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Abstract feature vector representing a conformation. The standard M
Multi-instance (MI) learning is a variant of supervised learningssumption applies because a molecule is active if and only
where labeled examples consist of bags (i.e. multi-sets) of feAere exists a conformation that binds to the target igdi
ture vectors instead of just a single feature vector. Under stan-

dard assumptions, Ml learning can be understood as a type of sethf: ) ) ] )

supervised learning (SSL). The difference between Ml learning and This paper is concerned with the relationship between

the instances that they contain. MI learning tasks can be app ’

roXs .
imated as SSL tasks by disregarding this weak label informati&f,leam'.”g tasks where b‘?th Iabelgd and unIgb_eIed_exampIes
allowing the direct application of existing SSL techniques. To givare available to the learning algorithm at training time. Mi

insight into this connection we first introduce multi-instance mi’fearning under the standard assumption can be viewed as

ture models (MIMMs), an adaption of mixture model classifiers . - . . . ..
for multi-instance data. We show how to learn such models (&-variant of SSL, since all instances in negative training

ing an Expectation-Maximization algorithm in the case where thags must, by the assumption, be labeled negative, while
instance-level class distributions are members of an exponentiglances in positive training bags are not directly lathele

family. The cost of the semi-supervised approximation to mulfis . . ..
instance learning is explored, both theoretically and empiricali,24]- MI differs from SSL in that positive bag labels

by analyzing the properties of MIMMs relative to semi-supervisqarovide weak label information for the instances that they

mixture models. contain, namely that at least one instance in the bag is
) positive. An implication of this is that Ml learning problem
1 Introduction can be approximated as SSL problems by disregarding the

Multi-instance (MI) learningllB] is a variant of superviseihformation contained in positive bag labels.
learning that has received significant attention in the rimech We explore this connection from the perspective of gen-
learning literature. While in traditional supervised léagh erative probabilistic models of multi-instance data. The
the learning instances are represented as feature veictorgenerativeapproach to classification involves modeling the
MI learning the examples are representetiags(i.e. multi- joint distribution of the input domain and the output do-
sets) of feature vectors. Training data consists of labelmdin P(x,y), as opposed tdiscriminativelearning which
bags, and the task is to predict the labels for unseen bageolves either modeling the posterior class probabditie
Labels are not typically provided for the individual feaurP(y|x) or directly learning a decision boundary to sepa-
vectors (referred to as “instances”) though it is usualipte the classes. Generative models are so hamed because
assumed that the instances have hidden labels that in s@nsepossible to sample from them to create synthetic data.
way determine the bag labels. Although generative classifiers are typically less aceurat
A multi-instance assumptide an assumed relationshipat classification than discriminative classifiers when darg
between instances and bag labels. The most commoatyounts of labeled data are available, they can do better
used MI assumption, which Weidmann et &l._I[17] call th@hen small amounts of data are available [12], and have the
standard MI assumptignis that a bag is labeled positiveadvantage of being able to make use of unlabeled data and
if and only if it contains at least one positive instancéandle missing attribute values.
This assumption was used by Dietterich et &l! [5] in the In this paper, we introduce a unified framework for
context of the “musk” prediction task. The musk task & class of generative models that respect the standard Ml
to predict whether a given molecule will have the desirexssumption. These models adapt the well-known mixture
property of being a musk, i.e. emitting a musky smelinodel classifier to handle Ml data, and will be referred to
The learning task is difficult because molecules can assuasemulti-instance mixture models (MIMMs). We show how
different conformations (shapes) by rotating their ing&rnto learn these models via an EM algorithm in the case where
bonds, and it may be difficult to tell which conformationhe instance-level classes are expectation-parametexzed
was responsible for biological activity. Dietterich et aponential family distributions. Using this framework, we i
represent a molecule as a bag of feature vectors, with eaehtigate the cost of the SSL approximation to Ml learning
both theoretically and empirically.
In Sectior 2 we give some background on Ml learning.
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and describe an EM learning algorithm for them. Sectiotabeled according to the standard Ml assumption. Yang et al.
and[® provide some theoretical insight into MIMMsjescribe an approximate variational EM algorithm for their
showing the connection to the well-known diverse densityodel in the case where the underlying mixture model is a
model for Ml learning([11] and proving a bound on the Bayemixture of multinomials. In this paper we present a tracabl
error rate of the classifier, respectively. In Sectidon 7, vexact EM algorithm that applies whenever the instancetleve
make use of the MIMM framework to quantify the cost ofixture components belong to an expectation-parametrized
approximating Ml learning problems by SSL problems. Wexponential family.

present experimental results in Sectidn 8 and conclude in

Sectior 9. A derivation of the EM algorithm is given in th& Multi-lnstance Mixture M odels

Appendix. In this section we introduce a simple but intuitive frame-
work for a class of generative Ml models. In these mod-
2 Background els, the instances in each bag are generated i.i.d. from a

Multi-instance learning was originally formulated by Dietmixture distribution, the components of which correspond
terich et al. [5] for the aforementioned musk predictiorktasto instance-level classes. Bags are then labeled via the sta
Subsequently, Ml learning has been applied to diverse-apglard Ml assumption. The bag sizes are assumed to be fixed.
cation areas including object detection|[15], text clasaifi These models, which we refer to as multi-instance mixture
tion [21], and contextual advertising [23]. models (MIMMSs), can be understood to be an adaption of
Connections can be made between MI learning asemi-supervised mixture model classifiers to the Ml leagnin
other supervised learning frameworks. For example, Mtenario, analogous to Zhou and Xu’s adaption of a semi-
learning degrades to traditional “attribute-value” ldagn supervised SVM to handle MI data (MissSVM) [24]. We
when the bags are all of size one. De Raédt [3] notes tshow how to learn the parameters of MIMMs via an EM
in terms of generality, multi-instance learning sits bedwe algorithm in the case where the instance-level class distri
attribute-value learning and fully relational learning.hel butions belong to an expectation-parametrized exporientia
connection between Ml learning and semi-supervised leafamily.
ing, previously described in Sectidh 1, is the subject af thi MIMMs are naive in the sense that they assume that
paper. instances are conditionally independent of each otheingive
A large number of algorithms for Ml learning have beetheir class labels (note thattributesneed not be condition-
proposed in the literature. A review of models using Milly independent). The conditional independence assump-
assumptions other than the standard assumption is givertibg allows us to avoid summing over the exponential num-
Foulds and Frank_[6]. A common approach is to upgratier of possible labels in a positive bag in thestep of the
propositional algorithms to handle MI dafad [1,] 20] 15, 24EM algorithm. This assumption is of course not always justi-
Maron and Lozano-&rez [11] proposed diverse densityfied in practice. For example, in the musk domain we would
a discriminative probabilistic framework for MI learningexpect the instances in a bag to be dependent, as they cor-
Faster training procedures for diverse density classifiere respond to conformations of the same molecule. However,
proposed by Zhang and Goldman][22], and Foulds and Fraraive classifiers are often useful to explore and can still of
[7]. ten perform well even when their independence assumptions
Generative models for Ml have previously been prase invalid, as evidenced by the practical success of thve nai
posed in the literature. Maron [10] proposed generative-mdhyes classifier.
els for the musk problem in his PhD thesis, but did not de- More formally, let Nz be the number of bags to gen-
velop learning algorithms for them. Kriegel et all [9] usederate, andS; (i = 1...Np) be the number of instances
generative model to cluster Ml data. In their model, exanm bagi. We assume thalp and thesS,’s are fixed and
ples are clustered at the bag level. Each cluster consiats dknown ahead of time, although it would be straightforward
instance-level mixture model that instances are drawn framintroduce a distribution over th§s. LetP(x|z = 1;6),
in an independent and identically distributed.d.) fash- P(x|z = 0;0) be the distributions for instances of the pos-
ion.Yang et al. [[211] recently proposed Dirichlet-Bernoulitive and negative classes, respectively. Haregfers to an
Alignment (DBA), a generative model for multi-class multiinstance, and € {0, 1} refers to an instance label. We will
label multi-instance classification inspired by work in thdenote thejth instance of théth bag asx;;, its label asy;;,
topic modeling community. The approaches of Kriegel ahd the label of bad; asy; € {®,©}. CapitalX; and Z;
al. and Yang et al. are closely related to the present workréfer to the collection ok’s and z's in a bag respectively,
that instances in each bag are assumed to be generatedwitll. X; = {x;1,...,x;s,} andZ; = {z1,...,zis,}. For
from instance-level mixture models, and the model paransémplicity, letw, = P(z = 1) be the marginal probability of
ters are learned via an EM algorithm. The key differencedsositive instance, and replaf¥.; ) with Py(.).
that in the models that we consider, bags are assumed to beMIMMs assume that the data is generated via the fol-



imum likelihood estimafk of the model parameter$ =
(07,07 ,7p), Opr = argmaxg Py(D). First, it is worth
noting that since the instances are all generated i.i.dn fro

the mixture distributionP,(x), if the bag labels are dis-
@ @ regarded (and we have no instance-level labels) the like-

lihood becomes the likelihood for a mixture model, i.e.

=115 [i=1Ng Py(Xy,..., Xn,) equals
Figure 1. Directed graph of the generative model fow:s s;
MIMMs. Shaded nodes are observed. 1111 (prg(xij|zij = 1)+ (1 — mp) Pa(xyj2i; = 0)>.
i=1j=1

However, since the observed data includes the bag labels
lowing process. Given model parametérs- (6*,0~,7,), v, the likelihood function becomes more complicated. Since
whered*/~ are the class parameter vectors, generate ebelys are generated independently, the likelihood is a ptodu
bagB; = (X, yi, Z;) independently via: over the likelihoods of the training bags:

1. For each of the; instances inB; (indexed byjy): Np
L(6; D ={Bu,...,Bn,}) = Po(D) = [ Po(Xs, ) ,
=1

(a) Choose aclass labgl; ~ Bernoulli(my)

(b) Generatex;; ~ Fy(x|zi;) wherePy(X;, y; = ©) =Pp(X;) — Py(X, y: = ©) ,
Si
2. Label bagB; viay; = , 3, € ZZ A =1 Py(X,y = ©) =(1 = mp)™ H Py(xijlzi; = 0) .
O, otherwise. i1

In other words, for each instancg of bag i flip a
weighted coin (a Bernoulli trial with parametey) to decide
the labelz;;. Then generate;; according to the distribution ; 4 ]
associated with that class label. Bags are labeled acgprdi§ With standard mixture models, due to the summation
to the standard MI assumption, i.e. positive iff they comi (€'MS inside the logarithm for the terms relating to posi-
positive instance. Figuf@ 1 illustrates the generativegse V€ bags we cannot maximize the log-likelihood in closed
with a directed graphical model. Any family of probabiliform- However, the problem lends itself to an application of
distributions defined over the instance space can be ufiEXpectation-Maximization (EM) algorithml[4], an itera
for the instance-level classes. In this work we considfe OPtimization technique that is useful for finding max-
distributions belonging to the exponential family. imum likelihood solutions in problems with missing data.

By applying Bayes' rule and simplifying, we obtain ZLach iteration improves a lower bound on the log-likelihood
classifier with the posterior bag-level class probabiitie ~ °Y alternating between arfstep” and an A/-step.” The
E-step finds the functior))(; 6%), the expected value of

s, the complete-data log-likelihood with respect to the miss-
Py(0|B;) = H Py(2i; = 0[x45) ing/hidden variables conditioned on both the observed vari
; ‘ ables and a current estimate of the paramet&rsvhile the
M-step maximizes)(6; 6*) with respect td).
whereFy (z;; = Olxi;) can be calculated by Bayes'rule,and  |n the case of MIMMs, for bagB; with in-
of coursely(®[4X;) = 1 — Pp(©|X;). Itis also worth noting stance labels 2;, the complete-data log-likelihood,
that the marginal bag-level class probabilities are a fonct\yhich we will denote Le(0; X, y:, Z:), equals
both of the marginal instance-level class probagnmeukme S°711 (In Py(zi7) + In Py(xi5]2;;)) for any assignment of
number of instances, i.e. Py(8) = (1 — m,)°, and as the Z;s that is consistent with;.
S = 00, Fy(©) = 0. With a slight abuse of notation, we writg; = 0 as
shorthand fovz;; € 2, : z;; = 0. Letay = Ppu(Z; =

Maximizing the likelihood is equivalent to maximizing
the log-likelihood, s@y;;, = arg maxg Y307 In Py(X;, y:).

J

4 EM Learning Algorithm

Given a dataseD = {Bi,..., By} with labeled bags ~ TThe extension to maximum a posterior estimation is straightfcvand
but unlabeled instances, we would like to find the maset discussed here.



0]X;). Let N be the number of positivbagsand N~ be closely related to the EM algorithm for mixtures of expo-
the number ofnstancedn negative bags. In the following,nential family distributions[[13]. A set of probability dis
when index:i ranges over 1 taV+ the index refers to the butions is an exponential family if its densities can be writ
collection of positive bags, and whemanges over 1 t&V~ ten in the formp(x; 8) = a(8)~b(x)e? **). Under certain
the index refers to the collection of instances from negatigonditions on its natural parameter space (convexity, open
bags, denotedk;. We now describe the EM algorithmness) and its sufficient statistics (linear independenae),
for MIMMs. A derivation of the algorithm is provided in exponential family distribution can be written in the “expe
AppendiXA. tation” parametrizatiop(x; ¢) = a(0(¢)) ~'b(x)e(#)THx),
where the mapping — ¢ = E[t(x)|d]. Let each instance-
4.1 E-Step In the following, E[X] refers to the expecta-level clas°(x|¢¢), ¢ € {+, —}, be such a distribution. The
tion of random variableX. The functionQ(9; 6%), the ex- M-step updates are:
pected log-likelihood over all bags, can be shown to be

Nt S;
_ Dim1 2oy Wit (xi5)

o* s
g E[Lo(6; X, Z))] — aiLe(6; X, Z; = 0) Dlim1 2oy Wi
) + S _ -
= 1 - LR T (= wi )t (ki) + 2 (X))
(4.1) o ¢ = Ea— - .
Dzt j=1 (I —wij) + N

+ ) InPy(x; [z = 0) + N In(l — ).
i=1

Here, E[L.(0; X;, Z;)|X;, 0%] is the expected complete ~ As examplqs, we provide th&f-step updates .for sev-
data log-likelihood that is computed in tii&step of EM for eral useful special cases of the exponential family, namely
ordinary mixture models, discrete naive Bayes, multivariate Gaussian and first order

Markov models. These examples show how MIMMs can
easily be applied to Ml learning scenarios with different

i

: types of instance-level data such binary, continuous or se-
(%'j(ln T +1In By (xij 25 = 1)) quential data.
4.2) =1
Naive Bayes A simple but useful example is the naive Bayes
+ (1 =) (In(1 = mp) + In Pp(xy5]2;; = 0))) + classifier for discrete data. For clarity we consider theecas
where, conditioned on the classe {+,—}, each of the
wherey;; = Pye (25 = 1]x;5) is d attributes is a conditionally independent Bernoulli vari-
able parametrized by¢, although the result is similar with
T8 Pyi (Xi5]2i5 = 1) multinomial attributes. For each class, we hdve (x) =
T Py (xij] 215 = 1) + (1 — k) Pye (x5]2i; = 0) H‘;Zl()\g)"k(l — X§)17**. In exponential famcily form,
. . . L Pae(x) = (HZ:l(l — Af)) exp (Zizl Xk ln(liig\";))' S0
the responsibility for instance;;, i.e. the probability e A xe
that instance:;; belongs to the positive class. the natural parameter & = [In(1=5), ..., In(:=5z)]"
t(x) = x, and we can recovex{ = o(¢§) = m.
42 M-Step Let w;; = 17_—; for instance; of positive We can reparametrize in terms of the expectation param-
bagi. As we shall see, they;s can be interpreted aseter ¢¢ = E[t(x)|0°] = E[x|\{ = o(0{)Vk] =

responsibilities that have been adjusted to take into adcojs(65), . ..,o(05)]T. Then theM-step updates are
the standard MI assumption. Irrespective of the form of the
mixture components, th&/-step update fofr, is:

Nt S
N o070 = S

NT =5
SN wis izt 255 iy
TSNS N A" =lo(0;).....o(6;))"
N NT S; NT -
i 2 (L= wig)xig + 300 %
- N+ —S; B - '
We now give theM-step updates for MIMMs where Lim 2o (L= wig) + N

the density for each class belongs to an expectation-
parametrized exponential family. This EM algorithm is



Multivariate Gaussian Consider the case where the mix- NT 8

ture components are multivariate Gaussidns(x;;) = Zzwijn51752(xij)
TN - i=1 j=1
N (xi;; 1€, 2¢). Then the)M -step updates are 03 (sa]s1) = NJ+ _
. D) IPDETMEN
+ Zz 1 ZJ 1 WijXij s’€S i=1 j=1
S H 5
_ (1 —w;ij)n (x4 n
N — 1_7 81,8 1] 81,8
v = S ZJ (1 Wz‘j)xz‘j + i1 X P e : :
S Y (1= wiy) + N~ NT S
> (22 (= wine (e +zn91, (=)
s+ :Zi:1 Dl 1wij(xz‘j — pF) (x5 — pF)T ses =151
Z Z =1Wij
oo i Z] 1( —wij) (xij — ) (g — )T 5 Relationship to Diverse Density
Z Z; 1 (T —wij) + N~ Instead of maximizing (in the frequentist case) the uncon-
SN (xr =) — )T ditional likelihood of the joint distribution of the examgd
e— o . K . and their labels, another approach is to learn a discrimina-
Dz =1 (I —wiy) + N~ tive version of a generative model by maximizing the con-

ditional likelihood of the class labels given the examples.
For example, logistic regression is the discriminative- ver

Firs-Order Markov Model Suppose the instances foii)gn of the naive Bayes model with Gaussian components.

each class are sequences drawn from a first-order Marko 0 classifiers related in this way are calle@enerative-

Iscriminative paif12]. In the case of MIMMs, maximizing

model, i.e. " L ; o
the class-conditional likelihood gives us the objectivecu
tion
L;
Poc(zi5) = Poe(i5,1) HPQ; (@ijilTiji—1)
= 1-—
1=2 arg max H (1 - Py(a|By)) H Py(0|By).

B;:yi=® B;:yi=6

wheref¢ andés. are the initial state probabilities and transiconsider also the objective function for the “noisy-or” di-
tion probabllmes for clase, respectively, and,, is the length Verse density model [11]:

of sequence. Here,i(s1, s2) = [z1 = s2] is the Kronecker
delta function, ana,, s, (x) is the count of transitions from arg max H (1= r(B;,0)) H (B, )
states; to s in sequence. Then for all states, s, s5 € S Bilgi— Bigi—o
the M -step update equations are

wherer(B;,0) = HJS 7(xi;,6). We can interpret(B;, 0)

Nt S as Py(e|B;) and 7(x;;,0) as Py(z;; = O0|xs;), since
Zzwiﬂ(s,rm) 7(xi5,0) € _[0, 1] i_n [1_1], (see.alsc.) [[7] and_[19]). The di-
. P verse density objective function is the same as the class-
07 (s) = Nt s, conditional likelihood for the discriminative version of a
Z Z wa (5", 2i11) MIMM, w_ith the instance-le_:vel class probabili_tl;?g(zij =
s'eS i=1 j=1 0|x;;) being the Bayes mixture model classifier. So the
diverse density algorithm can be understood as a class-
07 (s) = conditional discriminative classifier that forms a geneeat
N S N” discriminative pair with the MIMM that has the same
> Z (1= wiy)d(s,i5.0) + D (5, 27,) Py(z;5 = 0fxi;).
i=1j =1

NT S ZNote that Maron and Lozano-Perez instead interpi@8;, ) and
Z Z Z 1-— w” s s Tij, 1 + Z (5(3’7 xfl)) 7(x45,0) as posterior probabilitied®(0|B;) and P(6|x;;) respectively,
e j=1 i where maximizing the diverse density corresponds to finding dmmanm
a-posteriori (MAP) estimate af. However, their interpretation of diverse
density is not motivated via a likelihood framework.

=1



6 A Bound on the BayesError Rate positive bag is positive. This implies that Ml learning prob

In this section, we derive an upper bound on the Bayes ef@PS can easily be transformed into SSL problems by disre-
rate for MIMMSs, in terms of the instance-level false positivdarding the instance-level label information given by puosi
rate P~ and false negative rat® of the Bayes optimal bag labels. A natural question to ask is therefore “whates th
instance level classifier, the probability of a positivetamge COSt of treating M problems as SSL problems?”

m, and bag sizes. Note that the instance-level Bayes error  Sincel(X) can always be written in mixture form as
rate isP", + P, (1 — 7). Py(X) = mpPy(X[|Z = 1) + (1 — mp)Py(X[|Z = 0),

We compute the error rate for the following sub-optim&sSuming both that the standard MI assumption holds and
classification rule: given the true model parameters, -@asghat the instances were generated i.i.d. is equivalentyto sa
instances by hard-assigning them to their most-likelysgas ing that the distribution of the data can be represented by a
(as in K-means), and then classify bags deterministicaljyMM. There are two straightforward ways to obtain SSL
based on these hard assignments according to the stanftggels/algorithms from a MIMM. The first is to treat in-
MI assumption. The error rate for this decision rule must I§j@nces from negative bags as labeled negative instamces, a
definition be no better than the (optimal) Bayes error rate Instances from positive bags as unlabeled instances,jfgnor

Consider first false-positiveF{P) type errors. Supposethe constraint that at least one is positive. The model tat r
we are given a random negative &g, which by definition sultsis asemi—supervised mixture model, which we wiII.refe
has instance label = 0, i.e. all negative. Now the numbert® as an MM (*Mixture Model"). The second method is to
k of instances that we predict to be positive is binomiall§arn the mixture density parameters in a completely unsu-
distributedk ~ Bin(P:,S). The classifier makes afiP pervised manner. The assignment of instance-level classes

error if it predicts any of the instances in the bag as pasiti the learned mixture component densities can be achieved
ie. ifk > 0. SotheFP error rateP® is 1 — Bin(k = by, for example, choosing the assignment that maximizes the

0[P+, S) =1~ (1— P+)s. mixture model Iikglihood V\_/hen the negative instance labels

We now consider false-negative” V) type errors. are observed. Since the instances are treated as unlabeled
These occur when a bag with at least one positive instaf@emost of the learning process, we will refer to this as an
has all of its instances predicted to be negative. Firdtly, tMMU “(Mixture Model Unlabeled)”. We can thus address
numbern,, of positive instances in a random bag (positive §f€ above question using the surrogate question “what is the
negative) is distributed,, ~ Bin(r,, S). Now the probabil- €Ot of replacing a MIMM with an MM or an MMU?".

ity PS of misclassifying a positive bag with,, positive in- AS well as discarding potentially useful label informa-
stances is the probability of predicting that all of its arstes fion, the MM approximation introduces bias since it ig-
are negative, i.ePS = (P-)"" (1 — P+)anp nores the missing data mechanism, which is only valid for

Now the error rate i°® P(c)) + P P(®), whered likelihood-based methods when the missing datar@ssing

ando are the positive and negative bag labels, respectivéﬂ/.randor,n i',e' the mis:si‘ng data mechanism does not depend
Putting it all together, the error rate for this decisiorerid: on the missing values [14]. The MMU method does not suf-

fer from this problem. It follows trivially from a result by
[2] that MMUs will (almost surely) achieve the Bayes er-

(1—(1—PHS).(1—m)*+ ror rate given an infinite number of training bags, assuming
s ‘ b that the parametric family of the underlying mixture model i

Bi P\e (1 — pHY(5—np) known and is identifiable up to the class assignments. How-

nzz:l in{nplmy, $)-(Pe )™ ( ¢) ever, MMUs makes less direct use of the label information

available, which can increase the variance of their esémat

The error rate for the optimal classifier must by definfsee Section811).

tion be no worse than the above error rate that is achieved by YWe now give some intuition on the cost of approximat-

this suboptimal decision rule. ing a MIMM with an MM. Consider the Kullback-Leibler
(K'L) divergence between a distribution on a discrete ran-

7 The Cost of Approximating MI Learning as a dom variablelV’ conditioned on the non-occurence of a cer-

Semi-Supervised L earning Task tain elemer_1t (‘'0’ here), and th_e unconditio_ngl distrib_u_t'cm

As discussed earlier, Ml learning can be understood %%r?;v\s/l:g??h?{afé?/fe@ggéz ir;on-zero, itis not difficult

a variant of semi-supervised learning (SSL)/[24]. Under

this interpretation, Ml training bags contain semi-su et (7.3)

instance-level label information, i.e. all instances igatéve

bags are negative, and instances in positive bags are unREL(P(WIW # 0)[[P(W)) = —log(1 — P(W = 0)).

beled. In addition to this, positive bag labels give us ferth  This applies to a MIMM wherlV = Z;, P(W) =

label information, namely that at least one instance in eaBh(Z;|X;) is the distribution of the label assignmerffsin



and semi-supervised learning by simply comparing the like-

°f’ lihoods for MIMMs and MMs. Since MIMMs differ from
: MMs only in that they are given more observed label in-
8 formation, the likelihood given an observed dataBefor
g a MIMM must be less than or equal to the MM likelihood.
o 6l More formally, the likelihoods for MIMMs and MMs can be
3 written as
=
% i MIMM ke
o L (0;: ) =(]T (4 - Ba)C
ot i=1
MM e
L ;D) = ;
0 ‘ ‘ ‘ ‘ (0:0) =(] [ Ac.
0 0.2 0.4 0.6 0.8 1 i=1
1 - Pr(W=0)
Si
where A; = szl (ﬂpPQ(Xij|Zij = 1) + (1 —

Figure 2: KL divergence from a distribution conditioned
on the non-occurrence of a specific valug 6f random Tp) Po(xij|2i; = 0)) is the mixture model likelihood for the
variablelV to the marginal distribution, versus one minus the

probability of that value. More specifically, the informi ith positive bagB; = (1 — m,) I3, Py(xij|zi; = 0) is
cost (in bits) of ignoring a positive bag label versus tHe likelihood of a negative bag with the sames as the pos-
probability that the bag is positive before observing tr‘@sbaitive bag B;, andC — Hiz\il Po(x;]2; = 0) ) (1 — m)N~

label.
is the mixture model likelihood for the negative instances.
In this form, it is clear that the difference between the
likelihood functions for the two models is determined by the

. B;s. If we fix the dataseb, in the parts of) space where the
the case where all labels are negative. TR W # 0) B;s are very small relative tal;, such as where,, is close

Is the d|str.|t_)ut|0n of the labels given the |_nstances, thd‘m(.)lo one, the MIMM likelihood function approaches the MM

and a positive bag label. Here, the KL divergence quantlflIﬁ(selihood function. Alternatively, if we increase the sinf

the amount of information that is lost when a positive baﬁ i ' _ ’ MM /4. .

label is ignored. the positive bags, thB;s will decreaslel\/lal\gllﬂ (6; D) will
Interestingly, the KL divergence is dependent only difcome a closer approximation £ (6; D).

the probability that the bag is positive, according to the un _

conditional MM. When the probability of the bag being po§ EXxperiments

itive (according to the MM) approaches one, the MM distriA/e conducted a set of experimentq19 further investigate

bution overZ approaches (in a KL sense) the MIMM distrithe cost of approximating Ml learning as an SSL task, and

bution overZ. In the other extreme, when the probability of2) to verify the efficacy of the MIMM approach, using both

the bag being positive approaches zero the KL divergerssamthetic and real Ml data.

approaches infinity. Making use of positive bag labels is

therefore important when we have many positive bags tigat Synthetic Data We generated data from a MIMM us-

appear likely to be negative given no label information. Tlieg two-dimensional instance-level Gaussian class distri

relationship between the probability of the excluded valtiens, with positive and negative means at locatiohd))

(i.e. the all-negative case) and the KL-divergence is etbttand (5, 5), respectively. Experiments were performed vary-
in Figure2. ing the amount of overlap between the classes (diagonal co-
Learning a MIMM via the EM algorithm for MMs variance matrices/ and 10/ for small and large amounts
can be viewed as a variational EM algorithm, where tloé overlap),r, (0.2,0.8) and the size of the bags. Note that

posterior distribution of the instance labels for positdsgs the prior class probabilities al(s|r, = 0.2,5; = 5) =

at iterationk, Py.(Z;|X;,Z # 0), is approximated by 0.33),P(e|r, = 0.2,5; = 10) = 0.11), andP (|7, S;) is

Py (Z2;|X;). Equation[ 7B, whereP(W) = Pye(Z2;|X;), effectively zero forr, = 0.8, S; = 5 or 10. In each exper-

quantifies the cost of the variational approximation in eaghent we measured the instance-level error rate versus the

EM iteration. number of training bags on a test set of 10,000 instances.
From another perspective, we can also get some in- The MIMM, MM and MMU algorithms were trained

sight into the relationship between multi-instance leagnivia EM (ten restarts of up to 200 iterations) to find a maxi-

a multi-instance bagg; according to the MM, anéll’ = 0 is
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Figure 3: Error rate vs number of training bags for MIMMs ahd semi-supervised algorithms on 2D Gaussian data.

mum a-posteriori (MAP) estimate, using the weak conjugatistently around 50%.
prior on the Gaussian covariance matrices proposed by [8]to The results are plotted in Figuré 3. The plots show that
avoid singularities, and constraining the covariance icedr the improvement of the MIMM over the SSL methods is
to be diagonal. The algorithms were trained on 100 randdine greatest with small bags, sma)) and large class over-
training datasets for each scenario (the same for each algp- In these cases, the MIMM approaches the Bayes error
rithm); in our plots we report the average over these runs. fede much more rapidly than the MM and the MMU as the
make learning possible we constrained the datasets to havangount of training data increases. This is consistent with o
least one positive bag, and to have at least one negative thagretical results, as small bags and small mixture parame
when the bags were of size one. ter values imply a higher prior probability (and conseqlyent
The issue of identifiability arises in this setup as thehggher posterior probability) of negative bags, and langgro
may not be sufficient label information to determine whidap also increases the probability that positive bags “look
class label assignment should be applied to the learnesl cl&®” negative bags. With bags of size one, the MIMM re-
distributions. We remove this relatively uninterestingephduces to fully-supervised learning. Whepn= 0.2, the plots
nomenon by giving the learning algorithms an “identifiabikhow that the MMU overtakes the MM with enough training
ity oracle” that allows them to chose the labeling that givésgs, because more training data means that the MM'’s bias
the best accuracy on the test data. Without the identiftgbilcosts it more relative to the MMU than it gains due to the
oracle the results for, = 0.2 were similar to those shownreduction in variance from access to labels. As we expected
here, while forr, = 0.8 the error rate for the MIMM with from the results of Sectidg 7, the MIMM method approaches
ten training bags was typically around double the equialeéhe Bayes error rate faster than the semi-supervised meth-
“oracle” error rate, but still approached the Bayes error logls with smallr,, with the advantage decreasing for large
200 bags, and the error rates for the SSL methods were doaigs and small class overlap. The difference in performance



MIMM MM MMU | EMDD | MILR | MaxDD | MISVM

Musk1 70.90 | 70.82| 53.13| 85.4 | 73.44| 86.8 75.94
Muskl (PCA) | 89.08 | 86.68 | 56.39 | 77.82 | 77.94| 71.78 | 55.92
Musk2 67.63 | 67.32| 47.35| 85.6 | 76.97| 85.7 71.78

Musk2 (PCA) | 67.32 | 66.54| 59.96 | 72.95 | 52.54| 68.58 | 61.73
Elephant | 74.40 | 68.45| 52.35| 74.80 | 79.70| 80.00 | 78.85
Elephant (PCA)| 69.40 | 60.30 | 51.75| 76.20 | 78.15| 77.40 | 50.0

Tiger 61.85 | 58.45| 53.90| 72.50 | 75.60| 73.95 | 81.45
Tiger (PCA) | 60.80 | 59.15| 49.60 | 72.35 | 73.60| 67.20 | 49.45
Fox 53.20 | 53.00| 48.65| 59.65 | 59.00| 60.55 | 48.60

Fox (PCA) 51.90 | 52.25| 48.55| 56.50 | 53.20| 50.70 | 50.00

Table 1: Accuracy of the MI and semi-supervised algorithmsh® musk and image datasets.

between the MIMM and the SSL methods disappears witerformed almost identically on Musk2 — this is most likely
m, = 0.8 for bags of size five and ten. This is a regimdue to the larger bags in this dataset. Muskl1 has an average
where the semi-supervised approximation to multi-ingtanaf around five instances per bag, while Musk2 has around
learning is appropriate, since positive bag labels provedg 65 instances per bag on average. As shown previously in
little extra information and consequently make no diffe@nour theoretical results and experiments on synthetic tlaa,
to classification accuracy. advantage of MIMMs over MMs is reduced for large bags.
If instances in a multi-instance dataset are independeint as
8.2 Real MI Data We evaluated the Gaussian MIMMa MIMM, positive bag labels are of little use in datasets with
MM and MMU algorithms (with ten restarts of up to 200arge bags such as Musk2, unless the mixture parameter is
iterations) on the two well known musk datasets [5], arwinall.
on the elephant, fox and tiger image dataséis [1]. The The MISVM's poor performance on the PCA versions
musk and image datasets are high dimensional (166 afdhe data can probably be attributed to a lack of param-
229, respectively), which can be problematic for Gaussiater tuning. The MIMM and the semi-supervised methods
mixture model classifiers. To mitigate this, we restrictegkhibited mediocre performance on the image datasets, rel-
the Gaussians to have diagonal covariance matrices, atide to the discriminative methods. Generative models are
used [8]'s regularization prior on the covariances. We alknown to be less robust with respect to model misspecifica-
performed principal component analysis to create vergibngion than discriminative methods. The attributes in the im-
the datasets that were reduced to ten dimensions (we allowgd datasets are non-Gaussian, so mixture models with non-
full covariance matrices for these datasets). The max@Eaussian component densities may be more suitable here.
[11], EMDD [22], Ml logistic regression [20] and MISVM
[1] methods were used as baselines, using their defdlt Discussion and Conclusions

parameters from the WEKA data mining suite|[18], excep this paper we introduced multi-instance mixture models,
the iterative algorithms (maxDD, EM-DD) were given thgenerative framework for MI learning. Learning in this con-
same number of restarts and_iterations as the MIMM. Th& can be viewed as estimation in the presence of a combi-
algorithms were evaluated using the average of ten repgg{fion of missing information and constraints, leadinginat
of ten-fold cross-validation. Accuracy results are shown ?ally to approaches such as EM. We used this framework to
Tablel1. ) investigate the cost of approximating multi-instancenasy

The MIMM performed very well on Musk1 with PCA proplems as semi-supervised problems. We showed that the
features, obtaining the highest classification accuracy iQformation cost (in bits) of ignoring positive bag labess i
the algorithms considered in the experiment. Interesfinghinus the logarithm of the probability that the bag was posi-
the simple MM method was also very competitive Withye pefore the bag’s label was observed. The number of bits
the dedicated MI algorithms on this dataset. The PG information contained in a positive bag label approaches
transformation resulted in reduced accuracy for all of the g a5 the probability of the bag already being positive ap-
algorithms for Musk2. Although the MIMM for Musk2 roaches one, and approaches infinity as the probability of
(PCA) had much lower accuracy than the other algorithis bag already being negative approaches one.
that were trained on the untransformed data, it was still Assuming that both the standard MI assumption holds
competitive on the PCA dataset. The MIMM and the MM that instances are generated i.i.d. is equivalent torass



ing that the data distribution can be represented by a MIMigrocess. For example, we may have prior knowledge on
In this case, disregarding positive bag labels corresptmdshe distribution of the number of positive instances in a
approximating the data distribution with a semi-supemispositive bag. Computational intractibility quickly argsé
mixture model. The cost of ignoring positive labels is thergariants such as this where the independence assumption is
fore computed with respect to this semi-supervised modathandoned, as thE-step involves a sum over all possible
Equatiori Z.B implies that similar arguments hold in the noassignments to the bag labels, which is exponential in the
i.i.d. case. It would be interesting to explore the implicasumber of instances in the bags. Approximate approaches
tions of this in the non-i.i.d. case using alternative gatiee such as MCMC sampling or variational inference in such
models. Comparing the likelihood functions for MIMMs andariants are potential avenues for future research.
semi-supervised mixture models gives intuition similathie
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A Derivation of the EM Algorithm for MIMMs

In this appendix, we show the derivation of the EM Algo- —a;S;In(1 — wp)> + N~ In(1 —mp) .
rithm for multi-instance mixture models. The reader is re-

ferred back to Sectidnl 4 for the notation. This derivation is
similar to the derivation for the EM algorithm for mixture
of exponential family distributions given ih [1L3].

Letw;; = 1”” for instancej of positive bagi. Now

%akmg the derivative with respect ig, and setting to zero:

A.l E-step By linearity of expectation,Q(6;0%) = B S v 1=y S,
[ZNB L.(0; X;,v:, Z:)|X,Y,0F] can be written as 21_% Z T, 1—m, + (1—mp)
SNE BlLo(0; X, yi, Z:)| X, vi, 6%, So to compute
Q(6;0%), we can consider each bag separately. We make _
use of the following lemma (see Appendik B for a proof). L —mp

Nt Si

1 f

LEMMA A.1l. SupposeV is a discrete random variable, ( — ((1 — )i — mp(1 _%,))
qeV,P(V =gq) #1, f(v) is a real-valued function on Z L= oy 2 e !

V,andE[f(v)] exists. Then

E[f()] - P(V =q)f(q)
1=P(V=gq) '

N-

+ wpai5i> — N~

1041- (i_: <7ij +1 _%‘J) _ai5i>> +N7)

E[f(0)lV # 4] =

NT
(5
i=1

For a positive bag B;, we can use Lemma

AT to compute the expected complete data - 5
log-likelihood  E[L.(0; X;,vi, Z:)|X;, ©, 0F] Z “ Z%j
E[Lc(0; Xi,yi, Z:)| X, Zi # 0, 60%] = = 1s . s
N i
Z ST e Vi st Toan 2oyt Vi
_ BILe(8: X, 2|, 6M] — aiLe(6; X, Zi = 0) P S _*1 1_“0 +N- SN S+ N-
o o 2112/1%
Note that the complete-data log-likelihood for 2 Zl 1S+N*

assignment inconsistent with the bag lapglis In(0). In
calculating the expected log-likelihood, we assumen(0)



We assume each instance-level class {+, —} has Taking the derivative with respect #b~ and setting to
an exponential family distribution with natural parameterzero:
zationp®(x|0°) = a(8°)~'b(x)e’"**) and expectation pa- N
rameterizationp® (x|¢¢) = a(0°(¢)) 'b(x)e? @)X je. L
0¢ — ¢¢ = E[t(x)|0] is a bijection. In anticipation of taking ™ Z
the derivative with respect ", the relevant terms of th@

(Z (1= 7)™ + (1 — 7))t~ (xij))

17041

S

: N~
function are —OéiZ(¢>_+t ziy) )+Z< PR ))
Nt 5 = =
1 - o+ (At +(HH\Tt
S Y (<o %67 + 86T )
i=1 b=t By rearranging, we obtain

Taking the derivative with respect to-, and setting to
zero, we obtain

Nt Si
(Z 1—0[221_%3 +N)

Nt Si i=1 i
0= ( ) <_'7i'¢++%'t+(xi')> N S N

; 1-a Jzz:l ’ ’ j :Z(lfa_)z(l—%'j—ai)t_(xij)Jth_( ;
i=1 toj=1 J=1

where we make use of the well-known property of exponen-
tial family distributions that the log-partition functida the and finally solving forp~, the M -step update fos~
cumulant generating function, i.e. the first derivative lod t

log-partition functiorv In a(6) is E,x¢)[t(x)], which in our + _ - _
case equalgt. Rearraélg?ng, 1t = :ZZNﬂ (ﬁ) 25’21 (1 =715 — i)t~ (xi5) + Z?f:l t(x;)
BAMICET >zf;1 (1= — i) + N-
3 Y o) R (- e (ki) + 0 ()
=1 ’i=1 sz\il 23:1 (1- 1’11(]%) + N~
NS (U w)t xig) + Y ()
Solving for¢t, the M-step update fopt is DDA Zf; (I —wy)+ N~ .
o = >N Zf g wijtt(xij) _
pol Zj | Wij B Proof of LemmalAl
To find the M -step update fop—, the relevant terms of E[f(v)|V # ¢q] = Z f)P(V =0|V #q)
the @ function are vEV
_ =v,V#4q)
N* 1 Si B ;/ fw P(V #q)
(=) (S (- a=rma @)
;1_0"' ;( ’ = Zf V=0,V #q)
+ (1= 7i)0 (67) Tt (x45)) Ve
Si — f
,aiZ(flnaf(Qf(gi)*))JrH*((b )Tt~ (xlj))> 1—Pr <1§/
j=1
v 1PV =0)
t2 (~mao @m0 @ree) _ Ernlf0)] — f@PV =q)

1=P(V=gq)
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