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Abstract

The use of graphs to represent independence structure in multivariate probability
models has been pursued in a relatively independent fashion across a wide variety of
research disciplines since the beginning of this century. This paper provides a brief
overview of the current status of such research with particular attention to recent de-
velopments which have served to unify such seemingly disparate topics as probabilistic
expert systems, statistical physics, image analysis, genetics, decoding of error-correcting
codes, Kalman filters, and speech recognition with Markov models.

1 Introduction

Let U = {X;,...,Xn} be a set of random variables, representing for example, symptoms and
diseases in a medical diagnosis context, features and classes in a pattern recognition problem, or
properties of individual particles in a statistical physics problem. TLet p(U) represent the joint
distribution for U. In this paper we will use the term graphical models to refer to a family of
techniques which exploit a duality between graph structures and probability models.

The central idea behind graphical models is to represent the independence structure in p(U) by
an annotated graph. The nodes of the graph are in one-to-one correspondence with the variablesin U
and the edges of the graph reflect the independence structure (if any) in p(U). Thus, for example,
a probability model with no independence structure (namely, every variable depends directly on
every other variable) is represented by a completely connected graph. Conversely, a model p(U)
where all variables are independent of each other is represented by a graph with no edges between
any of the nodes. Of more usual interest are the families of probability models which lie between
these extremes. Annotation of the graph is achieved by factoring the underlying probability model

p(U) into conditional probability tables (for directed graphs) or potential functions (for undirected
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graphs). These factors are stored as tables or simple functions at the individual nodes. These local
tables and functions represent the numerical specification of local dependencies and are the vehicle
for efficient calculations using the graph formalism.

Tt is well known that for moderately large N, specification and manipulation of p(U) directly is
intractable unless there exists considerable structure in the probability model. For example, with
N binary variables, a model with no independence structure requires the specification of O(2V)
probability values. Furthermore, calculations of particular posterior probabilities given observed
evidence will also tend to scale exponentially in N, rendering such models useless in practice. This
intractability has been well-known in different disciplines for some time and there has been consider-
able, and often independent, work in different areas on exploiting independence structure to achieve
tractability.

In statistics, the use of graphical frameworks to represent and manipulate multivariate proba-
bility distributions is by now well-established (Whittaker (1990), Lauritzen (1996)). In an artificial
intelligence (AI) context, Pearl (1988) independently developed a substantial body of theory for
constructing and manipulating conditional independence relations using directed graphical models
called belief networks. In statistical physics, there is a long tradition of performing efficient prob-
ability calculations on lattice systems of large numbers of particles whose probability distributions
have certain Markov properties (Kinderman and Snell, 1990). This work, linked with related ideas
in statistics (Isham, 1981), motivated a whole sub-discipline of image analysis based on Markov
random fields (Geman and Geman, 1984) and related work in neural network modeling using Boltz-
mann machines (Hinton and Sejnowski, 1986). The fact that all of these models are closely related
is relatively well-known although not always explicitly referred to in the literature.

Less well known are recent realizations that the “extended family” of graphical models also
encompasses some very well-known and widely used techniques in engineering. Specifically, hidden
Markov models (including the forward-backward algorithm) as used in speech recognition can be
viewed as special cases of graphical models (Smyth, Heckerman and Jordan, 1997), Kalman filtering
equations and models can be profitably viewed from a graphical model context (Levy, Benveniste,
and Nikoukhah, 1996), and a variety of well-known algorithms for decoding error-correcting codes
turn out to be special cases of more general graphical model algorithms (MacKay, McEliece, and
Cheng, in press ).

The purpose of this paper is to briefly review some of these connections. The paper does not
discuss the details of graphical models in any depth: for a recent introductory exposition see Jensen

(1996) and for a more mathematical viewpoint see Lauritzen (1996). The paper by Smyth, Hecker-



man, and Jordan (1997) discusses links between different forms of graphical models used in statistics,
Al, physics, and engineering. The primary goal of this paper is to point the reader to the relevant
literature on the topic and promote the viewpoint that graphical models provide a unified and useful

framework for a large class of problems involving probabilistic inference.

2 A Brief Introduction to Graphical Models

Graphical models fall into two general classes, those based on acyclic directed graphs (ADGs)!
and those based on undirected graphs (UGs). There is a third category based on mixed graphs
which are beyond the scope of this paper. Both ADG and UG representations rely on the notion of
decomposing the underlying multivariate probability distribution into a factored form. For ADGs
the factors are local conditional probabilities, for UGs they are local clique functions (non-negative
functions related to probabilities). In this context, ADGs are easier to construct and interpret since
they have a clearer probabilistic semantics than UGs in terms of the numerical specification of the
probability model. ADGs and UGs can each efficiently represent probability distributions which the
other cannot represent in efficient form. The directed ADG formalism is primarily used in Al and
statistics where cause-effect relationships are important in modeling and can be made explicit by
the use of directed arcs in the graph. The undirected UG formalism is popular in the statistical
physics and image processing communities where associations between variables (particles or pixels)
are considered correlational rather than causal. UGs under various guises are variously referred to
in the literature as Markov random fields, Markov networks, Boltzmann machines, and log-linear
models. ADGs are often referred to as Bayesian networks, belief networks, or recursive graphical
models, and less frequently as causal networks, directed Markov networks, and probabilistic (causal)
networks.

A graphical model contains both structure and parameters. The structure of the model consists
of the specification of a set of conditional independence relations for the probability model p(U),
represented as a set of missing edges in the graph for the graphical model. If variable X; does
not depend directly on variable X;, then there is no edge between them. The precise semantic
implications differ between ADGs and UGs, but the central concept is the same: a node is connected
to those other nodes on which it directly depends. Note that a graph structure implies a set of
probability models which are constrained to obey the independence assumptions as represented by

the connectivity of the graph. Conversely, the independence relations which are implicit in the

LADGs are also often referred to as directed acyclic graphs (DAGS); however, the term ADG is more precise, since
the term DAG implies a directed version of an acyclic graph, which is not well-defined.



probability model p(U), constrain the possible corresponding graphical structures.

The parameters of a graphical model consist of the specification of the joint probability distribu-
tion p(U). This specification is in factored form and the factors are defined locally on the nodes of
the graph. Inference is the problem is of calculating posterior probabilities for variables of interest
given observed data and given a specification of the probabilistic model. Typical inference problems
include calculating the probability of a class variable given observed features (in classification) and
calculating the probability of observed data under various different models (as in speech recogni-
tion). The related task of mazimum a posteriori (MAP) identification is the determination of the
most likely state of a set of unobserved variables, given observed data and the probabilistic model.
The learning or estimation problem is that of determining the parameters (and possibly structure)

of the probabilistic model from data.

3 Why use Graphical Models?

A key point is that the analysis and manipulation of multivariate models involving independence re-
lations can be considerably facilitated by exploiting the relationship between probability models and

graphs. The major advantages to be gained are in model description and computational efficiency.

3.1 Model Description

Graphs are a natural medium for representing information in a compact form which humans can
grasp, understand, and use. In particular, the structure of a graphical model clarifies the conditional
independencies in the implied probability models, allowing model assessment and revision. Whit-
taker (1990, chapter 3) provides a number of examples which clearly demonstrate that even with
relatively few variables it is much easier to reason about independence relations using a graph than
it 1s without. In addition, the fact that the graphical model forces the modeller to explicitly encode
and confront independence assumptions can be extremely useful in model-building. This can be
particularly useful for example in areas such as Al, statistical modeling in the social and medical

sciences, and time-series modeling.

3.2 Computational Efficiency

Graphical models are a powerful basis for specifying efficient algorithms for computing quantities
of interest in the probability model, e.g., calculation of the probability of observed data given the
model. Computational inference methods are often based on undirected representations (Lauritzen

and Spiegelhalter, 1988). ADGs can be reduced to an equivalent UG structure in a relatively



straightforward manner, although the corresponding UG may be less efficient at representing the
same probability distribution as the original ADG, i.e., have more edges. The “canonical” graphical
form for computation is the “clique tree” (Jensen, 1996), which is constructed from the UG rep-
resentation via triangulation. Inference simply consists of local message passing in the clique tree.
The “clique tree inference algorithms” (Jensen, 1996) are quite general and subsume the earlier more
specialized inference algorithms such as those proposed by Pearl (1988). The complexity of the local
inference algorithms scale as the sum of the sizes of the clique state-spaces (where a clique state-space
is equal to the product over each variable in the clique of the number of states of each variable).
Thus, local clique updating can reduce the complexity of exact inference and MAP calculations on
U from O(m") to O(m®), where N is the total number of variables, K is the number of variables in
the largest clique, and all variables are assumed to take m discrete values. For dense graphs, exact
computations are intractable (K becomes very large) and a variety of approximation schemes exist,
largely based on sampling techniques which have evolved from statistical physics methodologies for
intractable lattice-type graphs.

A key feature of computation in graphical models is that these inference algorithms can be speci-
fied automatically (in effect, “compiled”) once the initial structure of the graph is determined. Note
that the graphical model framework provides no panacea for avoiding the combinatorial parameter
explosion which can result when one tries to build more realistic models. Rather, it allows one to
identify an efficient inference procedure in an automatic manner, if the structure of the model permits

efficient inference.

4 Relationships between Specific Classes of Graphical Mod-
els

4.1 Belief networks as ADGs

In AT the best known family of graphical models are belief networks. Belief networks are ADGs
which were developed originally by Pearl (1988) for probabilistic reasoning or “probabilistic expert
systems.” Pearl (1988, p.125) notes that the origins of such models can be traced to the work of
Wright (1921) in genetics. Belief networks have gained widespread acceptance and application within
AT in areas such as diagnosis, planning, robotics, computer vision, and so forth (see, for example,
Heckerman, Wellman, and Mamdani, 1995). From an AT perspective the well-defined semantics
of an ADG, where each node is a direct descendant of its “causal” parents, provide a useful and

practical language for knowledge elicitation. In addition, belief networks provide a sound and efficient
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Figure 1: An ADG for a first-order HMM. The H; and the O; are the hidden state variables and
the observable variables, respectively, 1 < < N.

framework for dealing with uncertainty, in contrast to earlier attempts within Al to handle uncertain
reasoning. More recently there has been significant interest and progress in learning or estimating
both the parameters and structure of belief networks from data, thus broadening their application
to problems where large data sets are available and perhaps relatively little or no prior knowledge in
the form of available experts (Buntine, 1996; Heckerman, Geiger, and Chickering, 1995). In a related
context, learning of multivariate regression and classification models such as neural networks, can

also be treated profitably within a graphical model framework (Buntine, 1994).

4.2 Hidden Markov models as ADGs

The well-known “first-order” hidden Markov model (HMM) (as widely used in speech recognition)
is a particularly simple probability model and has a direct representation as a graphical model (Fig-
ure 1). Speech recognition systems take advantage of the fact that there exist efficient algorithms
(linear in the length of the Markov chain) for solving the inference and MAP problems associated
with recognition. Inference is solved by the forward-backward algorithm and the MAP problem
is handled by the Viterbi algorithm (Rabiner, 1989). Since we can represent a HMM as a simple
graphical model, it follows that the inference and MAP problems can be solved by the standard
algorithms developed by Pearl (1988), Lauritzen and Spiegelhalter (1988), and subsequent refine-
ments (Jensen, Lauritzen and Olesen (1990). Smyth, Heckerman, and Jordan (1997) show that the
forward-backward algorithm and Viterbi algorithms are in fact directly equivalent to the Pearl et al
algorithms, i.e., these algorithms had been developed completely independently in both communi-
ties. The equivalence is not surprising once one realizes that a HMM 1s a relatively simple graphical
model. Of much greater significance is the fact that the graphical model algorithms are perfectly
general and can thus handle arbitrary extensions to the standard “first-order” model. No additional

effort is required in terms of deriving new inference procedures for more complicated models, since



Figure 2: An ADG for a simple convolutional encoder/decoder. The U; are the input information
bits, the S; are the state variables of the convolutional encoder, the X; are the code words, and the
Y; are the received noisy codewords 1 < i < N. Note that all of the dependencies in the model are
deterministic except the dependence of Y; on X;, which models a memoryless noisy channel. The
inference problem (which is equivalent to decoding) is to determine the most likely values for the
information bits U; given the observed noise codewords Y;.

the inference algorithms follow directly from the general specifications of Pearl et al. Examples of
more complex HMM structures to account for coarticulation in speech and multiple hidden chains

to couple audio and video signal inputs are discussed in Smyth, Heckerman and Jordan (1997).

4.3 Decoding Algorithms for Error Correcting Codes as ADGs

In error correcting coding applications a sequence of “information bits” is converted into a sequence
of codewords which is transmitted over a noisy channel. At the receiving end of the channel, a
decoder must try to estimate the original information sequence, given only the noisy codeword
sequence. It has recently been realized that the decoding process is well-modeled as inference on a
graphical model. The inference problem is that of calculating the probability of the input sequence
given the observed codewords. The graphical model for the problem arises from the coupling of the
deterministic mapping of inputs to codewords with the noisy channel process mapping codewords
into noisy observations. Typically the resulting graph is highly structured: Figure 2 shows the ADG
for a convolutional decoder. The algorithms developed in the coding literature for decoding tend to
be very similar to the forward-backward algorithm and Viterbi algorithms used for HMMs. Thus, it
is not surprising that one can recreate these algorithms as special cases of the more general graphical
model inference algorithms.

While this direct equivalence of existing algorithms is interesting (as with HMMs), the more



significant aspect is the capability which graphical models provide for synthesizing new decoding
algorithms using more complex structures. From a graphical model viewpoint, extensions to deal
with channels with memory, multiple interleaved codes, iterative decoding for approximate solutions,
and so forth, can all be handled in a straightforward and systematic manner. The power of graphical
models in this context has only recently been realized by the coding community and there is currently
significant research activity on decoders based on graphical models (e.g., MacKay, McEliece and

Cheng, in press; Kschischang and Frey, in press).
4.4 Kalman Filter and Related Algorithms as ADGs

Kalman filters, and related linear models for dynamical systems, are essentially very similar to HMMs
but where the hidden state variables are real-valued rather than discrete. Thus, it should not be
surprising to the reader at this point to learn that such models can also be represented within the
graphical model family, again as ADGs due to the causal nature of temporal processes (Kenley, 1986).
More recently there have been significant extensions which have proceeded by showing the direct
equivalence of the standard Kalman prediction/smoothing equations to graphical model inference
algorithms, and by then exploiting the generality of graphical models to propose novel extensions
to standard Kalman filters within a unified framework (Levy, Benveniste, and Nikoukah, 1996).
In the context of more general time-series modeling, graphical models can also play a useful role.
For example, Berzuini and Larizza (1996) describe a complex medical application treated within a

graphical model framework
4.5 Markov Random Fields as UGs

As mentioned earlier, Markov random fields (MRFs) are the most well-known undirected graphical
model formalism and were originally developed in statistical physics to model systems of particles
interacting in a 2d or 3d lattice (Kinderman and Snell, 1980). More recently MRFs have been
widely applied to problems in image analysis, where pixels or voxels play the role of particles in the
physical system. The resulting UGs have many loops, resulting in exponential complexity in N (the
number of nodes) for exact solutions to the inference problem. A wide variety of techniques have been
developed for approximating the exact solution. Physicists and statisticians have developed elaborate
techniques based on iterative sampling (Monte-Carlo) ideas which are guaranteed to converge under
fairly general conditions (Gilks, Richardson, and Spiegelhalter (1996)). Closed form approximations
to the exact solution have also been popular. For example, the use of “mean-field” approximations

are motivated by physical arguments on the nature of cumulative long-range particle interactions,



and the popular Iterative Conditional Modes algorithm for image analysis relies on greedy local
maximization of the posterior probability of the pixel labels given the observed data (Besag, 1986).

It is also worth noting that many directed graphical models of practical interest have sufficiently
dense structure to not admit efficient exact solutions. Thus, since inference with an ADG 1s typically
carried out by inference on a related UG, there is increasing interest and utility in exploring the UG

approximations for applications involving ADGs (see for example, Saul and Jordan (1996)).

5 Conclusion

There has been a recent convergence of ideas relating probability models and graph structures. The
graph formalism is an effective and efficient representation for multivariate independence structure,
both for model construction and for inference. The ability to view seemingly different algorithms
for seemingly different problems within a unified graphical model framework can provide powerful
insights. More important is the fact that the graphical model framework enables the construction and
application of novel and relatively complex multivariate models in a straightforward and systematic

manner.
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