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Abstract

Data sets involving multiple groups with shared charasties frequently arise
in practice. In this paper we extend hierarchical Diricipedbcesses to model
such data. Each group is assumed to be generated from a temmidaure model
with group level variability in both the mixing proportiorssd the component
parameters. Variabilities in mixing proportions acrossups are handled using
hierarchical Dirichlet processes, also allowing for audimdetermination of the
number of components. In addition, each group is allowet@lits own compo-
nent parameters coming from a prior described by a templadeira model. This
group-level variability in the component parameters isdbad using a random
effects model. We present a Markov Chain Monte Carlo (MCM&Zhgling algo-
rithm to estimate model parameters and demonstrate theochbthapplying it to
the problem of modeling spatial brain activation pattercr®ss multiple images
collected via functional magnetic resonance imaging (fMRI

1 Introduction

Hierarchical Dirichlet processes (DPs) (Teh et al., 2006Yigle a flexible framework for probabilis-
tic modeling when data are observed in a grouped fashionartdgroup of data can be thought of
as being generated from a mixture model. In the hierarci®a all of, or a subset of, the mixture
components are shared by different groups and the numbecbft®mponents are inferred from the
data using a DP prior. Variability across groups is modeledllowing different mixing proportions
for different groups.

In this paper we focus on the problem of modeling systematittion in the shared mixture com-
ponent parameters and not just in the mixing proportions. wileuse the problem of modeling
spatial fMRI activation across multiple brain images as divating application, where the images
are obtained from one or more subjects performing the sagwitdce tasks. Figure 1 illustrates the
basic idea of our proposed model. We assume that there islamown true template for mixture
component parameters, and that the mixture componentadbrgroup are noisy realizations of the
template components. For our application, groups and dataspcorrespond to images and pixels.
Given grouped data (e.g., a set of images) we are interestiedining both the overall template
model and the random variation relative to the template &mhegroup. For the fMRI application,
we model the images as mixtures of activation patternsgaisgj a mixture component to each spa-
tial activation cluster in an image. As shown in Figure 1 ooalgs to extract activation patterns
that are common across multiple images, while allowing fmation in fMRI signal intensity and
activation location in individual images. In our proposg@geach, the amount of variation (called
random effects) from the overall true component parameésensodeled as coming from a prior
distribution on group-level component parameters (Sesrdd. 1992). By combining hierarchical
DPs with a random effects model we let both mixing propodiand mixture component parame-
ters adapt to the data in each group. Although we focus onématp in this paper, the proposed
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Figure 1: lllustration of group level variations from thertplate model.

Model Group-level mixture components
Hierarchical DPs 0o X Mg, Oy X My

Transformed DPs O +Ag1, ooy 0o+ Doy, O+ Dp1, ooy O+ Ap,
Hierarchical DPs with random effects (00 + Ag) X Mg, (0 + Ap) X myp

Table 1: Group-level mixture component parameters foranaical DPs, transformed DPs, and
hierarchical DPs with random effects as proposed in thigpap

approach is applicable to more general problems of modgiingp-level random variation with
mixture models.

Hierarchical DPs and transformed DPs (Sudderth et al., P06t address a similar problem of
modeling groups of data using mixture models with mixtursmponents shared across groups. Ta-
ble 1 compares the basic ideas underlying these two modei$tvei model we propose in this paper.
Given a template mixture of two components with parameitgendd,, in hierarchical DPs a mix-
ture model for each group can hawvg andm; exact copies (commonly known as tables in the Chi-
nese restaurant process representation) of each of theotwpanents in the template—thus, there
is no notion of random variation in component parametergssacgroups. In transformed DPs, each
of the copies ob, andd, receives a transformation parametey;, ..., Ay, @andAgy, ..., Apm, -
This is not suitable for modeling the type of group variatidustrated in Figure 1 because there is
no direct way to enforcé\,; = ... = Agp, andAy = ... = Ay, to obtainA, andA,; as used

in our proposed model.

In this general context the model we propose here can be giewédeing closely related to both
hierarchical DPs and transformed DPs, but having apptindt quite different types of problems in
practice, e.g., as an intermediate between the highly @inet variation allowed by the hierarchical
DP and the relatively unconstrained variation present éndbmputer vision scenes to which the
transformed DP has been applied (Sudderth et al, 2005).

From an applications viewpoint the use of DPs for modelindtiple fMRI brain images is novel
and shows considerable promise as a new tool for analyzicly data. The majority of existing
statistical work on fMRI analysis is based on voxel-by-vdxgothesis testing, with relatively little
work on modeling of the spatial aspect of the problem. Oneption is the approach of Penny
and Friston (2003) who proposed a probabilistic mixture etdor spatial activation modeling and
demonstrated its advantages over voxel-wise analysis. appécation of our proposed model to
fMRI data can be viewed as a generalization of Penny andoistvork in three different aspects
by (a) allowing for analysis of multiple images rather thasiagle image (b) learning common
activation clusters and systematic variation in activaaoross these images, and (c) automatically
learning the number of components in the model in a dataedifi@shion.

2 Modes

2.1 Dirichlet process mixture models

A Dirichlet process DRy, G) with a concentration parametep > 0 and a base measu€ecan

be used as a nonparametric prior distribution on mixing propn parameters in a mixture model
when the number of components is unknaavpriori (Rasmussen, 2000). The generative process
for a mixture of Gaussian distributions with component mearand DP prior DR«y, G) can be
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Figure 2: Plate diagrams for (a) DP mixtures, (b) hierarahizPs and (c) hierarchical DPs with
random effects.
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written, using a stick breaking construction (Sethurar2@d4), as:

7T|Ck0 ~ StiCk(aO)a Mk'G ~ NG(MO)¢§)7 Zi|7T ~ T, yz|zu (,U/k)l;“;haz ~ N(MZNO'Q),

wherey;,i = 1,..., N are observed data anglis a component label fay;. It can be shown that
the labels:;’s have a clustering property:
K n; ! Q
121, 20 ~ ) ° 5
Zz|217 az(zfl)aaO I;i*1+a() k+7;*1+04() Knew>

wheren;i represents the number of , i’ # 4, assigned to componeht The probability that; is
assigned to a new componentis proportionaljoNote that the component with more observations
already assigned to it has a higher probability to attraetigxt observation.

2.2 Hierarchical Dirichlet processes

When multiple groups of data are present and each group camobeled as a mixture it is often
useful to let different groups share mixture componentshiérarchical DPs (Teh et al., 2006)
components are shared by different groups with varyingmgixiroportions for each group, and the
number of components in the model can be inferred from data.

Let y;; be theith data point{ = 1,...,N) ingroupj (j = 1,...,J), B8 the global mixing pro-
portions,; the mixing proportions for group, andayg, v, H are the hyperparameters for the DP.
Then, the hierarchical DP can be written as follows, usintick sreaking construction:

Bly ~ Stick(y), mjlag, B ~ DP(ag, B), 2|y~ T,
,LLk|H NNH(NO;w(Q))v yji|zjia (ﬂk)iO:hO'Q ~ N(szwo—2>a (1)

The plate diagram in Figure 2(b) illustrates the genergineeess of this model. Mixture compo-
nents described by the.'s can be shared across thigroups.

The hierarchical DP has clustering properties similar & tor DP mixtures, i.e.,

Tj —i
7 Qo
hiilhe i, c) ~ LN B 2
p(]| J Oé()) tzzlnj_1+a0t+nj_1+a0 tnew ()
y
1 Ok 0 3
]t| Jtv szu_l‘i"y +Zmu—1+’7 Knew> ( )

whereh;; represents the mapping of each data itgmto one of7} clusters within groug and
l;+ maps thetth local cluster in group to one of K global clusters shared by all of thegroups.



The probability that a new local cluster is generated witirioup; is proportional taxy. This new
cluster is generated according to Equation (3). Notice iti@te than one local clusters in groyp
can be linked to the same global cluster. It is the assignofetaita items ta<” global clusters via
local cluster labels that is typically of interest.

3 Hierarchical Dirichlet processes with random effects

We now propose an extension of the standard hierarchicaloDPviersion that includes random
effects. We first develop our model for the case of Gaussiasifecomponents, and later in the
paper apply this model to the specific problem of modelinyatibn patterns in fMRI brain images.

We takepy|H ~ Ng(po,vg) andyjilzji, (ue)iy, 0% ~ N(uz,,,0?) in Equation (1) and add
random effects as follows:
/’Lk|HNNH(ILLO,,(/}(2))7 T]?lRN Inv-XQR(’U07s(2))a
Wikl T~ N (s 70)s gilzgin (i) Ry ~ N (s, 0°). 4)
Each group has its own component mea, for the kth component and these group-level param-
eters come from a common prior distributidf( ., 77). Thus,uy can be viewed as a template, and
u;), as a noisy observation of the template for grgwpith variancer?. The random effects param-

etersu;;, are generated once per group and shared by local clustersup gthat are assigned to
the same global clustér.

For inference we use an MCMC sampling scheme that is basdueoriustering property given in
Equations (2) and (3). In each iteration we sample lahets {h;; for all j,i},1 = {l;; for all j,t}
and component parametges= {uy, forall k}, 72 = {72 forall k}, u = {u;; for all k, j} alter-
nately.

We samplé ;;'s using the following conditional distribution:

s ilwig, o2 if t was used
hii =th_iupw12,y) i " itP(Yjilujk, 0%) '
p( ji | ji 12 Y) { Oéop(yj”hfjiu, W, 7_2’ ,Y) if £ = thew

where
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plysilbjin, p,7,9) = S ,yp(yji|“jk) (5a)
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+ Z S e /p(yjz’|ujk)p(ujk|ﬂk;Tk)dujk (5b)
k

kEB
v
b [ [ oo dptusdie. 8N ) v o, 5 . (5c)
k

In Equation (5a) the summation is over componentair= {k| someh;; for i’ # i is assigned to
k}, representing global clusters that already have some thastlers in group assigned to them.
In this case, sincey;; is already known, we can simply compute the likelihgg@;;|u;x). In
Equation (5b) the summation is oMBr= {k| noh,;» fori’ # i is assigned té&} representing global
clusters that have not yet been assigned in grpu-or conjugate priors we can integrate over
the unknown random effects parametgy, to compute the likelihood usingf(yﬁmk,f,f + 0?)
and sample;;, from the posterior distributiop(u; |k, 77, y;:). Equation (5¢) models the case
where a new global component gets generated. The integnabthe evaluated analytically, so we
approximate the integral by sampling new valuesfer 72, andu; from prior distributions and
evaluatingp(y;i|u,x) given these new values for the parameters (Neal, 1998).

Samples fol;;'s can be obtained from the conditional distribution given a

m_jt [Lin,, = PWiilujn, 0°)
if k£ was used in group
mjt [ TLin oz PWiilwsn, 2)p(ujel e, 77 )dui
p(lje = k|l_j, u, w,T2y) o if k& is new in groupj (6)
’VfffHi:hﬁ:tP(yjz'|ujk)29(ujk|ﬂkaﬁf)
N (o, 3)Inv=x% (vo, 55) duj,durdry
if £ is a new component.




Figure 3: Histogram for simulated data with mixture dens#jimates overlaid.

As in the sampling of;;, if k£ is new in group we can evaluate the integral analytically and sample
u;i, from the posterior distribution. K is a new componentwe approximate the integral by sampling
new values foy.y, r,f, andu;;, from the prior and evaluating the likelihood.

Givenh andl we can update the component parameters andu using standard Gibbs sampling
for a normal hierarchical model (Gelman et al., 2006). Incpca, this Markov chain can mix
poorly and get stuck in local maxima where the labels for tnaug-level components are swapped
relative to the same two components in the template. To addinés problem and restore the correct
correspondence between template components and groeigdgaponents we propose a move that
swaps the labels for two group-level components at the em@dacf sampling iteration and accepts
the move based on a Metropolis-Hastings acceptance rule.

To illustrate the proposed model we simulated data from aurexof one-dimensional Gaussian
densities with known parameters and tested if the samploygyithm can recover the parameters
from the data. From a template mixture model with three nmxttomponents we generated 10
group-level mixture models by adding random effects in thenf of mean-shifts to the template
means, sampled frov' (0, 1). Using varying mixing proportions for each group we gersd£200
samples from each of the 10 mixture models. Histograms faséimples in eight groups are shown
in Figure 3(a). The estimated models after 1000 iteratidrtte MCMC algorithm are overlaid.
We can see that the sampling algorithm was able to learn thmarmodel successfully despite the
variability in both component means and mixing proportiohthe mixture model.

4 A modd for fMRI activation surfaces

We now apply the general framework of the hierarchical Dihwétndom effects to the problem
of detecting and characterizing spatial activation pagén fMRI brain images. Underlying our
approach is an assumption that there is an unobserved tatialsgctivation pattern in a subject’s
brain given a particular stimulus and that multiple actmaimages for this individual collected over
different fMRI sessions are realizations of the true atitivaimage, with variability in the activation
pattern due to various sources. Our goal is to infer the uwkrtoue activation from multiple such
activation images.

We model each activation image using a mixture of expertsaheodth a component expert assigned
to each local activation cluster (Rasmussen and Ghahra@@®2). By introducing a hierarchical
DP into this model we allow activation clusters to be sha@dss images, inferring the number of
such clusters from the data. In addition, the random effemtsponent can be incorporated to allow
activation centers to be slightly shifted in terms of pixadations or in terms of peak intensity. These
types of variation are common in multi-image fMRI experirtggue to a variety of factors such as
head motion, variation in the physiological and cognititzges of the subject. In what follows below
we will focus on 2-dimensional “slices” rather than 3-dim&mal voxel images—in principle the
same type of model could be developed for the 3-dimensiasa.c

We briefly discuss the mixture of experts model below (Kimlet2006). Assuming the& values

yi,© = 1,..., N are conditionally independent of each other given the vpasitionx; = (x;1, ;2)
and the model parameters, we model the activagjcat voxelx; as a mixture of experts:
p(yilxi,0) = > p(yile,xi) Pelxi), )
cEE
where¥ = {cpg,cm,m = 1,...,M — 1} is a set ofM expert component labels for background

chg @and M — 1 activation components,,’s. The first term on the right hand side of Equation (7)



Figure 4: Results from eight runs for subject 2 at Stanfor). Raw images for a cross section
of right precentral gyrus and surrounding area. Activatomponents estimated from the images
using (b) DP mixtures, (c) hierarchical DPs, and (d) higreral DP with random effects.

defines the expert for a given component. We model the expegrf activation component as a
Gaussian-shaped surface centerdal, awith width X, and height.,,, as follows.

s = hn@xp (= (o = by ()~ (51 = b)) 4, (®)

wheres is an additive noise term distributed A0, o2). The background component is modeled
asy; = u + ¢, having a constant activation leyelith additive noise distributed a§(0, agg).

The second term in Equation (7) is known as a gate functionemtixture of experts framework—
it decides which expert should be used to make a predictiothéoactivation level at positior;.
Using Bayes' rule we write this term a3(c|x;) = p(x;|c)me/ (D ey P(Xilc)Te), Wherer. is a
class prior probabilityP(c). p(x;|c) is defined as follows. For activation component§s;|c,,)

is a normal density with meah,,, and covarianc&.,,,. b,, and,, are shared with the Gaussian
surface model for experts in Equation (8). This implies tiat probability of activating thenth
expert is highest at the center of the activation and gréyldacays ax; moves away from the
center.p(x;|cyg) for the background componentis modeled as having a uniféstritelition of1 /N
for all positions in the brain. lk; is not close to the center of any activations, the gate foncti
selects the background expert for the voxel.

We place a hierarchical DP prior a, and let the location parametdss, and the height parameters
h., vary in individual images according to a Normal prior distriion with a variancely, = and
wh using a random effects model. We define prior distributi@amalfy, andw2 as a half normal
distribution with a0 mean and a variance as suggested by Gelman (2006) "Sinagrtaeesmodel
for the activation component is a highly non-linear modédthaut conjugate prior distributions it
is not possible to evaluate the integrals in Equations (5b)-and (6) analytically in the sampling
algorithm. We rely on an approximation of the integrals bsnping new values fob,, andh,,
from their priors and new values for image-specific randof@ot$ parameters frow'(b,,,, ¥, )
and\N (hy, w,%m), and evaluating the likelihood of the data given these nduegfor the unknown
parameters.

5 Experimental resultson fMRI data

We demonstrate the performance of the model and inferegoeitim described above by using
fMRI data collected from three subjects (referred to as &etbj1, 2 and 3) performing the same
sensorimotor task at two different fMRI scanners (Stanfond Duke). Each subject was scanned
during eight separate fMRI experiments (“runs”) and forkeagn ag-map (a voxel image that
summarizes the brain activation) was produced using stdrilfR| preprocessing.

In this experiment we analyze a 2D cross-section of the pgitentral gyrus brain region, a region
that is known to be activated by this sensorimotor task. Wafitmodel to each set of eightmaps

for each of the subjects at each scanner, and compare tHesfesm the models obtained from
the hierarchical DP without random effects. We also fit staddP mixtures to individual images
as a baseline, using Algorithm 7 from Neal (1998) to sampenfthe model. The concentration
parameters for DP priors in all of the three models were gavgmior distribution gamma(1.5, 1)
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Figure 5: Histogram of the number of components over thell@80 iterations (Subject 2 at Stan-
ford). (a) DP mixture, (b) hierarchical DP, and (c) hieracahDP with random effects.

Hierarchical DP Hierarchical DP
Scanner| Subject with random effects
Avg. Standard| Avg. Standard
logP | deviation| logP | deviation
Stanford| Subject1| -1142.6 21.8 -1085.3 12.6
Subject 2| -1260.9 32.1 -1082.8 28.7
Subject 3| -1084.1 11.3 -1040.9 135
Duke | Subject1| -1154.9 12.5 -1166.9 13.1
Subject 2| -677.9 12.2 -559.9 15.8
Subject 3| -1175.6 13.6 -1086.8 13.2

Table 2: Predictive logP scores of test images averagedeiyet cross-validation runs. The simu-
lation errors are shown as standard deviations.

and sampled from the posterior as described in Teh et abj2@@r all of the models the MCMC
sampling algorithm was run for 3000 iterations.

Figure 4(a) shows-maps from eight fMRI runs of Subject 2 at Stanford. From tighEmages one
can see three primary activation bumps, subsets of whickaapp different images with variability
in location and intensity. Figures 4 (b)-(d) each show a darfipm the model learned on the data
in Figure 4(a), where Figure 4(b) is for DP mixtures, Figu¢e)4or hierarchical DPs, and Figure
4(d) for hierarchical DPs with random effects. The samplgtivation components are overlaid as
ellipses using one standard deviation of the width pararaEtg. The thickness of ellipses indicates
the estimated heighit,,, of the bump. In Figures 4(b) and (c) ellipses for activatiemponents
shared across images are drawn with the same color.

The DPs shown in Figure 4(b) seem to overfit with many bumpsséiogv a relatively poor gen-
eralization capability because the model cannot borroength from other similar images. The
hierarchical DP in Figure 4(c) is not flexible enough to asddor bumps that are shared across
images but that have variability in their parameters. Bygsine fixed set of component param-
eters shared across images, the hierarchical DPs are tetraioed and are unable to detect the
more subtle features of individual images. The random effewmdel finds the three main bumps
and a few more bumps with lower intensity for the backgrounlus, in terms of generalization,
the model with random effects provides a good trade-off betwthe relatively unconstrained DP
mixtures and overly-constrained hierarchical DPs. Histots of the number of components (every
10 samples over the last 1000 iterations) for the threerdiffiemodels are shown in Figure 5.

We also perform a leave-one-image-out cross-validaticzotapare the predictive performance of
hierarchical DPs and our proposed model. For each subjescht scanner we fit a model from
seven images and compute the predictive likelihood of theareing one image. The predictive
scores and simulation errors (standard deviations) aedrager eight cross-validation runs for both
models are shown in Table 2. In all of the subjects exceptdibijext 1 at Duke, the proposed model
shows a significant improvement over hierarchical DPs. kije&xt 1 at Duke, the hierarchical DP
gives a slightly better result but the difference in scosesdt significant relative to the simulation
error.

Figure 6 shows the difference in the way the hierarchical B& @ur proposed model fit the data
in one cross-validation run for Subject 1 at Duke as showniguie 6(a). The hierarchical DP
in Figure 6(b) models the common bump with varying intensityhe middle of each image as a
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Figure 6: Results from one cross-validation run for subjeat Duke. (a) Raw images for a cross
section of right precentral gyrus and surrounding areaivatibn components estimated from the
images are shown in (b) for hierarchical DPs, and in (c) ferdwichical DP with random effects.

mixture of two components—one for the bump in the first twogesawith relatively high intensity
and another for the same bump in the rest of the images witlrlowensity. Our proposed model
recovers the correspondence in the bumps with differeabsity across images as shown in Figure
6(c).

6 Conclusions

In this paper we proposed a hierarchical DP model with randffects that allows each group (or
image) to have group-level mixture component parametersedisas group-level mixing propor-
tions. Using fMRI brain activation images we demonstraked bur model can capture components
shared across multiple groups with individual-level véioia. In addition, we showed that our model
is able to estimate the number of components more reliabdytduhe additional flexibility in the
model compared to DP mixtures and hierarchical DPs. PasS&illire directions for this work in-
clude modeling additional systematic group variationdarixture component parameters such as
global translations of the template (or a subset of the carapts) in an image, e.g., due to different
MRI machine characteristics or head positioning. Also afgpical interest are extensions to model-
ing differences between labeled groups of individuals,, égstudies of controls and patients for a
particular disorder.
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