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Abstract
Multi-instance (MI) learning is a variant of supervised learning
where labeled examples consist of bags (i.e. multi-sets) of fea-
ture vectors instead of just a single feature vector. Under stan-
dard assumptions, MI learning can be understood as a type of semi-
supervised learning (SSL). The difference between MI learning and
SSL is that positive bag labels provide weak label information for
the instances that they contain. MI learning tasks can be approx-
imated as SSL tasks by disregarding this weak label information,
allowing the direct application of existing SSL techniques. To give
insight into this connection we first introduce multi-instance mix-
ture models (MIMMs), an adaption of mixture model classifiers
for multi-instance data. We show how to learn such models us-
ing an Expectation-Maximization algorithm in the case where the
instance-level class distributions are members of an exponential
family. The cost of the semi-supervised approximation to multi-
instance learning is explored, both theoretically and empirically,
by analyzing the properties of MIMMs relative to semi-supervised
mixture models.

1 Introduction

Multi-instance (MI) learning [5] is a variant of supervised
learning that has received significant attention in the machine
learning literature. While in traditional supervised learning
the learning instances are represented as feature vectors,in
MI learning the examples are represented asbags(i.e. multi-
sets) of feature vectors. Training data consists of labeled
bags, and the task is to predict the labels for unseen bags.
Labels are not typically provided for the individual feature
vectors (referred to as “instances”) though it is usually
assumed that the instances have hidden labels that in some
way determine the bag labels.

A multi-instance assumptionis an assumed relationship
between instances and bag labels. The most commonly
used MI assumption, which Weidmann et al. [17] call the
standard MI assumption, is that a bag is labeled positive
if and only if it contains at least one positive instance.
This assumption was used by Dietterich et al. [5] in the
context of the “musk” prediction task. The musk task is
to predict whether a given molecule will have the desired
property of being a musk, i.e. emitting a musky smell.
The learning task is difficult because molecules can assume
different conformations (shapes) by rotating their internal
bonds, and it may be difficult to tell which conformation
was responsible for biological activity. Dietterich et al.
represent a molecule as a bag of feature vectors, with each
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feature vector representing a conformation. The standard MI
assumption applies because a molecule is active if and only
if there exists a conformation that binds to the target binding
site.

This paper is concerned with the relationship between
MI learning and semi-supervised learning (SSL), the class
of learning tasks where both labeled and unlabeled examples
are available to the learning algorithm at training time. MI
learning under the standard assumption can be viewed as
a variant of SSL, since all instances in negative training
bags must, by the assumption, be labeled negative, while
instances in positive training bags are not directly labeled
[24]. MI differs from SSL in that positive bag labels
provide weak label information for the instances that they
contain, namely that at least one instance in the bag is
positive. An implication of this is that MI learning problems
can be approximated as SSL problems by disregarding the
information contained in positive bag labels.

We explore this connection from the perspective of gen-
erative probabilistic models of multi-instance data. The
generativeapproach to classification involves modeling the
joint distribution of the input domain and the output do-
mainP (x, y), as opposed todiscriminativelearning which
involves either modeling the posterior class probabilities
P (y|x) or directly learning a decision boundary to sepa-
rate the classes. Generative models are so named because
it is possible to sample from them to create synthetic data.
Although generative classifiers are typically less accurate
at classification than discriminative classifiers when large
amounts of labeled data are available, they can do better
when small amounts of data are available [12], and have the
advantage of being able to make use of unlabeled data and
handle missing attribute values.

In this paper, we introduce a unified framework for
a class of generative models that respect the standard MI
assumption. These models adapt the well-known mixture
model classifier to handle MI data, and will be referred to
as multi-instance mixture models (MIMMs). We show how
to learn these models via an EM algorithm in the case where
the instance-level classes are expectation-parametrizedex-
ponential family distributions. Using this framework, we in-
vestigate the cost of the SSL approximation to MI learning
both theoretically and empirically.

In Section 2 we give some background on MI learning.
Sections 3 and 4 introduce multi-instance mixture models



and describe an EM learning algorithm for them. Sections
5 and 6 provide some theoretical insight into MIMMs,
showing the connection to the well-known diverse density
model for MI learning [11] and proving a bound on the Bayes
error rate of the classifier, respectively. In Section 7, we
make use of the MIMM framework to quantify the cost of
approximating MI learning problems by SSL problems. We
present experimental results in Section 8 and conclude in
Section 9. A derivation of the EM algorithm is given in the
Appendix.

2 Background

Multi-instance learning was originally formulated by Diet-
terich et al. [5] for the aforementioned musk prediction task.
Subsequently, MI learning has been applied to diverse appli-
cation areas including object detection [15], text classifica-
tion [21], and contextual advertising [23].

Connections can be made between MI learning and
other supervised learning frameworks. For example, MI
learning degrades to traditional “attribute-value” learning
when the bags are all of size one. De Raedt [3] notes that
in terms of generality, multi-instance learning sits between
attribute-value learning and fully relational learning. The
connection between MI learning and semi-supervised learn-
ing, previously described in Section 1, is the subject of this
paper.

A large number of algorithms for MI learning have been
proposed in the literature. A review of models using MI
assumptions other than the standard assumption is given by
Foulds and Frank [6]. A common approach is to upgrade
propositional algorithms to handle MI data [1, 20, 15, 24].
Maron and Lozano-Ṕerez [11] proposed diverse density,
a discriminative probabilistic framework for MI learning.
Faster training procedures for diverse density classifierswere
proposed by Zhang and Goldman [22], and Foulds and Frank
[7].

Generative models for MI have previously been pro-
posed in the literature. Maron [10] proposed generative mod-
els for the musk problem in his PhD thesis, but did not de-
velop learning algorithms for them. Kriegel et al. [9] used a
generative model to cluster MI data. In their model, exam-
ples are clustered at the bag level. Each cluster consists ofan
instance-level mixture model that instances are drawn from
in an independent and identically distributed (i.i.d.) fash-
ion.Yang et al. [21] recently proposed Dirichlet-Bernoulli
Alignment (DBA), a generative model for multi-class multi-
label multi-instance classification inspired by work in the
topic modeling community. The approaches of Kriegel et
al. and Yang et al. are closely related to the present work in
that instances in each bag are assumed to be generated i.i.d.
from instance-level mixture models, and the model parame-
ters are learned via an EM algorithm. The key difference is
that in the models that we consider, bags are assumed to be

labeled according to the standard MI assumption. Yang et al.
describe an approximate variational EM algorithm for their
model in the case where the underlying mixture model is a
mixture of multinomials. In this paper we present a tractable
exact EM algorithm that applies whenever the instance-level
mixture components belong to an expectation-parametrized
exponential family.

3 Multi-Instance Mixture Models

In this section we introduce a simple but intuitive frame-
work for a class of generative MI models. In these mod-
els, the instances in each bag are generated i.i.d. from a
mixture distribution, the components of which correspond
to instance-level classes. Bags are then labeled via the stan-
dard MI assumption. The bag sizes are assumed to be fixed.
These models, which we refer to as multi-instance mixture
models (MIMMs), can be understood to be an adaption of
semi-supervised mixture model classifiers to the MI learning
scenario, analogous to Zhou and Xu’s adaption of a semi-
supervised SVM to handle MI data (MissSVM) [24]. We
show how to learn the parameters of MIMMs via an EM
algorithm in the case where the instance-level class distri-
butions belong to an expectation-parametrized exponential
family.

MIMMs are naive in the sense that they assume that
instances are conditionally independent of each other given
their class labels (note thatattributesneed not be condition-
ally independent). The conditional independence assump-
tion allows us to avoid summing over the exponential num-
ber of possible labels in a positive bag in theE-step of the
EM algorithm. This assumption is of course not always justi-
fied in practice. For example, in the musk domain we would
expect the instances in a bag to be dependent, as they cor-
respond to conformations of the same molecule. However,
naive classifiers are often useful to explore and can still of-
ten perform well even when their independence assumptions
are invalid, as evidenced by the practical success of the naive
Bayes classifier.

More formally, letNB be the number of bags to gen-
erate, andSi (i = 1 . . . NB) be the number of instances
in bag i. We assume thatNB and theSi’s are fixed and
known ahead of time, although it would be straightforward
to introduce a distribution over theSis. LetP (x|z = 1; θ),
P (x|z = 0; θ) be the distributions for instances of the pos-
itive and negative classes, respectively. Here,x refers to an
instance, andz ∈ {0, 1} refers to an instance label. We will
denote thejth instance of theith bag asxij , its label aszij ,
and the label of bagBi asyi ∈ {⊕,⊖}. CapitalXi andZi

refer to the collection ofx’s andz’s in a bag respectively,
with Xi = {xi1, . . . ,xiSi

} andZi = {zi1, . . . , ziSi
}. For

simplicity, letπp = P (z = 1) be the marginal probability of
a positive instance, and replaceP (.; θ) with Pθ(.).

MIMMs assume that the data is generated via the fol-
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Figure 1: Directed graph of the generative model for
MIMMs. Shaded nodes are observed.

lowing process. Given model parametersθ = (θ+, θ−, πp),
whereθ+/− are the class parameter vectors, generate each
bagBi = (Xi, yi,Zi) independently via:

1. For each of theSi instances inBi (indexed byj):

(a) Choose a class labelzij ∼ Bernoulli(πp)

(b) Generatexij ∼ Pθ(x|zij)

2. Label bagBi via yi =

{

⊕, ∃zij ∈ Zi : zij = 1

⊖, otherwise.

In other words, for each instancej of bag i flip a
weighted coin (a Bernoulli trial with parameterπp) to decide
the labelzij . Then generatexij according to the distribution
associated with that class label. Bags are labeled according
to the standard MI assumption, i.e. positive iff they contain a
positive instance. Figure 1 illustrates the generative process
with a directed graphical model. Any family of probability
distributions defined over the instance space can be used
for the instance-level classes. In this work we consider
distributions belonging to the exponential family.

By applying Bayes’ rule and simplifying, we obtain a
classifier with the posterior bag-level class probabilities

Pθ(⊖|Bi) =

Si
∏

j

Pθ(zij = 0|xij) ,

wherePθ(zij = 0|xij) can be calculated by Bayes’ rule, and
of coursePθ(⊕|Xi) = 1−Pθ(⊖|Xi). It is also worth noting
that the marginal bag-level class probabilities are a function
both of the marginal instance-level class probabilities and the
number of instancesS, i.e. Pθ(⊖) = (1 − πp)

S , and as
S → ∞, Pθ(⊖) → 0.

4 EM Learning Algorithm

Given a datasetD = {B1, . . . , BNB
} with labeled bags

but unlabeled instances, we would like to find the max-

imum likelihood estimate1 of the model parametersθ =
(θ+, θ−, πp), θ̂ML = argmaxθ Pθ(D). First, it is worth
noting that since the instances are all generated i.i.d. from
the mixture distributionPθ(x), if the bag labels are dis-
regarded (and we have no instance-level labels) the like-
lihood becomes the likelihood for a mixture model, i.e.
Pθ(X1, . . . ,XNB

) equals

NB
∏

i=1

Si
∏

j=1

(

πpPθ(xij |zij = 1) + (1− πp)Pθ(xij |zij = 0)

)

.

However, since the observed data includes the bag labels
yi, the likelihood function becomes more complicated. Since
bags are generated independently, the likelihood is a product
over the likelihoods of the training bags:

L(θ;D = {B1, . . . , BNB
}) = Pθ(D) =

NB
∏

i=1

Pθ(Xi, yi) ,

wherePθ(Xi, yi = ⊕) =Pθ(Xi)− Pθ(Xi, yi = ⊖) ,

Pθ(Xi, yi = ⊖) =(1− πp)
Si

Si
∏

j=1

Pθ(xij |zij = 0) .

Maximizing the likelihood is equivalent to maximizing
the log-likelihood, sôθML = argmaxθ

∑NB

i=1 lnPθ(Xi, yi).
As with standard mixture models, due to the summation
terms inside the logarithm for the terms relating to posi-
tive bags we cannot maximize the log-likelihood in closed
form. However, the problem lends itself to an application of
the Expectation-Maximization (EM) algorithm [4], an itera-
tive optimization technique that is useful for finding max-
imum likelihood solutions in problems with missing data.
Each iteration improves a lower bound on the log-likelihood
by alternating between an “E-step” and an “M -step.” The
E-step finds the functionQ(θ; θk), the expected value of
the complete-data log-likelihood with respect to the miss-
ing/hidden variables conditioned on both the observed vari-
ables and a current estimate of the parametersθk, while the
M -step maximizesQ(θ; θk) with respect toθ.

In the case of MIMMs, for bagBi with in-
stance labels Zi, the complete-data log-likelihood,
which we will denote Lc(θ;Xi, yi,Zi), equals
∑Si

j=1

(

lnPθ(zij) + lnPθ(xij |zij)
)

for any assignment of
theZis that is consistent withyi.

With a slight abuse of notation, we writeZi = 0 as
shorthand for∀zij ∈ Zi : zij = 0. Let αi = Pθk(Zi =

1The extension to maximum a posterior estimation is straightfoward and
not discussed here.



0|Xi). Let N+ be the number of positivebagsandN− be
the number ofinstancesin negative bags. In the following,
when indexi ranges over 1 toN+ the index refers to the
collection of positive bags, and wheni ranges over 1 toN−

the index refers to the collection of instances from negative
bags, denotedx−

i . We now describe the EM algorithm
for MIMMs. A derivation of the algorithm is provided in
Appendix A.

4.1 E-Step In the following,E[X] refers to the expecta-
tion of random variableX. The functionQ(θ; θk), the ex-
pected log-likelihood over all bags, can be shown to be

N+

∑

i=1

E[Lc(θ;Xi,Zi)]− αiLc(θ;Xi,Zi = 0)

1− αi

+

N−

∑

i=1

lnPθ(x
−
i |zi = 0) +N− ln(1− πp) .

(4.1)

Here,E[Lc(θ;Xi,Zi)|Xi, θ
k] is the expected complete

data log-likelihood that is computed in theE-step of EM for
ordinary mixture models,

Si
∑

j=1

(

γij(lnπp + lnPθ(xij |zij = 1))

+ (1− γij)(ln(1− πp) + lnPθ(xij |zij = 0))

)

,

(4.2)

whereγij = Pθk(zij = 1|xij) is

πk
pPθk(xij |zij = 1)

πk
pPθk(xij |zij = 1) + (1− πk

p)Pθk(xij |zij = 0)
,

the responsibility for instancexij , i.e. the probability
that instancexij belongs to the positive class.

4.2 M-Step Let ωij =
γij

1−αi
for instancej of positive

bag i. As we shall see, theωijs can be interpreted as
responsibilities that have been adjusted to take into account
the standard MI assumption. Irrespective of the form of the
mixture components, theM -step update forπp is:

πp =

∑N+

i=1

∑Si

j=1 ωij
∑N+

i=1 S +N−
.

We now give theM -step updates for MIMMs where
the density for each class belongs to an expectation-
parametrized exponential family. This EM algorithm is

closely related to the EM algorithm for mixtures of expo-
nential family distributions [13]. A set of probability distri-
butions is an exponential family if its densities can be writ-
ten in the formp(x; θ) = a(θ)−1b(x)eθ

⊺t(x). Under certain
conditions on its natural parameter space (convexity, open-
ness) and its sufficient statistics (linear independence),an
exponential family distribution can be written in the “expec-
tation” parametrizationp(x;φ) = a(θ(φ))−1b(x)eθ(φ)

⊺t(x),
where the mappingθ → φ = E[t(x)|θ]. Let each instance-
level classpc(x|φc), c ∈ {+,−}, be such a distribution. The
M -step updates are:

φ+ =

∑N+

i=1

∑Si

j=1 ωijt
+(xij)

∑N+

i=1

∑Si

j=1 ωij

φ− =

∑N+

i=1

∑Si

j=1 (1− ωij)t
−(xij) +

∑N−

j=1 t
−(x−

j )
∑N+

i=1

∑Si

j=1 (1− ωij) +N−
.

As examples, we provide theM -step updates for sev-
eral useful special cases of the exponential family, namely
discrete naive Bayes, multivariate Gaussian and first order
Markov models. These examples show how MIMMs can
easily be applied to MI learning scenarios with different
types of instance-level data such binary, continuous or se-
quential data.

Naive Bayes A simple but useful example is the naive Bayes
classifier for discrete data. For clarity we consider the case
where, conditioned on the classc ∈ {+,−}, each of the
d attributes is a conditionally independent Bernoulli vari-
able parametrized byλc

k, although the result is similar with
multinomial attributes. For each class, we havePλc(x) =
∏d

k=1(λ
c
k)

xk(1 − λc
k)

1−xk . In exponential family form,

Pλc(x) =
(
∏d

k=1(1 − λc
k)
)

exp
(
∑d

k=1 xk ln(
λc
k

1−λc
k

)
)

, so

the natural parameter isθc = [ln(
λc
1

1−λc
1

), . . . , ln(
λc
d

1−λc
d

)]T ,

t(x) = x, and we can recoverλc
k = σ(θck) = 1

1+exp(−θc
k
) .

We can reparametrize in terms of the expectation param-
eter φc = E[t(x)|θc] = E[x|λc

k = σ(θck)∀k] =
[σ(θc1), . . . , σ(θ

c
d)]

T . Then theM -step updates are

λ+ =[σ(θ+1 ), . . . , σ(θ
+
d )]

T =

∑N+

i=1

∑Si

j=1 ωijxij
∑N+

i=1

∑Si

j=1 ωij

λ− =[σ(θ−1 ), . . . , σ(θ
−
d )]

T

=

∑N+

i=1

∑Si

j=1 (1− ωij)xij +
∑N−

i=1 x
−
i

∑N+

i=1

∑Si

j=1 (1− ωij) +N−
.



Multivariate Gaussian Consider the case where the mix-
ture components are multivariate GaussiansPθc(xij) =
N (xij ;µ

c,Σc). Then theM -step updates are

µ+ =

∑N+

i=1

∑Si

j=1 ωijxij
∑N+

i=1

∑Si

j=1 ωij

µ− =

∑N+

i=1

∑Si

j=1 (1− ωij)xij +
∑N−

i=1 x
−
i

∑N+

i=1

∑Si

j=1 (1− ωij) +N−

Σ+ =

∑N+

i=1

∑Si

j=1 ωij(xij − µ+)(xij − µ+)⊺

∑N+

i=1

∑Si

j=1 ωij

Σ− =

∑N+

i=1

∑Si

j=1 (1− ωij)(xij − µ−)(xij − µ−)⊺

∑N+

i=1

∑Si

j=1 (1− ωij) +N−

+

∑N−

i=1 (x
−
i − µ−)(x−

i − µ−)T
∑N+

i=1

∑Si

j=1 (1− ωij) +N−
.

First-Order Markov Model Suppose the instances for
each classc are sequences drawn from a first-order Markov
model, i.e.

Pθc(xij) = Pθc
I
(xij,1)

Li
∏

l=2

Pθc
T
(xij,l|xij,l−1) ,

whereθcI andθcT are the initial state probabilities and transi-
tion probabilities for classc, respectively, andLi is the length
of sequencei. Here,δ(s1, s2) = [x1 = s2] is the Kronecker
delta function, andns1,s2(x) is the count of transitions from
states1 to s2 in sequencex. Then for all statess, s1, s2 ∈ S

theM -step update equations are

θ+I (s) =

N+

∑

i=1

Si
∑

j=1

ωijδ(s, xij,1)

∑

s′∈S

N+

∑

i=1

Si
∑

j=1

ωijδ(s
′, xij,1)

θ−I (s) =

N+

∑

i=1

Si
∑

j=1

(1− ωij)δ(s, xij,1) +

N−

∑

i=1

δ(s, x−
i,1)

∑

s′∈S

(

N+

∑

i=1

Si
∑

j=1

(1− ωij)δ(s
′, xij,1) +

N−

∑

i=1

δ(s′, x−
i,1)
)

θ+T (s2|s1) =

N+

∑

i=1

Si
∑

j=1

ωijns1,s2(xij)

∑

s′∈S

N+

∑

i=1

Si
∑

j=1

ωijns1,s′(xij)

N+

∑

i=1

Si
∑

j=1

(1− ωij)ns1,s2(xij) +
N−

∑

i=1

ns1,s2(x
−
i )

∑

s′∈S

(

N+

∑

i=1

Si
∑

j=1

(1− ωij)ns1,s′(xij) +

N−

∑

i=1

ns1,s′(x
−
i )
)

.

5 Relationship to Diverse Density

Instead of maximizing (in the frequentist case) the uncon-
ditional likelihood of the joint distribution of the examples
and their labels, another approach is to learn a discrimina-
tive version of a generative model by maximizing the con-
ditional likelihood of the class labels given the examples.
For example, logistic regression is the discriminative ver-
sion of the naive Bayes model with Gaussian components.
Two classifiers related in this way are called agenerative-
discriminative pair[12]. In the case of MIMMs, maximizing
the class-conditional likelihood gives us the objective func-
tion

argmax
θ

∏

Bi:yi=⊕

(

1− Pθ(⊖|Bi)
)

∏

Bi:yi=⊖

Pθ(⊖|Bi).

Consider also the objective function for the “noisy-or” di-
verse density model [11]:

argmax
θ

∏

Bi:yi=⊕

(

1− r(Bi, θ)
)

∏

Bi:yi=⊖

r(Bi, θ) ,

wherer(Bi, θ) =
∏Si

j r̃(xij , θ). We can interpretr(Bi, θ)
as Pθ(⊖|Bi) and r̃(xij , θ) as Pθ(zij = 0|xij), since
r̃(xij , θ) ∈ [0, 1] in [11], (see also [7] and [19]). The di-
verse density objective function is the same as the class-
conditional likelihood for the discriminative version of a
MIMM, with the instance-level class probabilityPθ(zij =
0|xij) being the Bayes mixture model classifier. So the
diverse density algorithm can be understood as a class-
conditional discriminative classifier that forms a generative-
discriminative pair with the MIMM that has the same
Pθ(zij = 0|xij). 2

2Note that Maron and Lozano-Perez instead interpretr(Bi, θ) and
r̃(xij , θ) as posterior probabilitiesP (θ|Bi) andP (θ|xij) respectively,
where maximizing the diverse density corresponds to finding a maximum
a-posteriori (MAP) estimate ofθ. However, their interpretation of diverse
density is not motivated via a likelihood framework.



6 A Bound on the Bayes Error Rate

In this section, we derive an upper bound on the Bayes error
rate for MIMMs, in terms of the instance-level false positive
rateP+

e and false negative rateP−
e of the Bayes optimal

instance level classifier, the probability of a positive instance
πp and bag sizeS. Note that the instance-level Bayes error
rate isP+

e πp + P−
e (1− πp).

We compute the error rate for the following sub-optimal
classification rule: given the true model parameters, classify
instances by hard-assigning them to their most-likely classes
(as in K-means), and then classify bags deterministically
based on these hard assignments according to the standard
MI assumption. The error rate for this decision rule must by
definition be no better than the (optimal) Bayes error rate.

Consider first false-positive (FP ) type errors. Suppose
we are given a random negative bagB−, which by definition
has instance labelsZ = 0, i.e. all negative. Now the number
k of instances that we predict to be positive is binomially
distributedk ∼ Bin(P+

e , S). The classifier makes anFP

error if it predicts any of the instances in the bag as positive,
i.e. if k > 0. So theFP error rateP⊕

e is 1 − Bin(k =
0|P+

e , S) = 1− (1− P+
e )S .

We now consider false-negative (FN ) type errors.
These occur when a bag with at least one positive instance
has all of its instances predicted to be negative. Firstly, the
numbernp of positive instances in a random bag (positive or
negative) is distributednp ∼ Bin(πp, S). Now the probabil-
ity P⊖

e of misclassifying a positive bag withnp positive in-
stances is the probability of predicting that all of its instances
are negative, i.e.P⊖

e = (P−
e )

np(1− P+
e )

S−np .
Now the error rate isP⊕

e P (⊖) + P⊖
e P (⊕), where⊕

and⊖ are the positive and negative bag labels, respectively.
Putting it all together, the error rate for this decision rule is:

(1− (1− P+
e )S).(1− πp)

s+

S
∑

np=1

Bin(np|πp, S).(P
−
e )np .(1− P+

e )(S−np) .

The error rate for the optimal classifier must by defini-
tion be no worse than the above error rate that is achieved by
this suboptimal decision rule.

7 The Cost of Approximating MI Learning as a
Semi-Supervised Learning Task

As discussed earlier, MI learning can be understood as
a variant of semi-supervised learning (SSL) [24]. Under
this interpretation, MI training bags contain semi-supervised
instance-level label information, i.e. all instances in negative
bags are negative, and instances in positive bags are unla-
beled. In addition to this, positive bag labels give us further
label information, namely that at least one instance in each

positive bag is positive. This implies that MI learning prob-
lems can easily be transformed into SSL problems by disre-
garding the instance-level label information given by positive
bag labels. A natural question to ask is therefore “what is the
cost of treating MI problems as SSL problems?”

SincePθ(X) can always be written in mixture form as
Pθ(X) = πpPθ(X|Z = 1) + (1 − πp)Pθ(X|Z = 0),
assuming both that the standard MI assumption holds and
that the instances were generated i.i.d. is equivalent to say-
ing that the distribution of the data can be represented by a
MIMM. There are two straightforward ways to obtain SSL
models/algorithms from a MIMM. The first is to treat in-
stances from negative bags as labeled negative instances, and
instances from positive bags as unlabeled instances, ignoring
the constraint that at least one is positive. The model that re-
sults is a semi-supervised mixture model, which we will refer
to as an MM (“Mixture Model”). The second method is to
learn the mixture density parameters in a completely unsu-
pervised manner. The assignment of instance-level classes
to the learned mixture component densities can be achieved
by, for example, choosing the assignment that maximizes the
mixture model likelihood when the negative instance labels
are observed. Since the instances are treated as unlabeled
for most of the learning process, we will refer to this as an
MMU “(Mixture Model Unlabeled)”. We can thus address
the above question using the surrogate question “what is the
cost of replacing a MIMM with an MM or an MMU?”.

As well as discarding potentially useful label informa-
tion, the MM approximation introduces bias since it ig-
nores the missing data mechanism, which is only valid for
likelihood-based methods when the missing data aremissing
at random, i.e. the missing data mechanism does not depend
on the missing values [14]. The MMU method does not suf-
fer from this problem. It follows trivially from a result by
[2] that MMUs will (almost surely) achieve the Bayes er-
ror rate given an infinite number of training bags, assuming
that the parametric family of the underlying mixture model is
known and is identifiable up to the class assignments. How-
ever, MMUs makes less direct use of the label information
available, which can increase the variance of their estimates
(see Section 8.1).

We now give some intuition on the cost of approximat-
ing a MIMM with an MM. Consider the Kullback-Leibler
(KL) divergence between a distribution on a discrete ran-
dom variableW conditioned on the non-occurence of a cer-
tain element (‘0’ here), and the unconditional distribution on
W . Assuming thatP (W = 0) is non-zero, it is not difficult
to show that theKL-divergence is

(7.3)
DKL(P (W |W 6= 0)||P (W )) = − log(1− P (W = 0)).

This applies to a MIMM whenW = Zi, P (W ) =
Pθ(Zi|Xi) is the distribution of the label assignmentsZi in
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Figure 2: KL divergence from a distribution conditioned
on the non-occurrence of a specific value ‘0’ of random
variableW to the marginal distribution, versus one minus the
probability of that value. More specifically, the information
cost (in bits) of ignoring a positive bag label versus the
probability that the bag is positive before observing the bag’s
label.

a multi-instance bagBi according to the MM, andW = 0 is
the case where all labels are negative. ThenP (W |W 6= 0)
is the distribution of the labels given the instances, the model
and a positive bag label. Here, the KL divergence quantifies
the amount of information that is lost when a positive bag
label is ignored.

Interestingly, the KL divergence is dependent only on
the probability that the bag is positive, according to the un-
conditional MM. When the probability of the bag being pos-
itive (according to the MM) approaches one, the MM distri-
bution overZ approaches (in a KL sense) the MIMM distri-
bution overZ. In the other extreme, when the probability of
the bag being positive approaches zero the KL divergence
approaches infinity. Making use of positive bag labels is
therefore important when we have many positive bags that
appear likely to be negative given no label information. The
relationship between the probability of the excluded value
(i.e. the all-negative case) and the KL-divergence is plotted
in Figure 2.

Learning a MIMM via the EM algorithm for MMs
can be viewed as a variational EM algorithm, where the
posterior distribution of the instance labels for positivebags
at iteration k, Pθk(Zi|Xi, Z 6= 0), is approximated by
Pθk(Zi|Xi). Equation 7.3, whereP (W ) = Pθk(Zi|Xi),
quantifies the cost of the variational approximation in each
EM iteration.

From another perspective, we can also get some in-
sight into the relationship between multi-instance learning

and semi-supervised learning by simply comparing the like-
lihoods for MIMMs and MMs. Since MIMMs differ from
MMs only in that they are given more observed label in-
formation, the likelihood given an observed datasetD for
a MIMM must be less than or equal to the MM likelihood.
More formally, the likelihoods for MIMMs and MMs can be
written as

LMIMM (θ;D) =(
N+
∏

i=1

(Ai − Bi))C

LMM (θ;D) =(

N+
∏

i=1

Ai)C ,

where Ai =
∏Si

j=1

(

πpPθ(xij |zij = 1) + (1 −

πp)Pθ(xij |zij = 0)

)

is the mixture model likelihood for the

ith positive bag,Bi = (1 − πp)
Si
∏Si

j=1 Pθ(xij |zij = 0) is
the likelihood of a negative bag with the samexijs as the pos-

itive bagBi, andC =

(

∏N−

i=1 Pθ(xj |zj = 0)

)

(1 − πp)
N−

is the mixture model likelihood for the negative instances.
In this form, it is clear that the difference between the

likelihood functions for the two models is determined by the
Bis. If we fix the datasetD, in the parts ofθ space where the
Bis are very small relative toAi, such as whereπp is close
to one, the MIMM likelihood function approaches the MM
likelihood function. Alternatively, if we increase the size of
the positive bags, theBis will decrease andLMM (θ;D) will
become a closer approximation toLMIMM (θ;D).

8 Experiments

We conducted a set of experiments to(1) further investigate
the cost of approximating MI learning as an SSL task, and
(2) to verify the efficacy of the MIMM approach, using both
synthetic and real MI data.

8.1 Synthetic Data We generated data from a MIMM us-
ing two-dimensional instance-level Gaussian class distribu-
tions, with positive and negative means at locations(0, 0)
and(5, 5), respectively. Experiments were performed vary-
ing the amount of overlap between the classes (diagonal co-
variance matrices5I and10I for small and large amounts
of overlap),πp (0.2,0.8) and the size of the bags. Note that
the prior class probabilities areP (⊖|πp = 0.2, Si = 5) ≈
0.33),P (⊖|πp = 0.2, Si = 10) ≈ 0.11), andP (⊖|πp, Si) is
effectively zero forπp = 0.8, Si = 5 or 10. In each exper-
iment we measured the instance-level error rate versus the
number of training bags on a test set of 10,000 instances.

The MIMM, MM and MMU algorithms were trained
via EM (ten restarts of up to 200 iterations) to find a maxi-
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Figure 3: Error rate vs number of training bags for MIMMs and the semi-supervised algorithms on 2D Gaussian data.

mum a-posteriori (MAP) estimate, using the weak conjugate
prior on the Gaussian covariance matrices proposed by [8] to
avoid singularities, and constraining the covariance matrices
to be diagonal. The algorithms were trained on 100 random
training datasets for each scenario (the same for each algo-
rithm); in our plots we report the average over these runs. To
make learning possible we constrained the datasets to have at
least one positive bag, and to have at least one negative bag
when the bags were of size one.

The issue of identifiability arises in this setup as there
may not be sufficient label information to determine which
class label assignment should be applied to the learned class
distributions. We remove this relatively uninteresting phe-
nomenon by giving the learning algorithms an “identifiabil-
ity oracle” that allows them to chose the labeling that gives
the best accuracy on the test data. Without the identifiability
oracle the results forπp = 0.2 were similar to those shown
here, while forπp = 0.8 the error rate for the MIMM with
ten training bags was typically around double the equivalent
“oracle” error rate, but still approached the Bayes error by
200 bags, and the error rates for the SSL methods were con-

sistently around 50%.
The results are plotted in Figure 3. The plots show that

the improvement of the MIMM over the SSL methods is
the greatest with small bags, smallπp and large class over-
lap. In these cases, the MIMM approaches the Bayes error
rate much more rapidly than the MM and the MMU as the
amount of training data increases. This is consistent with our
theoretical results, as small bags and small mixture parame-
ter values imply a higher prior probability (and consequently
higher posterior probability) of negative bags, and large over-
lap also increases the probability that positive bags “look
like” negative bags. With bags of size one, the MIMM re-
duces to fully-supervised learning. Whenπp = 0.2, the plots
show that the MMU overtakes the MM with enough training
bags, because more training data means that the MM’s bias
costs it more relative to the MMU than it gains due to the
reduction in variance from access to labels. As we expected
from the results of Section 7, the MIMM method approaches
the Bayes error rate faster than the semi-supervised meth-
ods with smallπp, with the advantage decreasing for large
bags and small class overlap. The difference in performance



MIMM MM MMU EMDD MILR MaxDD MISVM
Musk1 70.90 70.82 53.13 85.4 73.44 86.8 75.94

Musk1 (PCA) 89.08 86.68 56.39 77.82 77.94 71.78 55.92
Musk2 67.63 67.32 47.35 85.6 76.97 85.7 71.78

Musk2 (PCA) 67.32 66.54 59.96 72.95 52.54 68.58 61.73
Elephant 74.40 68.45 52.35 74.80 79.70 80.00 78.85

Elephant (PCA) 69.40 60.30 51.75 76.20 78.15 77.40 50.0
Tiger 61.85 58.45 53.90 72.50 75.60 73.95 81.45

Tiger (PCA) 60.80 59.15 49.60 72.35 73.60 67.20 49.45
Fox 53.20 53.00 48.65 59.65 59.00 60.55 48.60

Fox (PCA) 51.90 52.25 48.55 56.50 53.20 50.70 50.00

Table 1: Accuracy of the MI and semi-supervised algorithms on the musk and image datasets.

between the MIMM and the SSL methods disappears with
πp = 0.8 for bags of size five and ten. This is a regime
where the semi-supervised approximation to multi-instance
learning is appropriate, since positive bag labels providevery
little extra information and consequently make no difference
to classification accuracy.

8.2 Real MI Data We evaluated the Gaussian MIMM,
MM and MMU algorithms (with ten restarts of up to 200
iterations) on the two well known musk datasets [5], and
on the elephant, fox and tiger image datasets [1]. The
musk and image datasets are high dimensional (166 and
229, respectively), which can be problematic for Gaussian
mixture model classifiers. To mitigate this, we restricted
the Gaussians to have diagonal covariance matrices, and
used [8]’s regularization prior on the covariances. We also
performed principal component analysis to create versionsof
the datasets that were reduced to ten dimensions (we allowed
full covariance matrices for these datasets). The maxDD
[11], EMDD [22], MI logistic regression [20] and MISVM
[1] methods were used as baselines, using their default
parameters from the WEKA data mining suite [18], except
the iterative algorithms (maxDD, EM-DD) were given the
same number of restarts and iterations as the MIMM. The
algorithms were evaluated using the average of ten repeats
of ten-fold cross-validation. Accuracy results are shown in
Table 1.

The MIMM performed very well on Musk1 with PCA
features, obtaining the highest classification accuracy of
the algorithms considered in the experiment. Interestingly,
the simple MM method was also very competitive with
the dedicated MI algorithms on this dataset. The PCA
transformation resulted in reduced accuracy for all of the
algorithms for Musk2. Although the MIMM for Musk2
(PCA) had much lower accuracy than the other algorithms
that were trained on the untransformed data, it was still
competitive on the PCA dataset. The MIMM and the MM

performed almost identically on Musk2 – this is most likely
due to the larger bags in this dataset. Musk1 has an average
of around five instances per bag, while Musk2 has around
65 instances per bag on average. As shown previously in
our theoretical results and experiments on synthetic data,the
advantage of MIMMs over MMs is reduced for large bags.
If instances in a multi-instance dataset are independent asin
a MIMM, positive bag labels are of little use in datasets with
large bags such as Musk2, unless the mixture parameter is
small.

The MISVM’s poor performance on the PCA versions
of the data can probably be attributed to a lack of param-
eter tuning. The MIMM and the semi-supervised methods
exhibited mediocre performance on the image datasets, rel-
ative to the discriminative methods. Generative models are
known to be less robust with respect to model misspecifica-
tion than discriminative methods. The attributes in the im-
age datasets are non-Gaussian, so mixture models with non-
Gaussian component densities may be more suitable here.

9 Discussion and Conclusions

In this paper we introduced multi-instance mixture models,a
generative framework for MI learning. Learning in this con-
text can be viewed as estimation in the presence of a combi-
nation of missing information and constraints, leading natu-
rally to approaches such as EM. We used this framework to
investigate the cost of approximating multi-instance learning
problems as semi-supervised problems. We showed that the
information cost (in bits) of ignoring positive bag labels is
minus the logarithm of the probability that the bag was posi-
tive before the bag’s label was observed. The number of bits
of information contained in a positive bag label approaches
zero as the probability of the bag already being positive ap-
proaches one, and approaches infinity as the probability of
the bag already being negative approaches one.

Assuming that both the standard MI assumption holds
and that instances are generated i.i.d. is equivalent to assum-



ing that the data distribution can be represented by a MIMM.
In this case, disregarding positive bag labels correspondsto
approximating the data distribution with a semi-supervised
mixture model. The cost of ignoring positive labels is there-
fore computed with respect to this semi-supervised model.
Equation 7.3 implies that similar arguments hold in the non-
i.i.d. case. It would be interesting to explore the implica-
tions of this in the non-i.i.d. case using alternative generative
models. Comparing the likelihood functions for MIMMs and
semi-supervised mixture models gives intuition similar tothe
information theoretic result.

The above results suggest that it can be appropriate to
use the semi-supervised approximation to MI learning when
the positive bags in the training data tend to be predicted
as very likely to be positive by the semi-supervised method.
For example, consider a scenario where the positive bags are
large, the prior probability of a positive instanceπp is high
(and therefore, assuming independence, the prior probability
of a positive bag is also high), and there is little overlap
between the classes so positive bags are easily recognized
by the semi-supervised model. In this case, the positive bag
labels are not very informative and the cost of ignoring them
is small. On the other hand, if the positive bags are small,
positive instances are apriori unlikely and the classes overlap
heavily then it may be important to use algorithms that take
advantage of multi-instance bag label information. This is
supported by our experimental results on synthetic and real
datasets.

One implication of this is that there may not be a
practical need for MI learning algorithms (based on the
standard assumption) that scale up to handle very large
positive bags. As the number of instances increases, the
probability that at least one of them is positive approaches
one, and the amount of information contained in a positive
bag label approaches zero bits. Semi-supervised learning
algorithms are likely to work just as well as multi-instance
learning algorithms on such problems (e.g. see Figure 3).

The experimental results also showed that the proposed
MIMM generative models, trained via EM, can be compet-
itive with existing discriminative algorithms, at least inthe
case where the generative assumptions approximately hold
such as on the musk data. The framework is quite general,
being applicable to multi-instance data where the distribu-
tion for each instance-level class belongs to an expectation-
parametrized exponential family. We showed that the models
can easily be applied to non-vector data such as sequences.
This extends the set of problems to which multi-instance al-
gorithms can be applied to many types of structured instance-
level data. For example, it would be straightforward to apply
MIMMs to bags of graphs using exponential family random
graph models [16] as the instance-level class distributions.

The MIMM framework can potentially be extended
to incorporate domain knowledge regarding the generative

process. For example, we may have prior knowledge on
the distribution of the number of positive instances in a
positive bag. Computational intractibility quickly arises in
variants such as this where the independence assumption is
abandoned, as theE-step involves a sum over all possible
assignments to the bag labels, which is exponential in the
number of instances in the bags. Approximate approaches
such as MCMC sampling or variational inference in such
variants are potential avenues for future research.
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A Derivation of the EM Algorithm for MIMMs

In this appendix, we show the derivation of the EM Algo-
rithm for multi-instance mixture models. The reader is re-
ferred back to Section 4 for the notation. This derivation is
similar to the derivation for the EM algorithm for mixtures
of exponential family distributions given in [13].

A.1 E-step By linearity of expectation,Q(θ; θk) =

E[
∑NB

i=1 Lc(θ;Xi, yi,Zi)|X , Y, θk] can be written as
∑NB

i=1 E[Lc(θ;Xi, yi,Zi)|Xi, yi, θ
k]. So to compute

Q(θ; θk), we can consider each bag separately. We make
use of the following lemma (see Appendix B for a proof).

LEMMA A.1. SupposeV is a discrete random variable,
q ∈ V , P (V = q) 6= 1, f(v) is a real-valued function on
V , andE[f(v)] exists. Then

E[f(v)|V 6= q] =
E[f(v)]− P (V = q)f(q)

1− P (V = q)
.

For a positive bag Bi, we can use Lemma
A.1 to compute the expected complete-data
log-likelihood E[Lc(θ;Xi, yi,Zi)|Xi,⊕, θk] =
E[Lc(θ;Xi, yi,Zi)|Xi, Zi 6= 0, θk]

=
E[Lc(θ;Xi,Zi)|Xi, θ

k]− αiLc(θ;Xi,Zi = 0)

1− αi
.

Note that the complete-data log-likelihood for aZi

assignment inconsistent with the bag labelyi is ln(0). In
calculating the expected log-likelihood, we assume0× ln(0)

is 0. The expected complete-data log-likelihood is trivially
computed for negative bags, as the bag label implies that all
instances in the bag are negative. The sum of the expected
log-likelihoods for all negative bags is

N−

∑

i=1

lnPθ(x
−
i |zi = 0) +N− ln(1− πp) .

Adding all of the expected log-likelihood terms over all
bags gives Equation 4.1.

A.2 M-step We now derive theM -step updates for the
MIMM’s parameters. First we shall maximize theQ func-
tion with respect toπp. Regardless of the form of the
mixture components, in anticipation of taking the derivative
with respect toπp the terms of interest in the expected log-
likelihood are:

N+

∑

i=1

1

1− αi

(

Si
∑

j=1

(

γij lnπp + (1− γij) ln(1− πp)

)

−αiSi ln(1− πp)

)

+N− ln(1− πp) .

Let ωij =
γij

1−αi
for instancej of positive bagi. Now

taking the derivative with respect toπp and setting to zero:

0 =
N+

∑

i=1

1

1− αi

(

Si
∑

j=1

(

γij

πp
−

1− γij

1− πp

)

+
αiSi

(1− πp)

)

−
N−

1− πp

0 =

N+

∑

i=1

1

1− αi

(

Si
∑

j=1

(

(1− πp)γij − πp(1− γij)

)

+ πpαiSi

)

− πpN
−

πp

(

N+

∑

i=1

1

1− αi

( Si
∑

j−1

(

γij + 1− γij

)

− αiSi

)

)

+N−)

=

N+

∑

i=1

1

1− αi

Si
∑

j=1

γij

πp =

∑N+

i=1
1

1−αi

∑Si

j=1 γij
∑N+

i=1
Si(1−αi)

1−αi
+N−

=

∑N+

i=1
1

1−αi

∑Si

j=1 γij
∑N+

i=1 S +N−

=

∑N+

i=1

∑Si

j=1 ωij
∑N+

i=1 S +N−



We assume each instance-level classc ∈ {+,−} has
an exponential family distribution with natural parameteri-
zationpc(x|θc) = a(θc)−1b(x)eθ

c⊺t(x) and expectation pa-
rameterizationpc(x|φc) = a(θc(φ))−1b(x)eθ

c(φ)⊺t(x), i.e.
θc → φc = E[t(x)|θ] is a bijection. In anticipation of taking
the derivative with respect toθ+, the relevant terms of theQ
function are

N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

(

− γij ln a
+(θ+(φ+)) + γijθ

+(φ+)⊺t+(xij)

)

.

Taking the derivative with respect toθ+, and setting to
zero, we obtain

0 =

N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

(

− γijφ
+ + γijt

+(xij)

)

where we make use of the well-known property of exponen-
tial family distributions that the log-partition functionis the
cumulant generating function, i.e. the first derivative of the
log-partition function▽ ln a(θ) isEq(x|θ)[t(x)], which in our
case equalsφ+. Rearranging,

φ+
N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

γij =

N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

γijt
+(xij) .

Solving forφ+, theM -step update forφ+ is

φ+ =

∑N+

i=1

∑Si

j=1 ωijt
+(xij)

∑N+

i=1

∑Si

j=1 ωij

.

To find theM -step update forφ−, the relevant terms of
theQ function are

N+

∑

i=1

(
1

1− αi
)

( Si
∑

j=1

(

− (1− γij) ln a
−(θ−(φ−))

+ (1− γij)θ
−(φ−)⊺t−(xij)

)

− αi

Si
∑

j=1

(

− ln a−(θ−(φ−)) + θ−(φ−)⊺t−(xij)
)

)

+
N−

∑

j=1

(

− ln a−(θ−(φ−)) + θ−(φ−)⊺t−(x−
j )

)

Taking the derivative with respect toθ− and setting to
zero:

0 =

N+

∑

i=1

(
1

1− αi
)

( Si
∑

j=1

(

− (1− γij)φ
− + (1− γij)t

−(xij)
)

− αi

Si
∑

j=1

(

φ− + t−(xij)
)

)

+
N−

∑

j=1

(

− φ− + t−(x−
j )

)

By rearranging, we obtain

φ−

( N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

(1− γij − αi) +N−

)

=
N+

∑

i=1

(
1

1− αi
)

Si
∑

j=1

(1− γij − αi)t
−(xij) +

N−

∑

j=1

t−(x−
j )

and finally solving forφ−, theM -step update forφ− is

φ− =

∑N+

i=1 (
1

1−αi
)
∑Si

j=1 (1− γij − αi)t
−(xij) +

∑N−

j=1 t
−(x−

j )
∑N+

i=1 (
1

1−αi
)
∑Si

j=1 (1− γij − αi) +N−

=

∑N+

i=1

∑Si

j=1 (1−
γij

1−αi
)t−(xij) +

∑N−

j=1 t
−(x−

j )
∑N+

i=1

∑Si

j=1 (1−
γij

1−αi
) +N−

=

∑N+

i=1

∑Si

j=1 (1− ωij)t
−(xij) +

∑N−

j=1 t
−(x−

j )
∑N+

i=1

∑Si

j=1 (1− ωij) +N−
.

B Proof of Lemma A.1

E[f(v)|V 6= q] =
∑

v∈V

f(v)P (V = v|V 6= q)

=
∑

v∈V

f(v)
P (V = v, V 6= q)

P (V 6= q)

=
1

1− P (V = q)

∑

v∈V

f(v)P (V = v, V 6= q)

=
1

1− Pr(V = q)

(

∑

v∈V

f(v)P (V = v)

−f(q)P (V = q)

)

=
EP (V )[f(v)]− f(q)P (V = q)

1− P (V = q)
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