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Abstract

Data sets involving multiple groups with shared characteristics frequently arise
in practice. In this paper we extend hierarchical Dirichletprocesses to model
such data. Each group is assumed to be generated from a template mixture model
with group level variability in both the mixing proportionsand the component
parameters. Variabilities in mixing proportions across groups are handled using
hierarchical Dirichlet processes, also allowing for automatic determination of the
number of components. In addition, each group is allowed to have its own compo-
nent parameters coming from a prior described by a template mixture model. This
group-level variability in the component parameters is handled using a random
effects model. We present a Markov Chain Monte Carlo (MCMC) sampling algo-
rithm to estimate model parameters and demonstrate the method by applying it to
the problem of modeling spatial brain activation patterns across multiple images
collected via functional magnetic resonance imaging (fMRI).

1 Introduction

Hierarchical Dirichlet processes (DPs) (Teh et al., 2006) provide a flexible framework for probabilis-
tic modeling when data are observed in a grouped fashion and each group of data can be thought of
as being generated from a mixture model. In the hierarchicalDPs all of, or a subset of, the mixture
components are shared by different groups and the number of such components are inferred from the
data using a DP prior. Variability across groups is modeled by allowing different mixing proportions
for different groups.

In this paper we focus on the problem of modeling systematic variation in the shared mixture com-
ponent parameters and not just in the mixing proportions. Wewill use the problem of modeling
spatial fMRI activation across multiple brain images as a motivating application, where the images
are obtained from one or more subjects performing the same cognitive tasks. Figure 1 illustrates the
basic idea of our proposed model. We assume that there is an unknown true template for mixture
component parameters, and that the mixture components for each group are noisy realizations of the
template components. For our application, groups and data points correspond to images and pixels.
Given grouped data (e.g., a set of images) we are interested in learning both the overall template
model and the random variation relative to the template for each group. For the fMRI application,
we model the images as mixtures of activation patterns, assigning a mixture component to each spa-
tial activation cluster in an image. As shown in Figure 1 our goal is to extract activation patterns
that are common across multiple images, while allowing for variation in fMRI signal intensity and
activation location in individual images. In our proposed approach, the amount of variation (called
random effects) from the overall true component parametersis modeled as coming from a prior
distribution on group-level component parameters (Searleet al. 1992). By combining hierarchical
DPs with a random effects model we let both mixing proportions and mixture component parame-
ters adapt to the data in each group. Although we focus on image data in this paper, the proposed
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Figure 1: Illustration of group level variations from the template model.

Model Group-level mixture components
Hierarchical DPs θa ×ma, θb ×mb

Transformed DPs θa + ∆a1, . . . , θa + ∆ama
, θb + ∆b1, . . . , θb + ∆bmb

Hierarchical DPs with random effects (θa + ∆a) ×ma, (θb + ∆b) ×mb

Table 1: Group-level mixture component parameters for hierarchical DPs, transformed DPs, and
hierarchical DPs with random effects as proposed in this paper.

approach is applicable to more general problems of modelinggroup-level random variation with
mixture models.

Hierarchical DPs and transformed DPs (Sudderth et al., 2005) both address a similar problem of
modeling groups of data using mixture models with mixture components shared across groups. Ta-
ble 1 compares the basic ideas underlying these two models with the model we propose in this paper.
Given a template mixture of two components with parametersθa andθb, in hierarchical DPs a mix-
ture model for each group can havema andmb exact copies (commonly known as tables in the Chi-
nese restaurant process representation) of each of the two components in the template—thus, there
is no notion of random variation in component parameters across groups. In transformed DPs, each
of the copies ofθa andθb receives a transformation parameter∆a1, . . . ,∆ama

and∆b1, . . . ,∆bmb
.

This is not suitable for modeling the type of group variationillustrated in Figure 1 because there is
no direct way to enforce∆a1 = . . . = ∆ama

and∆b1 = . . . = ∆bmb
to obtain∆a and∆b as used

in our proposed model.

In this general context the model we propose here can be viewed as being closely related to both
hierarchical DPs and transformed DPs, but having application to quite different types of problems in
practice, e.g., as an intermediate between the highly constrained variation allowed by the hierarchical
DP and the relatively unconstrained variation present in the computer vision scenes to which the
transformed DP has been applied (Sudderth et al, 2005).

From an applications viewpoint the use of DPs for modeling multiple fMRI brain images is novel
and shows considerable promise as a new tool for analyzing such data. The majority of existing
statistical work on fMRI analysis is based on voxel-by-voxel hypothesis testing, with relatively little
work on modeling of the spatial aspect of the problem. One exception is the approach of Penny
and Friston (2003) who proposed a probabilistic mixture model for spatial activation modeling and
demonstrated its advantages over voxel-wise analysis. Theapplication of our proposed model to
fMRI data can be viewed as a generalization of Penny and Friston’s work in three different aspects
by (a) allowing for analysis of multiple images rather than asingle image (b) learning common
activation clusters and systematic variation in activation across these images, and (c) automatically
learning the number of components in the model in a data-driven fashion.

2 Models

2.1 Dirichlet process mixture models

A Dirichlet process DP(α0, G) with a concentration parameterα0 > 0 and a base measureG can
be used as a nonparametric prior distribution on mixing proportion parameters in a mixture model
when the number of components is unknowna priori (Rasmussen, 2000). The generative process
for a mixture of Gaussian distributions with component meanµk and DP prior DP(α0, G) can be
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Figure 2: Plate diagrams for (a) DP mixtures, (b) hierarchical DPs and (c) hierarchical DPs with
random effects.

written, using a stick breaking construction (Sethuraman,2004), as:

π|α0 ∼ Stick(α0), µk|G ∼ NG(µ0, ψ
2
0), zi|π ∼ π, yi|zi, (µk)∞k=1, σ

2 ∼ N (µzi
, σ2),

whereyi, i = 1, . . . , N are observed data andzi is a component label foryi. It can be shown that
the labelszi’s have a clustering property:

zi|z1, . . . , z(i−1), α0 ∼
K

∑

k=1

n−i
k

i− 1 + α0
δk +

α0

i− 1 + α0
δknew,

wheren−i
k represents the number ofzi′ , i

′ 6= i, assigned to componentk. The probability thatzi is
assigned to a new component is proportional toα0. Note that the component with more observations
already assigned to it has a higher probability to attract the next observation.

2.2 Hierarchical Dirichlet processes

When multiple groups of data are present and each group can bemodeled as a mixture it is often
useful to let different groups share mixture components. Inhierarchical DPs (Teh et al., 2006)
components are shared by different groups with varying mixing proportions for each group, and the
number of components in the model can be inferred from data.

Let yji be theith data point (i = 1, . . . , N ) in groupj (j = 1, . . . , J), β the global mixing pro-
portions,πj the mixing proportions for groupj, andα0, γ, H are the hyperparameters for the DP.
Then, the hierarchical DP can be written as follows, using a stick breaking construction:

β|γ ∼ Stick(γ), πj |α0,β ∼ DP(α0,β), zji|πj ∼ πj ,

µk|H ∼ NH(µ0, ψ
2
0), yji|zji, (µk)∞k=1, σ

2 ∼ N (µzji
, σ2), (1)

The plate diagram in Figure 2(b) illustrates the generativeprocess of this model. Mixture compo-
nents described by theµk ’s can be shared across theJ groups.

The hierarchical DP has clustering properties similar to that for DP mixtures, i.e.,

p(hji|h−ji, α0) ∼

Tj
∑

t=1

n−i
jt

nj − 1 + α0
δt +

α0

nj − 1 + α0
δtnew (2)

p(ljt|l−jt, γ) ∼
K

∑

k=1

m−t
k

∑

mu − 1 + γ
δk +

γ
∑

mu − 1 + γ
δknew, (3)

wherehji represents the mapping of each data itemyji to one ofTj clusters within groupj and
ljt maps thetth local cluster in groupj to one ofK global clusters shared by all of theJ groups.



The probability that a new local cluster is generated withingroupj is proportional toα0. This new
cluster is generated according to Equation (3). Notice thatmore than one local clusters in groupj
can be linked to the same global cluster. It is the assignmentof data items toK global clusters via
local cluster labels that is typically of interest.

3 Hierarchical Dirichlet processes with random effects

We now propose an extension of the standard hierarchical DP to a version that includes random
effects. We first develop our model for the case of Gaussian density components, and later in the
paper apply this model to the specific problem of modeling activation patterns in fMRI brain images.

We takeµk|H ∼ NH(µ0, ψ
2
0) andyji|zji, (µk)∞k=1, σ

2 ∼ N (µzji
, σ2) in Equation (1) and add

random effects as follows:

µk|H ∼ NH(µ0, ψ
2
0), τ2

k |R ∼ Inv-χ2
R(v0, s

2
0),

ujk|µk, τ
2
k ∼ N (µk, τ

2
k ), yji|zji, (ujk)∞k=1 ∼ N (ujzji

, σ2). (4)

Each groupj has its own component meanujk for thekth component and these group-level param-
eters come from a common prior distributionN (µk, τ

2
k ). Thus,µk can be viewed as a template, and

ujk as a noisy observation of the template for groupj with varianceτ2
k . The random effects param-

etersujk are generated once per group and shared by local clusters in groupj that are assigned to
the same global clusterk.

For inference we use an MCMC sampling scheme that is based on the clustering property given in
Equations (2) and (3). In each iteration we sample labelsh = {hji for all j, i}, l = {ljt for all j, t}
and component parametersµ = {µk for all k}, τ2 = {τ2

k for all k}, u = {ujk for all k, j} alter-
nately.

We sampletji’s using the following conditional distribution:

p(hji = t|h−ji,u,µ, τ
2,y) ∝

{

n−jtp(yji|ujk, σ
2) if t was used

α0p(yji|h−jiu,µ, τ
2, γ) if t = tnew,

where

p(yji|h−jiu,µ, τ , γ) =
∑

k∈A

mk
∑

k mk + γ
p(yji|ujk) (5a)

+
∑

k∈B

mk
∑

k mk + γ

∫

p(yji|ujk)p(ujk|µk, τ
2
k )dujk (5b)

+
γ

∑

k mk + γ

∫ ∫ ∫

p(yji|ujk)p(ujk|µk, τ
2
k )NH(µ0, ψ

2
0)Inv-χ2

R(v0, s
2
0)dujkdµkdτ2

k . (5c)

In Equation (5a) the summation is over components inA = {k| somehji′ for i′ 6= i is assigned to
k}, representing global clusters that already have some localclusters in groupj assigned to them.
In this case, sinceujk is already known, we can simply compute the likelihoodp(yji|ujk). In
Equation (5b) the summation is overB = {k| nohji′ for i′ 6= i is assigned tok} representing global
clusters that have not yet been assigned in groupj. For conjugate priors we can integrate over
the unknown random effects parameterujk to compute the likelihood usingN (yji|µk, τ

2
k + σ2)

and sampleujk from the posterior distributionp(ujk|µk, τ
2
k , yji). Equation (5c) models the case

where a new global component gets generated. The integral cannot be evaluated analytically, so we
approximate the integral by sampling new values forµk, τ2

k , andujk from prior distributions and
evaluatingp(yji|ujk) given these new values for the parameters (Neal, 1998).

Samples forljt’s can be obtained from the conditional distribution given as

p(ljt = k|l−jt,u,µ, τ
2,y) ∝







































m−jt

∏

i:hji=t p(yji|ujk, σ
2)

if k was used in groupj
m−jt

∫
∏

i:hji=t p(yji|ujk, σ
2)p(ujk|µk, τ

2
k )dujk

if k is new in groupj
γ

∫ ∫ ∫
∏

i:hji=t p(yji|ujk)p(ujk|µk, τ
2
k )

NH(µ0, ψ
2
0)Inv-χ2

R(v0, s
2
0) dujkdµkdτk

if k is a new component.

(6)
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Figure 3: Histogram for simulated data with mixture densityestimates overlaid.

As in the sampling ofhji, if k is new in groupj we can evaluate the integral analytically and sample
ujk from the posterior distribution. Ifk is a new component we approximate the integral by sampling
new values forµk, τ2

k , andujk from the prior and evaluating the likelihood.

Givenh andl we can update the component parametersµ, τ andu using standard Gibbs sampling
for a normal hierarchical model (Gelman et al., 2006). In practice, this Markov chain can mix
poorly and get stuck in local maxima where the labels for two group-level components are swapped
relative to the same two components in the template. To address this problem and restore the correct
correspondence between template components and group-level components we propose a move that
swaps the labels for two group-level components at the end ofeach sampling iteration and accepts
the move based on a Metropolis-Hastings acceptance rule.

To illustrate the proposed model we simulated data from a mixture of one-dimensional Gaussian
densities with known parameters and tested if the sampling algorithm can recover the parameters
from the data. From a template mixture model with three mixture components we generated 10
group-level mixture models by adding random effects in the form of mean-shifts to the template
means, sampled fromN (0, 1). Using varying mixing proportions for each group we generated 200
samples from each of the 10 mixture models. Histograms for the samples in eight groups are shown
in Figure 3(a). The estimated models after 1000 iterations of the MCMC algorithm are overlaid.
We can see that the sampling algorithm was able to learn the original model successfully despite the
variability in both component means and mixing proportionsof the mixture model.

4 A model for fMRI activation surfaces

We now apply the general framework of the hierarchical DP with random effects to the problem
of detecting and characterizing spatial activation patterns in fMRI brain images. Underlying our
approach is an assumption that there is an unobserved true spatial activation pattern in a subject’s
brain given a particular stimulus and that multiple activation images for this individual collected over
different fMRI sessions are realizations of the true activation image, with variability in the activation
pattern due to various sources. Our goal is to infer the unknown true activation from multiple such
activation images.

We model each activation image using a mixture of experts model, with a component expert assigned
to each local activation cluster (Rasmussen and Ghahramani, 2002). By introducing a hierarchical
DP into this model we allow activation clusters to be shared across images, inferring the number of
such clusters from the data. In addition, the random effectscomponent can be incorporated to allow
activation centers to be slightly shifted in terms of pixel locations or in terms of peak intensity. These
types of variation are common in multi-image fMRI experiments, due to a variety of factors such as
head motion, variation in the physiological and cognitive states of the subject. In what follows below
we will focus on 2-dimensional “slices” rather than 3-dimensional voxel images—in principle the
same type of model could be developed for the 3-dimensional case.

We briefly discuss the mixture of experts model below (Kim et al., 2006). Assuming theβ values
yi, i = 1, . . . , N are conditionally independent of each other given the voxelpositionxi = (xi1, xi2)
and the model parameters, we model the activationyi at voxelxi as a mixture of experts:

p(yi|xi, θ) =
∑

c∈C p(yi|c,xi)P (c|xi), (7)

whereC = {cbg, cm,m = 1, . . . ,M − 1} is a set ofM expert component labels for background
cbg andM − 1 activation componentscm’s. The first term on the right hand side of Equation (7)
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Figure 4: Results from eight runs for subject 2 at Stanford. (a) Raw images for a cross section
of right precentral gyrus and surrounding area. Activationcomponents estimated from the images
using (b) DP mixtures, (c) hierarchical DPs, and (d) hierarchical DP with random effects.

defines the expert for a given component. We model the expert for an activation component as a
Gaussian-shaped surface centered atbm with width Σm and heighthm as follows.

yi = hmexp
(

−(xi − bm)′(Σm)−1(xi − bm)
)

+ ε, (8)

whereε is an additive noise term distributed asN (0, σ2
act). The background component is modeled

asyi = µ+ ε, having a constant activation levelµ with additive noise distributed asN (0, σ2
bg).

The second term in Equation (7) is known as a gate function in the mixture of experts framework—
it decides which expert should be used to make a prediction for the activation level at positionxi.
Using Bayes’ rule we write this term asP (c|xi) = p(xi|c)πc/(

∑

c∈C p(xi|c)πc), whereπc is a
class prior probabilityP (c). p(xi|c) is defined as follows. For activation components,p(xi|cm)
is a normal density with meanbm and covarianceΣm. bm andΣm are shared with the Gaussian
surface model for experts in Equation (8). This implies thatthe probability of activating themth
expert is highest at the center of the activation and gradually decays asxi moves away from the
center.p(xi|cbg) for the background component is modeled as having a uniform distribution of1/N
for all positions in the brain. Ifxi is not close to the center of any activations, the gate function
selects the background expert for the voxel.

We place a hierarchical DP prior onπc, and let the location parametersbm and the height parameters
hm vary in individual images according to a Normal prior distribution with a varianceΨbm

and
ψ2

hm
using a random effects model. We define prior distributions forΨbm

andψ2
hm

as a half normal
distribution with a0 mean and a variance as suggested by Gelman (2006). Since the surface model
for the activation component is a highly non-linear model, without conjugate prior distributions it
is not possible to evaluate the integrals in Equations (5b)-(5c) and (6) analytically in the sampling
algorithm. We rely on an approximation of the integrals by sampling new values forbm andhm

from their priors and new values for image-specific random effects parameters fromN (bm,Ψbm
)

andN (hm, ψ
2
hm

), and evaluating the likelihood of the data given these new values for the unknown
parameters.

5 Experimental results on fMRI data

We demonstrate the performance of the model and inference algorithm described above by using
fMRI data collected from three subjects (referred to as Subjects 1, 2 and 3) performing the same
sensorimotor task at two different fMRI scanners (Stanfordand Duke). Each subject was scanned
during eight separate fMRI experiments (“runs”) and for each run aβ-map (a voxel image that
summarizes the brain activation) was produced using standard fMRI preprocessing.

In this experiment we analyze a 2D cross-section of the rightprecentral gyrus brain region, a region
that is known to be activated by this sensorimotor task. We fitour model to each set of eightβ-maps
for each of the subjects at each scanner, and compare the results from the models obtained from
the hierarchical DP without random effects. We also fit standard DP mixtures to individual images
as a baseline, using Algorithm 7 from Neal (1998) to sample from the model. The concentration
parameters for DP priors in all of the three models were givena prior distribution gamma(1.5, 1)
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Figure 5: Histogram of the number of components over the last1000 iterations (Subject 2 at Stan-
ford). (a) DP mixture, (b) hierarchical DP, and (c) hierarchical DP with random effects.

Hierarchical DP Hierarchical DP
Scanner Subject with random effects

Avg. Standard Avg. Standard
logP deviation logP deviation

Stanford Subject 1 -1142.6 21.8 -1085.3 12.6
Subject 2 -1260.9 32.1 -1082.8 28.7
Subject 3 -1084.1 11.3 -1040.9 13.5

Duke Subject 1 -1154.9 12.5 -1166.9 13.1
Subject 2 -677.9 12.2 -559.9 15.8
Subject 3 -1175.6 13.6 -1086.8 13.2

Table 2: Predictive logP scores of test images averaged overeight cross-validation runs. The simu-
lation errors are shown as standard deviations.

and sampled from the posterior as described in Teh et al.(2006). For all of the models the MCMC
sampling algorithm was run for 3000 iterations.

Figure 4(a) showsβ-maps from eight fMRI runs of Subject 2 at Stanford. From the eight images one
can see three primary activation bumps, subsets of which appear in different images with variability
in location and intensity. Figures 4 (b)-(d) each show a sample from the model learned on the data
in Figure 4(a), where Figure 4(b) is for DP mixtures, Figure 4(c) for hierarchical DPs, and Figure
4(d) for hierarchical DPs with random effects. The sampled activation components are overlaid as
ellipses using one standard deviation of the width parametersΣm. The thickness of ellipses indicates
the estimated heighthm of the bump. In Figures 4(b) and (c) ellipses for activation components
shared across images are drawn with the same color.

The DPs shown in Figure 4(b) seem to overfit with many bumps andshow a relatively poor gen-
eralization capability because the model cannot borrow strength from other similar images. The
hierarchical DP in Figure 4(c) is not flexible enough to account for bumps that are shared across
images but that have variability in their parameters. By using one fixed set of component param-
eters shared across images, the hierarchical DPs are too constrained and are unable to detect the
more subtle features of individual images. The random effects model finds the three main bumps
and a few more bumps with lower intensity for the background.Thus, in terms of generalization,
the model with random effects provides a good trade-off between the relatively unconstrained DP
mixtures and overly-constrained hierarchical DPs. Histograms of the number of components (every
10 samples over the last 1000 iterations) for the three different models are shown in Figure 5.

We also perform a leave-one-image-out cross-validation tocompare the predictive performance of
hierarchical DPs and our proposed model. For each subject ateach scanner we fit a model from
seven images and compute the predictive likelihood of the remaining one image. The predictive
scores and simulation errors (standard deviations) averaged over eight cross-validation runs for both
models are shown in Table 2. In all of the subjects except for Subject 1 at Duke, the proposed model
shows a significant improvement over hierarchical DPs. For Subject 1 at Duke, the hierarchical DP
gives a slightly better result but the difference in scores is not significant relative to the simulation
error.

Figure 6 shows the difference in the way the hierarchical DP and our proposed model fit the data
in one cross-validation run for Subject 1 at Duke as shown in Figure 6(a). The hierarchical DP
in Figure 6(b) models the common bump with varying intensityin the middle of each image as a
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Figure 6: Results from one cross-validation run for subject1 at Duke. (a) Raw images for a cross
section of right precentral gyrus and surrounding area. Activation components estimated from the
images are shown in (b) for hierarchical DPs, and in (c) for hierarchical DP with random effects.

mixture of two components—one for the bump in the first two images with relatively high intensity
and another for the same bump in the rest of the images with lower intensity. Our proposed model
recovers the correspondence in the bumps with different intensity across images as shown in Figure
6(c).

6 Conclusions

In this paper we proposed a hierarchical DP model with randomeffects that allows each group (or
image) to have group-level mixture component parameters aswell as group-level mixing propor-
tions. Using fMRI brain activation images we demonstrated that our model can capture components
shared across multiple groups with individual-level variation. In addition, we showed that our model
is able to estimate the number of components more reliably due to the additional flexibility in the
model compared to DP mixtures and hierarchical DPs. Possible future directions for this work in-
clude modeling additional systematic group variations in the mixture component parameters such as
global translations of the template (or a subset of the components) in an image, e.g., due to different
MRI machine characteristics or head positioning. Also of practical interest are extensions to model-
ing differences between labeled groups of individuals, e.g., in studies of controls and patients for a
particular disorder.
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