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Abstract

Massive transaction data sets are recorded in a routine manner in
telecommunications, retail commerce, and Web site management.
In this paper we address the problem of inferring predictive in-
dividual profiles from such historical transaction data. We de-
scribe a generative mixture model for count data and use an an
approximate Bayesian estimation framework that effectively com-
bines an individual’s specific history with more general population
patterns. We use a large real-world retail transaction data set to
illustrate how these profiles consistently outperform non-mixture
and non-Bayesian techniques in predicting customer behavior in
out-of-sample data.

1 Introduction

Transaction data sets consist of records of pairs of individuals and events, e.g., items
purchased (market basket data), telephone calls made (call records), or Web pages
visited (from Web logs). Of significant practical interest in many applications is
the ability to derive individual-specific (or personalized) models for each individ-
ual from the historical transaction data, e.g., for exploratory analysis, adaptive
personalization, and forecasting.

In this paper we propose a generative model based on mixture models and Bayesian
estimation for learning predictive profiles. The mixture model is used to address
the heterogeneity problem: different individuals purchase combinations of products
on different visits to the store. The Bayesian estimation framework is used to
address the fact that we have different amounts of data for different individuals.
For an individual with very few transactions (e.g., only one) we can “shrink” our
predictive profile for that individual towards a general population profile. On the
other hand, for an individual with many transactions, their predictive model can be
more individualized. Our goal is an accurate and computationally efficient modeling
framework that smoothly adapts a profile to each individual based on both their own
historical data as well as general population patterns. Due to space limitations only
selected results are presented here; for a complete description of the methodology
and experiments see Cadez et al. (2001).



The idea of using mixture models as a flexible approach for modeling discrete and
categorical data has been known for many years, e.g., in the social sciences for latent
class analysis (Lazarsfeld and Henry, 1968). Traditionally these methods were only
applied to relatively small low-dimensional data sets. More recently there has been
a resurgence of interest in mixtures of multinomials and mixtures of conditionally
independent Bernoulli models for modeling high-dimensional document-term data
in text analysis (e.g., McCallum, 1999; Hoffman, 1999). The work of Heckerman
et al. (2000) on probabilistic model-based collaborative filtering is also similar in
spirit to the approach described in this paper except that we focus on explicitly
extracting individual-level profiles rather than global models (i.e., we have explicit
models for each individual in our framework). Our work can be viewed as being an
extension of this broad family of probabilistic modeling ideas to the specific case
of transaction data, where we deal directly with the problem of making inferences
about specific individuals and handling multiple transactions per individual. Other
approaches have also been proposed in the data mining literature for clustering
and exploratory analysis of transaction data, but typically in a non-probabilistic
framework (e.g., Agrawal, Imielinski, and Swami, 1993; Strehl and Ghosh, 2000;
Lawrence et al., 2001). The lack of a clear probabilistic semantics (e.g., for asso-
ciation rule techniques) can make it difficult for these models to fully leverage the
data for individual-level forecasting.

2 Mixture-Basis Models for Profiles

We have an observed data set D = {Dy,..., Dy}, where D; is the observed data on
the ith customer, 1 < i < N. Each individual data set D; consists of one or more
transactions for that customer , ie., D; = {yi,...,¥ij,- - Yin: }, Where y;; is the
jth transaction for customer i and n; is the total number of transactions observed
for customer 1.

The jth transaction for individual 4, y;;, consists of a description of the set of
products (or a “market basket”) that was purchased at a specific time by customer
¢ (and y; will be used to denote an arbitrary transaction from individual ). For
the purposes of the experiments described in this paper, each individual transaction
yij is represented as a vector of d counts y;; = (M1, .- - Nije, - - - s Nijc), Where nje
indicates how many items of type c are in transaction y;;, 1 <c¢ < C.

We define a predictive profile as a probabilistic model p(y;), i.e., a probability
distribution on the items that individual ¢ will purchase during a store-visit. We
propose a simple generative mixture model for an individual’s purchasing behavior,
namely that a randomly selected transaction y; from individual i is generated by one
of K components in a K-component mixture model. The kth mixture component,
1 < k < K is a specific model for generating the counts and we can think of each of
the K models as “basis functions” describing prototype transactions. For example,
in a clothing store, one might have a mixture component that acts as a prototype
for suit-buying behavior, where the expected counts for items such as suits, ties,
shirts, etc., given this component, would be relatively higher than for the other
items.

There are several modeling choices for the component transaction models for gen-
erating item counts. In this paper we choose a particularly simple memoryless
multinomial model that operates as follows. Conditioned on n;; (the total number
of items in the basket) each of the individual items is selected in a memoryless
fashion by n;; draws from a multinomial distribution Py, = (6k1,...,60kc) on the C
possible items, 05; = 1.
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Figure 1: An example of 6 “basis” mixture components fit to retail transaction
data.

Figure 1 shows an example of K = 6 such basis mixture components that have
been learned from a large retail transaction data (more details on learning will be
discussed below). Each window shows a different set of component probabilities
Py, each modeling a different type of transaction. The components show a striking
bimodal pattern in that the multinomial models appear to involve departments
that are either above or below department 25, but there is very little probability
mass that crosses over. In fact the models are capturing the fact that departments
numbered lower than 25 correspond to men’s clothing and those above 25 correspond
to women’s clothing, and that baskets tend to be “tuned” to one set or the other.

2.1 Individual-Specific Weights

We further assume that for each individual i there exists a set of K weights,
and in the general case these weights are individual-specific, denoted by «; =
(a1, .., 04k ), where Y, a;, = 1. Weight oy, represents the probability that when
individual ¢ enters the store their transactions will be generated by component k.
Or, in other words, the ayj’s govern individual i’s propensity to engage in “shopping
behavior” k (again, there are numerous possible generalizations, such as making the
a;i’s have dependence over time, that we will not discuss here). The a;;’s are in
effect the profile coefficients for individual ¢, relative to the K component models.

This idea of individual-specific weights (or profiles) is a key component of our pro-
posed approach. The mixture component models Py are fixed and shared across
all individuals, providing a mechanism for borrowing of strength across individual
data. The individual weights are in principle allowed to freely vary for each indi-
vidual within a K-dimensional simplex. In effect the K weights can be thought as
basis coefficients that represent the location of individual ¢ within the space spanned
by the K basis functions (the component Py multinomials). This approach is quite
similar in spirit to the recent probabilistic PCA work of Hofmann (1999) on mixture
models for text documents, where he proposes a general mixture model framework
that represents documents as existing within a K-dimensional simplex of multino-
mial component models.

The model for each individual is an individual-specific mixture model, where the
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Figure 2: Histograms indicating which products a particular individual purchased,
from both the training data and the test data.
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Figure 3: Inferred “effective” profiles from global weights, smoothed histograms, and
individual-specific weights for the individual whose data was shown in Figure 2.

weights are specific to individual i:

K
p(yij) > aiwp(yiilk)
k=1

K
= E Qik
k=1

where 6. is the probability that the cth item is purchased given component k
and n;jc is the number of items of category c¢ purchased by individual i, during
transaction ij.

Hnijc

C
kc

c=1

As an example of the application of these ideas, in Figure 2 the training data and
test data for a particular individual are displayed. Note that there is some pre-
dictability from training to test data, although the test data contains (for example)
a purchase in department 14 (which was not seen in the training data). Figure 3
plots the effective profiles' for this particular individual as estimated by three dif-
ferent schemes in our modeling approach: (1) global weights that result in everyone

"We call these “effective profiles” since the predictive model under the mixture assump-



being assigned the same “generic” profile, i.e., a;z = ay, (2) a maximum a pos-
teriori (MAP) technique that smooths each individual’s training histogram with
a population-based histogram, and (3) individual weights estimated in a Bayesian
fashion that are “tuned” to the individual’s specific behavior. (More details on
each of these methods are provided later in the paper; a complete description can
be found in Cadez et al. (2001)).

One can see in Figure 3 that the global weight profile reflects broad population-based
purchasing patterns and is not representative of this individual. The smoothed
histogram is somewhat better, but the smoothing parameter has “blurred” the
individual’s focus on departments below 25. The individual-weight profile appears
to be a better representation of this individual’s behavior and indeed it does provide
the best predictive score (of the 3 methods) on the test data in Figure 2. Note that
the individual-weights profile in Figure 3 “borrows strength” from the purchases of
other similar customers, i.e., it allows for small but non-zero probabilities of the
individual making purchases in departments (such as 6 through 9) if he or she has
not purchased there in the past. This particular individual’s weights, the a;x’s, are
(0.00,0.47,0.38,0.00,0.00.0.15) corresponding to the six component models shown
in Figure 1. The most weight is placed on components 2, 3 and 6, which agrees
with our intuition given the individual’s training data.

2.2 Learning the Model Parameters

The unknown parameters in our model consist of both the parameters of the K
multinomials, 0.,1 < k < K,1 < ¢ < C, and the vectors of individual-specific
profile weights a;,1 < ¢ < N. We investigate two different approaches to learning
individual-specific weights:

e Mixture-Based Maximum Likelihood (ML) Weights: We treat the
weights a; and component parameters  as unknown and use expectation-
maximization (EM) to learn both simultaneously. Of course we expect this
model to overfit given the number of parameters being estimated but we
include it nonetheless as a baseline.

e Mixture-Based Empirical Bayes (EB) Weights: We first use EM
to learn a mixture of K transaction models (ignoring individuals). We
then use a second EM algorithm in weight-space to estimate individual-
specific weights a; for each individual. The second EM phase uses a fixed
empirically-determined prior (a Dirichlet) for the weights. In effect, we are
learning how best to represent each individual within the K-dimensional
simplex of basis components. The empirical prior uses the marginal weights
(a’s) from the first run for the mean of the Dirichlet, and an equivalent
sample size of n = 10 transactions is used in the results reported in the
paper. In effect, this can be viewed as an approximation to either a fully
Bayesian hierarchical estimation or an empirical Bayesian approach (see
Cadez et al. (2001) for more detailed discussion). We did not pursue the
fully Bayesian or empirical Bayesian approaches for computational reasons
since the necessary integrals cannot be evaluated in closed form for this
model and numerical methods (such as Markov Chain Monte Carlo) would
be impractical given the data sizes involved.

We also compare two other approaches for profiling for comparison: (1) Global
Mixture Weights: instead of individualized weights we set each individual’s

tion is not a multinomial that can be plotted as a bar chart: however, we can approximate
it and we are plotting one such approximation here
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Figure 4: Plot of the negative log probability scores per item (predictive entropy) on
out-of-sample transactions, for various weight models as a function of the number
of mixture components K.

weight vector to the marginal weights (a;k = ay), and (2) Individualized MAP
weights: a non-mixture approach where we use an empirically-determined Dirich-
let prior directly on the multinomials, and where the equivalent sample size of this
prior was “tuned” on the test set to give optimal performance. This provides an (op-
timistic) baseline of using multinomial profiles directly, without use of any mixture
models.

3 Experimental Results

To evaluate our approach we used a real-world transaction data set. The data
consists of transactions collected at a chain of retail stores over a two-year period.
We analyze the transactions here at the store department level (50 categories of
items). We separate the data into two time periods (all transactions are time-
stamped), with approximately 70% of the data being in the first time period (the
training data) and the remainder in the test period data. We train our mixture and
weight models on the first period and evaluate our models in terms of their ability
to predict transactions that occur in the subsequent out-of-sample test period.

The training data contains data on 4339 individuals, 58,866 transactions, and
164,000 items purchased. The test data consists of 4040 individuals, 25,292 trans-
actions, and 69,103 items purchased. Not all individuals in the test data set appear
in the training data set (and vice-versa): individuals in the test data set with no
training data are assigned a global population model for scoring purposes.

To evaluate the predictive power of each model, we calculate the log-probability
(“logp scores”) of the transactions as predicted by each model. Higher logp scores
mean that the model assigned higher probability to events that actually occurred.
Note that the mean negative logp score over a set of transactions, divided by the
total number of items, can be interpreted as a predictive entropy term in bits. The
lower this entropy term, the less uncertainty in our predictions (bounded below by
zero of course, corresponding to zero uncertainty).

Figure 4 compares the out-of-sample predictive entropy scores as a function of the
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Figure 5: Scatter plots of the log probability scores for each individual on out-of-
sample transactions, plotting log probability scores for individual weights versus log
probability scores for the global weights model. Left: all data, Right: close up.

number of mixture components K for the mixture-based ML weights, the mixture-
based Global weights (where all individuals are assigned the same marginal mixture
weights), the mixture-based Empirical Bayes weights, and the non-mixture MAP
histogram method (as a baseline). The mixture-based approaches generally outper-
form the non-mixture MAP histogram approach (solid line). The ML-based mixture
weights start to overfit after about 6 mixture components (as expected). The Global
mixture weights and individualized mixture weights improve up to about K = 50
components and then show some evidence of overfitting. The mixture-based individ-
ual weights method is systematically the best predictor, providing a 15% decrease
in predictive entropy compared to the MAP histogram method, and a roughly 3%
decrease compared to non-individualized global mixture weights.

Figure 5 shows a more detailed comparison of the difference between individual
mixtures and the Global profiles, on a subset of individuals. We can see that the
Global profiles are systematically worse than the individual weights model (i.e., most
points are above the bisecting line). For individuals with the lowest likelihood (lower
left of the left plot) the individual weight model is consistently better: typically
lower weight total likelihood individuals are those with more transactions and items.

In Cadez et al. (2001) we report more detailed results on both this data set and a
second retail data set involving 15 million items and 300,000 individuals. On both
data sets the individual-level models were found to be consistently more accurate
out-of-sample compared to both non-mixture and non-Bayesian approaches. We
also found (empirically) that the time taken for EM to converge is roughly linear
as both a function of number of components and the number of transactions (plots
are omitted due to lack of space), allowing for example fitting of models with 100
mixture components to approximately 2 million baskets in a few hours.

4 Conclusions

In this paper we investigated the use of mixture models and approximate Bayesian
estimation for automatically inferring individual-level profiles from transaction data
records. On a real-world retail data set the proposed framework consistently outper-
formed alternative approaches in terms of accuracy of predictions on future unseen
customer behavior.
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