retrieval.

Sproat and Shih [2] develop a purely statistical method
that utilizes the mutual information between two characters:
I(x, y) = log p(x,y)

p(x)p(y)
. The character pair with largest mu-

tual information is found and assumed to be a word. Then
the algorithm is applied recursively to the rest of the sen-
tence. The limitation of this method is that it can only deal
with words of length 1 or 2.

Most other algorithms require a pre-compiled word list
(dictionary, or lexicon). Some simply match the substrings
with the words in the dictionary using a heuristic such
as longest matching, which segments a sentence in such
a way that the number of words is minimized. As noted
in [1] and [3], the coverage of the dictionary is critical for
the dictionary-based methods. Automatically learning new
words from text is an unsolved problem.

In this paper we present a simple probabilistic model
of Chinese text based on the occurrence probability of the
words which make the following assumptions:

���������
	�������

����� ���
�
�����
��������������
�� "!�#%$
&('�)�*,+��
	�-
#�.�/�0
132��4	35 �
6�7�8�9,:
;�<3=�>@?�A
B

�3C@D%E
F ?
G
H
I%J�?�K@L�M�N�?
O
P�Q@R�S@T�U%V
W�X�Y�Z (!�[,\��
	�-

Figure 1: An example of Chinese written text. There
are no separators between the words except punctua-
tion marks such as commas, periods. A word commonly
contains 1 to 4 characters, while the same character can
occur in many different words. There are about 6,000
frequently used characters, and a typical word dictio-
nary contains more than 100,000 words.

1. There are a finite (although very large) number of
words of length 1, 2, . . . k. (e.g. k = 4).

2. Each word has an unknown probability of occurrence.

3. Words are independent of each other, i.e., any two
words can occur together, governed only by their re-
spective probability of occurrence.

Given the probabilities of the words, according to the
maximum likelihood principle, a sentence should be seg-
mented into w1, w2, . . . , wk such that

∏

p(wi) is maximized,
where p(wi) is the probability of word wi. This can be easily
done using dynamic programming.

Our model can be seen as a zero-th order hidden Markov
Model (HMM). HMM models for word segmentation are
studied in Ponte and Croft [3] and An and Wong [4]. In [3],
a dictionary is used; in [4], the words in the corpus are pre-
segmented and tagged with part-of-speech information. In
this paper, we take a different approach to train the model.
In the following sections, we investigate how to discover the
words and their probabilities from a corpus of unsegmented
text without using a dictionary.

2 Method

The unknown parameters of the model are the probabili-
ties of the individual words. If we had a training corpus of
segmented texts, we could count the words to compute the
probabilities of the words. Conversely, if we knew the prob-
abilities of the words, we could segment the sentences into
words. This situation is similar to the question “which came

first, the chicken or the egg?” This dilemma is solved by
the Expectation-Maximization (EM) algorithm. Metaphor-
ically, the EM algorithm puts an egg there to “jump-start”
the process. Specifically, the EM algorithm randomly as-
signs an initial value to the probabilities of the words. Using
the current value of the probabilities of the words, the sen-
tences in the corpus are segmented. From the segmentation
results the probabilities of the words are re-estimated. This
process is repeated a number of iterations until the probabil-
ities converge. The convergence is guaranteed by the general
property of the EM algorithm.

For convenience we denote by sentence a string between
two neighboring punctuation marks (although it might be
only a fragment of a sentence). Given a sentence of length
n, there are 2n−1 possible ways to segment it, and we do not
yet know which is the correct segmentation. But, from the
current (although imperfect) estimate of the probabilities of
the words, we can compute the likelihood pi of each segmen-
tation. This sentence will be “shared”, for the purpose of
word counting, by all the segmentations according to their
individual likelihood. E.g., in a segmentation with likelihood
pi, we increase the word count for each word by pi

∑

2n−1

j=1
pj

.

We call this way of counting words “soft-counting” be-
cause all the possible words are counted. For comparison,
[3] only counts words in the segmentation with the highest
likelihood.

The soft-counting is done efficiently by dynamic pro-
gramming. The input is a sentence C1C2C3 . . . Cn. For any
word Cj1 . . . Cj2 inside this sentence, its count should be

increased by Sleft
j1

p(Cj1 . . . Cj2)Sright
j2

/α, where

• Sleft
j1

is the sum of the likelihood of all the possible
segmentations of the substring to the left of Cj1 ,

• p(Cj1 . . . Cj2) is the current estimate of the probability
of the word Cj1 . . . Cj2 ,

• Sright
j2

is the sum of the likelihood of all the possible
segmentations of the substring to the right of Cj2 ,

• α is the normalizing constant, which is the sum of the
likelihood of all the possible segmentations of this sen-
tence. It is equal to Sleft

n+1.

Sleft
j1

and Sright
j2

are computed by dynamic programming.

For example, the recursive function for Sleft
i is

Sleft
i =

{

1 if i = 1
p(C1) if i = 2
∑i−1

j=1
p(Cj . . . Ci−1)S

left
j if i > 2

We compute Sleft
i for i = 1, 2, . . . , n+1 from left to right

in the first pass, at the end of which we get α = Sleft
n+1. Then

we compute Sright
i for i = n, n − 1, . . . , 3, 2, 1 from right to

left; at the same time, we output the count of each word.
The complexity of the algorithm is O(kIN) where k is

the maximum word length, I is the number of iterations
(usually 5-10), N is the size of the corpus.

3 Results

We train our model on a corpus of (unsegmented) Chinese
text about 100 MBytes in size. We report the performance

Segmenter Recall(%) Precision(%)
Soft-counting 65.65 71.91
(after postprocessing) 97.72 91.05
Word based [3] 87.80 84.40
(Perfect Lexicon) 93.63 95.87

Table 1: Accuracy of segmentation algorithms

of our algorithm (soft-counting) in Table 1, where we also
list the results of the word-based method of [3] on a different
corpus. Recall and precision compare the n1 segmented
words output by the algorithm with n2 words in the correct
segmentation (i.e. segmentation by hand). Let c be the
number of words in common. Then recall = c

n2

, precision =
c

n1

.

Although we do not use a dictionary, our results are
quite good. We find that most of the errors of our algo-
rithm come from 20 single-character auxiliary words (ap-
proximately equivalent to English words “of”, “and”, “or”,
“to”, etc) that occur together with other words so often
that our algorithm cannot tell them apart. After a simple
post-processing step that separates these few words from
other words, recall/precision increases from 65.65%/71.91%
to 97.72%/91.05%.

4 Future work and Conclusions

We have been concentrating on the purely statistical ap-
proach, i.e., assuming no knowledge of Chinese other than
that the Chinese words are 1, 2, . . . , 4 characters long. In
the future, we are interested in incorporating prior knowl-
edge, e.g., lexicon, the distribution of word length, syntactic
constraints, etc.

In conclusion, we presented a simple zero-th order
Markov model of the words in Chinese text. We developed
an efficient algorithm to train this model on an unsegmented
corpus. The segmentation results are comparable to other
dictionary-based methods.

References

[1] Aitao Chen et al. Chinese text retrieval without using
a dictionary. In Proceedings of the 20th annual interna-
tional ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 42–49, 1997.

[2] R. Sproat and C. Shih. A statistical method for finding
word boundaries in Chinese text. Computer Processing
of Chinese and Oritental Languages, 4:336–351, March
1990.

[3] Jay M. Ponte and W. Bruce Croft. Useg: A retargetable
word segmentation procedure for information retrieval.
In Symposium on Document Analysis and Information
Retrieval 96 (SDAIR), 1996.

[4] Q. An and W. S. Wong. Automatic segmentation and
tagging of Hanzi text using a hybrid alogrithm. In Pro-
ceedings of the 9th International Conference on Indus-
trial & Engineering Applications of AI & Expert Sys-
tems, June 4-7 1996.

