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Abstract

Massive transaction data sets are routinely recorded in a variety of applications including telecom-
munications, retail commerce, and Web site management. In this paper we address the problem of
inferring models from such transaction data in the form of predictive profiles of individual behavior.
We describe a generative mixture model that accounts for population heterogeneity in transaction
generation. An approximate Bayesian framework is used for parameter estimation that combines an
individual’s specific history with more general population patterns. The proposed model is shown
to consistently outperform non-mixture and non-Bayesian techniques in predicting out-of-sample
individual behavior on two large real-world transaction data sets.



1 Introduction

Transaction data sets consist of records of pairs of individuals and events, e.g., items purchased
(market basket data), telephone calls made (call records), requests to consumer help desks (call
center data), and Web pages visited (from Web logs). Such data sets are increasingly common across
a variety of applications in telecommunications, retail commerce, and Web site management. The
analysis of such data has attracted increasing interest in recent years. For example, early research
on association rule algorithms to efficiently search for correlations among items in retail transaction
data (Agrawal, Imielenski & Swami, 1993) has led to a significant amount of subsequent work in
data mining on a variety of related methods (e.g., see Han & Kamber, 2000). Similarly, collaborative
filtering algorithms (Resnick et al., 1994; Heckerman et al., 2000) have been used to infer which
items an individual may rate highly, given information about other items that the individual has
already purchased or rated.

In this paper we are interested in a somewhat different problem, that of automatically inferring
predictive profiles for individuals from historical transaction data, where a predictive profile is
considered to be a model of an individual’s transaction behavior. More specifically, it is a probability
model that describes which items an individual is likely to purchase (or visit) in the future. The
problem of inferring predictive profiles can be viewed as fundamental to the analysis of such data.
Predictive profiles support many different types of analysis that a data-owner might wish to carry
out on transaction data, e.g., visualizing and understanding customer behavior, forecasting of
individual behavior, determining the life-time value of a customer, change detection, cross-selling
and personalization, fraud detection, and so forth.

Figure 1 shows a set of transactions for five different individuals where rows correspond to
market baskets (transactions) and columns correspond to categories of items (store departments in
this example). The data set from which these examples are taken involves over 500,000 transactions
from 200,000 customers over a two-year period in a set of retail stores. The heterogeneity of
purchasing behavior, in terms of items purchased and number of transactions, is clear even from
this simple plot. Our goal is to investigate parsimonious and accurate models for each individual’s
purchasing behavior given such data and we will refer to such models at the individual level as
predictive profiles.

We propose a combination of mixture models and Bayesian estimation methods for learning
predictive profiles. The mixture model is used to address heterogeneity: different individuals pur-
chase different combinations of products on different visits to the store. The Bayesian framework
is used to address the fact that we have varying amounts of data for different individuals. For an
individual with very few transactions (e.g., only one) we can augment (“shrink” in Bayesian termi-
nology) our predictive profile for that individual with (towards) a general population profile. On
the other hand, for an individual with many transactions, the predictive model can be much more
data-driven and individualized. Our goal is an accurate and computationally efficient modeling
framework that smoothly adapts a profile to each individual based on both their own historical
data as well as general population patterns. The techniques proposed can also be viewed as provid-
ing a model-based Bayesian alternative to other non-probabilistic approaches such as association
rules that are widely used in data mining of transaction data.

The paper begins in section 2 by defining the general problem of profiling and discussing the
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Figure 1: Examples of transactions for several individuals. The rows correspond to market baskets
(or transactions) and the columns correspond to particular categories of items. The darker the
pixel, the more items were purchased (white means zero). The solid horizontal gray lines indicate
the boundaries between transactions of different individuals.
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spectrum between sparse individual-specific information and broadly supported global patterns. In
section 3 we define and motivate a mixture model framework for modeling transaction behavior at
the individual level, and section 4 provides details on parameter estimation. Section 5 introduces
the two real-world transaction data sets used in the paper and section 6 discusses experimental
results where we compare various models in terms of their out-of-sample predictive performance
and demonstrate the scalability of the algorithms to large data sets. Section 7 provides a general
assessment of the modeling framework proposed in the paper and section 8 discusses related work.
Conclusions are outlined in section 9.

2 Notation and Problem Definition

In this section we introduce some basic notation and provide a high–level overview of the problems
involved in modeling transaction data.

2.1 General Notation

Consider an observed transaction data set D = {D1, . . . , DN} generated by N individuals, where
Di is the observed data on the ith customer, 1 ≤ i ≤ N . Each individual data set Di consists of a
set of one or more transactions for that customer, i.e., Di = {yi1, . . . ,yij , . . . ,yini}, where ni is the
total number of transactions observed for customer i, and yij is the jth transaction for customer i,
1 ≤ j ≤ ni. This notation could represent a customer buying products, an individual visiting Web
pages, etc. For concreteness we will focus on examples from retail data, but the general approach
is applicable to more general forms of transaction data.

An individual transaction yij consists of a description of the set of products that were purchased
at the same time by customer i. For the purposes of the experiments described below, each
individual transaction yij is represented as a set of C counts, yij = {nij1, . . . nijc, . . . , nijC}, where
for 1 ≤ c ≤ C the count nijc indicates how many items of type c are in transaction ij, 1 ≤ c ≤ C.
One can straightforwardly generalize this representation to include (for example) the price for each
product, but here we focus just on the number of items (the counts). For the purposes of this paper
we will ignore any information about the time or sequential order in which items are purchased or in
which pages are visited within a particular transaction yij , but the approach could be generalized
to account for sequential order or timing information if available (e.g., using mixtures of Markov
chains, Cadez et al., 2000).

We are assuming above that each transaction is “tagged” with a unique identifier for each
individual. Examples of such identification schemes can include frequent shopper cards, driver’s
licenses or credit cards for retail purchasing, and login or cookie identifiers for Web visits. There are
of course various practical problems associated with such identification, such as data entry errors,
missing identifiers, fraudulent or deliberately disguised IDs, multiple individuals using a single ID,
ambiguity in identification on the Web, and so forth. Nonetheless, in an increasing number of
transaction data applications reliable identification is possible. In the rest of the paper we will
assume that this identification problem is not an issue and assume that either the identification
process is inherently reliable or that there are relatively accurate techniques to discern identity.
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In fact for the two real-world transaction data sets that we use to illustrate our techniques, the
identification process is considered to be quite reliable.

2.2 The Predictive Profiling Problem

We define a predictive profile for individual i as a model that predicts the distribution of items in
future transactions yij from that individual, e.g., a multinomial model over items purchased. The
problem then is to infer predictive profiles for each of N individuals, given historical transaction
data D. In the work described in this paper our predictive models are conditioned on the total
number of items nij purchased by each individual per transaction, i.e., in scoring our models on
future data we want to know which items an individual bought given that they purchased some total
number. One could also incorporate a predictive component that forecasts for each individual the
total number of items purchased per transaction and the rate at which transactions are generated.
For example, a Poisson model for store visits (transactions) is commonly used in the marketing
literature (Schmittlein, Morrison & Colombo, 1987; Wedel & Kamakura, 1998). The Poisson rate
could be allowed to vary per individual, to incorporate seasonality, and so forth. In the marketing
literature the rate model (how often purchases are made) and the choice model (which items are
purchased) are often decoupled and developed separately. In this paper we focus on the choice
component. However, given that we are using a probabilistic framework, we could in principle
broaden the scope of the model by coupling our choice model with any appropriate rate model, and
so forth.

Data sparsity is a distinctive feature of many transaction data sets. For example, for many
transaction data sets (including the particular data set corresponding to Figure 1), a histogram
of “number of transactions” peaks at 1 (i.e., more customers have a single transaction than any
other number of transactions) and then decreases exponentially quickly. Thus, for many customers
there are very few transactions on which to base a profile, while for others there are large numbers
of transactions. The challenge is to systematically leverage all such information in generating
individual-level predictions.

Assume for example that we model each individual via a simple multinomial probability model to
indicate which items are chosen, namely, a vector of probabilities pc, one for each of the C categories
of items, with

∑C
c=1 pc = 1. A very simple approach would be to estimate this multinomial via a

maximum likelihood “histogram” estimated from raw counts for that individual. This is certainly
individual-specific. However, it suffers from at least two significant problems. First, for individuals
with very small amounts of data (such as those with only one item in one transaction) the profiles
will be extremely noisy and unreliable. Secondly, even for individuals with significant amounts
of data, the “raw counts” do not contain any notion of generalization: if an individual did not
purchase a specific item in the past the profile probability for that item is zero, i.e., the model
predicts that the individual will never purchase it.

We can see the lack of generalization in the example of Figure 2. For example, this individual
did not make any purchases in department 14 and consequently a maximum likelihood model would
put a zero probability in that cell. However, this individual did in fact make a purchase in that
department in the future (lower plot, Figure 2c).

An obvious solution is to try to smooth the histogram. A simple approach is to use a maximum
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Figure 2: An example of (a) a particular individual’s historical data, (b) a smoothed histogram
model, and (c) future purchases for the same individual. The x-axis corresponds to items cate-
gorized at the department level (as in Figure 1) and the y-axis to either categories purchased or
multinomial probabilities of purchasing categories of items.

a posteriori (MAP) estimate of the multinomial model. For example if we use a Dirichlet prior,
where the mean corresponds to the normalized histogram of items purchased by all individuals and
the equivalent sample size is set to 5 items, we get an MAP estimate of the multinomial as shown
in Figure 2b. The “MAP profiles” will be proportional to a linear combination of the maximum
likelihood histogram (from the observed data Di) and the mean of the Dirichlet prior. If we have
no historical data at all for an individual, their profile will correspond to the mean of the prior,
the “population histogram.” If we have substantially more than 5 items, the profile will tend to
look much more similar to the maximum likelihood estimate, but will be smoothed to have small
non-zero probabilities for items that were not purchased.

Although this is likely to be a better predictor than the simple maximum likelihood histogram,
there is still a problem with the MAP profile model in Figure 2b. Note that the individual only
purchased items in departments numbered from 1 to 25, and did not make any purchases in de-
partments above 25, both in the historical data used to build the model and in the future data.
Nonetheless, the MAP predictive profile “over-generalizes” to the extent that it places consider-
able probability mass in departments between 26 and 50. This is because a significant fraction of
overall population purchases come from those departments. It turns out that in this data set the
departments numbered 25 and lower are primarily men’s clothes, and those above 25 are primarily
women’s clothes. The data in Figure 2 is likely to be from a male shopper who only shops in men’s
departments. By using a very broad prior based on the whole population (both male and female)
we have in effect over-generalized and are making predictions about departments between 26 and
50 that are unlikely to be true.
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To deal with these problems we investigate (a) a mixture model to handle heterogeneity of
purchasing behavior (e.g., different male and female customer behaviors) and (b) an approximate
Bayesian scheme for parameter estimation, allowing the combination of sparse information about
an individual with global population patterns.

3 Mixture Models for Transaction Data

In this section we first describe a global mixture model for transactions and then describe how
individual-specific weights are derived in the context of this model.

3.1 The Global Mixture Model

We propose a simple generative mixture model for an individual’s purchasing behavior, namely
that a randomly selected transaction yij from individual i during store visit j is generated by one
of K components in a K-component mixture model, i.e.,

p(yij) =
K∑

k=1

αkPk(yij), (1)

where
∑

k αk = 1. The k-th mixture component Pk, 1 ≤ k ≤ K, is a specific model for generating
the counts in a basket and we can think of each of the K models as “basis functions” describing
prototype transactions. For example, one might have a mixture component that acts as a prototype
for suit-buying behavior, where the expected counts for items such as suits, ties, shirts, etc., given
this component, would be relatively higher than for the other items.

There are several modeling choices for the component transaction models for generating item
counts. In this paper we choose a particularly simple memoryless multinomial model that operates
as follows. Conditioned on nij , the total number of items in the basket, each of the individual items
is selected in a memoryless fashion by nij draws from a multinomial distribution θk = (θk1, . . . , θkC)
on the C possible items. Thus, the overall mixture model can be written as

p(yij) =
K∑

k=1

αk

C∏

c=1

θ
nijc

kc , (2)

where yij = {nij1, . . . nijc, . . . , nijC}. Note that this probability model is not a multinomial model,
i.e., the mixture has richer probabilistic semantics than a simple multinomial.

Other component models are possible. For example, one could model the data as coming from C
conditionally independent random variables (given the component label), each taking non-negative
integer values. The multinomial model in Equation 2 constrains the number of purchases of any item
to follow a geometric distribution (per cluster), but the conditional independence model allows any
form of distribution to be modeled in principle. Such a conditional independence model could allow
(for example) the modeling of the purchase of specific numbers of specific items, per component, in
a manner that the multinomial multiple trials model cannot achieve. However, it can also require
more parameters than the multinomial model to achieve this degree of flexibility. McCallum and
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Figure 3: An example of 6 “basis” mixture components fit to retail transaction data.

Nigam (1998) compared the use of multinomials and conditional independence models as class
models for term vectors in document classification using naive Bayes. The conditional independence
model provided more accurate classification, but the difference in accuracies between the two models
was not particularly significant. In this paper we focus on the multinomial model since it is the
simpler of the two component models to work with.

The use of multinomial mixture models for “count” data is of course not new. Similar models
have been widely used in applied statistics for many years to model relatively low-dimensional
contingency table data (e.g., Lazarsfeld & Henry, 1968). More recently, multinomial mixture models
have become popular in machine learning for applications such as document classification and
clustering (e.g., McCallum, 1999). The novelty of the work presented in this paper lies in the
application of such models to high-dimensional massive transaction data sets, and their extension
to account for individual heterogeneity as described in the next section.

Figure 3 shows an example of K = 6 such basis mixture components that have been estimated
from the large retail transaction data of Figure 1 (more details on estimation will be discussed
below). Each window shows a particular set of multinomial probabilities that models a specific
type of transaction. The components show a striking bimodal pattern in that the multinomial
models involve sets of departments that are either above or below department 25, but there is very
little probability mass that “crosses over.” The models are capturing the fact that departments
numbered lower than 25 correspond to men’s clothing and those above 25 correspond to women’s
clothing.

We can see further evidence of this bimodality in the data itself in Figure 1 noting that some
individuals purchase items from “both sides” depending on the transaction. However, typically this
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“cross-over” does not occur within the same basket of items. This might suggest (for example) a
husband and wife who are each using the same shopping card or ID, each with their own shopping
patterns. Our mixture approach can directly capture such heterogeneity.

3.2 Individual-Specific Weights

We now assume that for each individual i there exists a set of K individual-specific weights, denoted
by αi = (αi1, . . . , αiK), where

∑
k αik = 1. Thus, the model for each individual is a mixture model

where the weights are specific to individual i:

p(yij) =
K∑

k=1

αikPk(yij)

=
K∑

k=1

αik

C∏

c=1

θ
nijc

kc , (3)

where θkc is the probability that the cth item is purchased given component k and nijc is the
number of items of category c purchased by individual i, during transaction j.

The weight αik represents the probability that when individual i enters the store, his or her
transactions will be generated by component k. In other words, the αik’s govern individual i’s
propensity to engage in “shopping behavior” k (again, there are numerous possible generalizations
such as making the αik’s dependent over time, that we will not discuss here). The αik’s in effect
define individual i’s predictive profile, relative to the K component models.

This idea of individual-specific weights (or profiles) is a key component of our proposed ap-
proach. The mixture component models Pk are fixed and shared across all individuals, providing
a mechanism for borrowing of strength across individual data. The individual weights αik are in
principle allowed to freely vary for each individual within a K-dimensional simplex. In effect the
K weights can be thought of as basis coefficients that represent the location of individual i within
the space spanned by the K basis functions (the component θk multinomials). This approach is
quite similar in spirit to the recent work of Hofmann (1999) on “aspect models” for text documents,
where he proposes a general mixture model framework that represents documents as existing within
a K-dimensional simplex of multinomial component models, somewhat similar to a probabilistic
principal component analysis of binary data.

3.3 The Full Data Likelihood

The unknown parameters Θ in our full model consist of both the parameters of the K component
multinomials, {θ1, . . . ,θK}, and the N vectors of individual-specific profile weights {α1, . . . , αN}.
Assuming that each of the N individuals behave independently given the model, the full likelihood
of the data can be written as

p(D|Θ) =
N∏

i=1

p(Di|Θ), (4)

Furthermore, assuming that each transaction (or basket) for each individual is generated indepen-
dently of the other transactions for that individual, conditioned on the model and the parameters,
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we have

p(Di|Θ) =
ni∏

j=1

p(yij |Θ), (5)

where p(yij |Θ) was defined above (absent the explicit dependence on Θ). While both the global
and the individual-specific models depend on the conditional independence assumption of baskets
to simplify computation, the model based on individual-specific weights represents an important
improvement over the global model. In the global model, baskets from different individuals are not
distinguished and are regarded as exchangeable under the conditional independence assumption.
This is far from realistic given that multiple baskets generated by a single individual tend to
be somewhat similar. On the other hand, the individual-specific weights capture the correlation
among multiple baskets that belong to the same individual i, because all of them are generated,
memorylessly, by the common set of αik under the individual-specific model.

Although the assumption of conditionally independent transactions for each individual is viable,
there might be temporal or sequential dependencies between certain purchases that could still
invalidate the model. Nonetheless, for simplicity, we model transactions as being memoryless in this
paper since it allows us to capture general purchasing behavior to first-order using a relatively simple
setup. The idea of conditional independence given individual-specific parameters has long been used
in the statistics and psychometric literature to model within-individual repeated measurements that
are clustered (e.g., Lord, 1980). This type of memoryless assumption is also widely used in the
marketing literature for modeling consumer brand choice behavior and has been found to be both
useful and accurate in various studies (see Wedel & Kamakura, 1998, for a general review).

4 Estimation of the Model Parameters

We use an MAP approach to estimate the unknown parameters Θ = {θ1, . . . , θK , α1, . . . ,αN}. We
will refer to the parameter vectors θ1, . . . ,θK for the K component multinomials as global structural
parameters, and the weight vectors α1, . . . ,αN as individual profiles. The MAP optimization
problem is defined as

ΘMAP = arg max
Θ

{
P (D|θ1, . . . ,θK ,α1, . . . , αN )

K∏

k=1

P (θk|γ)
N∏

i=1

P (αi|ξ)

}
, (6)

where P (θk|γ) and P (αi|ξ) are independent Dirichlet priors on the component multinomial pa-
rameters and weight vectors, with parameters γ and ξ respectively. The parameter set γ consists of
a C-dimensional mean vector γmean plus an equivalent sample size γess, and ξ is a K-dimensional
mean vector ξmean plus an equivalent sample size ξess. Both γmean and ξmean are defined as
probability vectors that sum to 1 with γess and ξess providing scaling for each. The same prior
parameters γ and ξ are shared (respectively) by all K multinomial component models θ1, . . . ,θK

and by all N weight vectors α1, . . . , αN .
In a fully Bayesian framework, to locate the mode of the expression in equation 6, we would

define hyperpriors on γ and ξ and then integrate γ and ξ out. Since there is no closed form
solution for this integration given a mixture model of this form, this would require the use of
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numerical approximation techniques (such as Markov chain Monte Carlo sampling). Such sampling
is not computationally tractable given the sizes of the transaction data sets that we analyze (e.g.,
1.9 million transactions for one of the data sets considered in section 6). Similarly, a conventional
empirical Bayes approach, where point estimates of γ and ξ would first be determined by integrating
out all other parameters, is also not practical for the same computational reasons.

Nonetheless, it is important to use sensible priors γ and ξ to regularize the estimation of the
parameters Θ in equation 6 above. This is particularly true for the individual profiles α1, . . . , αN

since they can be severely underconstrained by the data (for example, for individuals for whom
only a small number of transactions are available), necessitating some form of regularization. With
this in mind we use an initialization step to determine a reasonable data-driven value for the mean
of the weight prior ξ.

Specifically, we pool the transactions from all N individuals (ignoring the individual origins of
the transactions) and constrain all of the weights for each individual to be identical, i.e., αi = α.
This is the “standard” mixture model approach, treating each transaction as being conditionally
independent given a mixture of multinomials with a global set of weights. We run EM using
noninformative priors to generate parameter estimates θ̂1, . . . , θ̂K for the global component models,
and to generate an estimate α̂ for the “global weights,” under this model. The resulting mixture
model will be referred to as the global mixture model in the remainder of the paper, since it can
be used to provide a predictive profile where each individual has the same weight vector α̂.

The parameter estimates produced by this initialization procedure, θ̂1, . . . , θ̂K and α̂, are then
used to provide initial parameter guesses for a full EM procedure that (locally) maximizes equation 6
over all parameters θ1, . . . ,θK and over all N weight vectors α1, . . . , αN . In this full EM procedure
the transactions are grouped by individual, enabling individual weight estimation. The mean of the
Dirichlet weight prior ξmean is set to the global weight vector α̂ obtained from the earlier constrained
estimation and the equivalent sample size ξess is set to 5 baskets purchased. Experiments with
various sample sizes between 0.1 and 10 indicated that the parameter estimates and/or predictions
were not particularly sensitive to the exact value chosen for the equivalent sample size.

Both the initialization and full EM steps are summarized in table form in Table 1 (more
complete details on the derivation of the EM procedure are provided in the Appendix). To initialize
parameters during the initialization procedure we use a uniform weight vector for the weights α. For
the multinomial components θk we sample from a Dirichlet centered at the marginal probabilities of
individual items θmarginal with an equivalent sample size 2C where C is the number of items. This
“marginal sampling technique” was shown by Meila and Heckerman (1998) to be a useful heuristic
for initializing component parameters for EM estimation of mixture models. For the initialization
procedure we select the highest MAP solution from 20 random starts. For the final full EM
procedure we only perform a single run. In effect our heuristic is that the initialization procedure
focuses attention on relevant parts of the global parameter space for the full EM procedure.

Although the global structural parameters {θ1, . . . , θK} are allowed to vary freely during the
final full EM procedure, we have found empirically that the final estimated components are quite
close to the initial values provided by the initialization procedure. Thus, in effect, one could view
the initialization procedure as estimating the global structure of the model, and the final full EM
procedure as determining how best to represent each individual within the K-dimensional simplex of
mixture weights relative to the global model. In section 6.6 we show that this “two-stage” approach
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Table 1: Specification of the EM procedure.

Initialization Procedure Full EM Procedure

Parameters Estimated �̂, �̂k �̂i, �̂k

Priors (Weights) � ∼ Dir (�mean, �ess) �i ∼ Dir (�mean, �ess)

�mean =
(

1
K

, . . . , 1
K

)
, �ess = 1 �mean = �̂, �ess = 5

Priors (Components) �k ∼ Dir (mean,ess) �k ∼ Dir (mean,ess)

mean =
(

1
C

, . . . , 1
C

)
, ess = 10−5 mean = �̂,

(
1
C

, . . . , 1
C

)
, ess = 10−5

Initialization (Weights) � =
(

1
k
, . . . , 1

k

)
�i = �̂

Initilialization (Components) �k ∼ Dir
(
�marginal, 2C

)
�k = θ̂k

Number of Runs Best of 20 random starts Single start

Convergence Change in relative logL < 10−4 Change in relative logL < 10−4

(initialization plus full EM) produces comparable (indeed more accurate) results when compared
to an alternative single-stage method where the prior is treated as an additional parameter. We
will also show that the two-stage approach has certain computational advantages. For example,
the initialization procedure can be run on a subsample of the full data set and obtain virtually
identical results in a fraction of the computation time required by using the full data.

Although our use of an initialization phase to determine a data-driven prior is very much in
the spirit of empirical Bayes, we are not performing the full integration over parameter space
that would be traditionally carried out in an empirical Bayes methodology (for the computational
reasons mentioned earlier). Nonetheless, the estimation scheme we use can loosely be viewed as a
form of MAP approximation to a traditional empirical Bayes approach.

To illustrate the application of these ideas, recall that in Figure 2 we looked at “non-mixture”
histogram models as predictive profiles of an individual. In Figure 4 we now plot for the same
individual the predictive profile, obtained using both the global weight and the individual weight
methods described above, where the global weights are those obtained from the initialization proce-
dure based on a global model. One can see that the global weight profile based on α reflects broad
population-based purchasing patterns and is not representative of this individual. The individual-
weight profile based on αi appears to be a much better representation of this individual’s behavior
and indeed it does provide the best predictive score of all the models on the test data in Figure 2.
Note that the individual weight profile in Figure 4 “borrows strength” from the purchases of other
similar customers, i.e., it allows for small but non-zero probabilities of the individual making pur-
chases in departments even if he or she has not purchased there in the past (such as departments
6 through 9). This particular individual’s weights, the αik’s, are (0.00, 0.47, 0.38, 0.00, 0.00, 0.15)
corresponding to the 6 component models shown in Figure 3. The most weight is placed on compo-
nents 2, 3 and 6 (components that correspond to men’s clothing departments), which agrees with
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Figure 4: Inferred predictive profiles from (a) global weights, and (b) individual-specific weights,
for the individual whose data was shown in Figure 2.

our intuition given the individual’s training data (all purchases were in such departments).

5 Data Sets

We use two large real-world retail transaction data sets—a retail clothing data set, and a retail
drugstore data set—in our experiments. When a basket is paid for, each item in the basket is
recorded, along with the ID of the individual making the purchase, and the time and day of the
purchase. For both data sets the items being purchased are categorized according to a product
hierarchy. At the top of the hierarchy are broad categories such as departments within the store—
at the bottom of this hierarchy are very specific product descriptions. For example, in the retail
clothing data set below, there are 53 departments at the top level and approximately 50,000 specific
item descriptions at the bottom level of the hierarchy. The categories at each level of this hierarchy
are mutually exclusive and exhaustive. In this paper we focus on making predictions at the top two
levels of this product hierarchy, and refer to them as level 1 and 2. For the retail clothing chain,
the names of individual categories at each level have been replaced by numbers in this paper due
to the proprietary nature of the data.

The first data set consists of purchases over a two-year period at a set of stores for a retail
clothing chain in the United States. There are approximately 1.2 million items purchased during
500,000 separate transactions by approximately 200,000 different individuals. At level 1 in the
product hierarchy items are categorized into 53 departments and at level 2 there are 409 categories.

The second data set contains transaction records collected during the period of 1996–1999 from
a national drugstore retail chain in Japan. The data set consists of approximately 15.6 million items
purchased during 2.5 million separate transactions by about 300,000 individuals over approximately
1,000 stores across Japan. The department level (level 1) of the product hierarchy comprises 21
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categories (such as medical devices, baby products, etc.,) and the second level contains 151 more
detailed categories.

6 Experimental Results

In this section we investigate the predictive performance of our proposed individual-specific mixture
model and compare it to the alternative global mixture model and a non-mixture MAP histogram
model.

6.1 Model Evaluation using Predictive LogP Scores

We separate each data set into two time periods. We train our mixture and weight models on the
first period and evaluate our models in terms of their ability to predict transactions that occur in
the subsequent out-of-sample test period.

To evaluate the predictive power of each model, we calculate the log-probability (“logp scores”)
of the transactions as predicted by each model. Higher logp scores mean that the model assigned
higher probability to events that actually occurred. The log probability of a specific transaction
from individual i, yij = (nij1, . . . , nijC) under mixture model parameters Θ, is defined as

log p(yij |Θ) = log
K∑

k=1

αik

C∏

c=1

θ
nijc

kc (7)

and the total logp score for a full data set D is the sum of the quantities, log p(yij |Θ), over all
individuals i and their transactions j. The α’s and θ’s are parameter estimates, obtained using
the methods described earlier in the paper. Note that the total negative logp score over a set
of transactions, divided by the total number of items, can be interpreted as a predictive entropy
term in bits (for log base 2). The lower this entropy term, the less uncertainty in our predictions
(bounded below by zero of course, corresponding to perfect predictions).

We evaluate the prediction accuracy of each model for each data set at both the level 1 and level
2 aggregation levels of the product hierarchy. For the retail clothing data set we also evaluate the
predictions of models built and evaluated on customers for whom there are 10 or more transactions
in the training data, and models built and evaluated on customers for whom there are only 2 or
more transactions in the training data. The “10 or more” group are of interest since they are the
more frequent customers, while the “2 or more” group reflects a broader set of customers for whom
there is a relatively small amount of historical data available for building predictive profiles. For
the retail drugstore data set we evaluate the model only on the “10 or more” transactions group in
the interests of time, since this data set is sufficiently large that it can take days to fit our models
to the full data set over all values of K of interest.

6.2 Experimental Results on Retail Clothing Data

We constructed two different pairs of training and test sets where in each case the training data
consists of the first 70% of transactions (chronologically) and the test data consists of the remaining
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Figure 5: Retail Clothing Data: plot of the negative log probability scores per item (predictive
entropy) on out-of-sample transactions as a function of K, the number of mixture components,
using (a) individuals with at least 10 transactions in the training data with predictions at level 1
with 53 categories (upper left) and at level 2 with 409 categories (upper right) and (b) individuals
with at least 2 transactions in the training data with predictions at level 1 with 53 categories (lower
left) and at level 2 with 409 categories (lower right).
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Figure 6: Retail Clothing Data: Scatter plots of the log probability scores for 5000 randomly
selected out-of-sample transactions, for individuals with at least 10 transactions in the training
data, K = 20 models, plotting log probability scores for the individual-specific model versus log
probability scores for the global weights model. Left: all of the data, Right: close up detail of a
fraction of the data.

30%. The first training/test pair consists of individuals who have 10 or more transactions during
the training period. For this set the training data contains data on 2,941 individuals, 49,388
transactions, and 135,543 separate items purchased. The test data consists of 2,471 individuals
(since some individuals in the training data did not make any purchases during the test period),
15,638 transactions, and 42,577 items purchased.

The second training/test pair consists of individuals who have 2 or more transactions during
the training period. The training data has 56,054 individuals, 217,327 transactions, and 587,439
items. The test data consists of 20,123 individuals, 54,490 transactions, and 148,828 items.

Figure 5 compares the out-of-sample predictive entropy scores as a function of the number of
mixture components K for (a) the mixture-based global weight model (where all individuals are
assigned the same marginal mixture weights), (b) the mixture-based individual-weights model and
(c) the non-mixture MAP histogram method (as a baseline). The two mixture-based approaches
can be seen to outperform the non-mixture MAP histogram approach over almost all values of K.
The mixture-based individual weights method consistently provides the most accurate predictions,
providing a 12% decrease in predictive entropy compared to the MAP histogram method, and a
roughly 1 to 3% decrease compared to non-individualized global mixture weights.

The two mixture models generally provide improved predictions as K is increased from K = 1 to
K = 40 components, after which the curves tend to flatten out and eventually show some evidence
of overfitting (higher entropy) as K increases.

Not surprisingly, predictions at level 1 with 53 categories (the two plots on the left) have much
lower entropy than predictions at level 2 with 409 categories (the two plots on the right).

15



Somewhat less intuitive is the observed difference between the top two plots and the bottom
two plots where the models were trained and tested on individuals with 10 or more, and 2 or more,
transactions respectively. Predictions on the “2 or more” group are systematically better (lower
entropy) than for the “10 or more” group. One might in fact have expected the opposite to occur,
i.e., that the predictions would be better for individuals for whom more historical data is available.
A possible reason that this does not happen is that the “2 or more” group contains a significant
subset of individuals that are more predictable on average than the typical “10 or more group.” In
other words infrequent shoppers show less variability in their purchases. For example, an individual
might buy only very specific items from the store but do most of his or her shopping elsewhere.
Further investigation of this difference between the two groups provided some empirical support
(not shown here) that the “2 or more” dataset may contain a subset of more predictable individuals,
for example, individuals who shop relatively rarely but always purchase the same items.

Figure 6 shows a more detailed scatter plot comparison of the difference between individual
weight predictions and global weight predictions. Here K is fixed at 20 components and each
data point represents the log-likelihood for a particular transaction (a basket) in the test data set.
Generally speaking the individualized weights provide better predictions on many of the transac-
tions, but not on all (some of the predictions are below the diagonal). While most transactions are
grouped in the upper right corner of each plot, there are also some transactions where both models
provide very low-likelihood scores (lower left corner of each plot), corresponding to either large
baskets (multiplying many probabilities together), or low-probability events relative to the model,
or a combination of both. The detailed plot on the right shows an interesting effect of the model,
namely that the highest possible likelihood score of the model is bounded above by the nature
of the underlying mixture model. More specifically, the highest possible probability predictions
for each transaction are constrained by both the maximum component weight being used in the
predictive profile for the individual who generated the transaction, and the maximum probability
value in any component. This is reflected in the “hard cut-off” in logp scores that is evident in the
upper-right corner of figure 6.

The upper plot of Figure 7 shows a set of bar charts for the estimated multinomial mixture
components at level 1, for the “10 or more” group, with K = 20. In the lower part of the figure,
we plot the same set of clusters after using multidimensional scaling (MDS) to determine a two-
dimensional representation for each of the clusters. The MDS solution was obtained by minimizing
the sum of squares of the distances in the two-dimensional solution relative to a proximity matrix
of L1 (absolute) pairwise distances between the multinomial histograms.

The individual component multinomials (top plot) illustrate that most of the mixture compo-
nents are “tuned” to a relatively small set of categories. A few components such as 9, 13, 17, and
19, have a single dominant category. Almost all components, with the exception of component
12, involve items in men’s categories or in women’s categories, but not both (recall that categories
numbered below 25 are primarily men’s clothes and those above 25 are primarily women’s clothes).
This is further reflected in the MDS plot where the cluster of components on the left represents
men’s categories, the cluster on the right represents women’s categories, and component 12 is in
the middle. Due to the proprietary nature of the data we cannot provide full details on the names
of the individual categories. However, the components are quite intuitive: for example, the two
largest probabilities for one component correspond to dress shirts and neckwear, while the three
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Figure 7: Retail Clothing Data: (a) K = 20 multinomial mixture components fitted to the “10 or
more” group, (b) a 2-dimensional MDS plot of the same 20 components. The area of each circle is
proportional to the mixture weight for that component.
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Figure 8: Retail Drugstore Data: plot of the negative log probability scores per item (predictive
entropy) as a function of K, the number of mixture components, using individuals with at least
10 transactions in the training data with predictions at the level of 21 department categories (left)
and at the second level of 151 categories (right).

largest probabilities for another component correspond to sport shirts, slacks, and active wear.

6.3 Experimental Results on the Retail Drugstore Data

For this data set the training data period was defined as the first 50% of transactions (chrono-
logically) and the test data period consisted of the remaining 50%. As with the retail clothing
data, individual-level models were constructed for individuals with 10 or more transactions during
the training period. This resulted in 78,197 individuals in the training data, with 1.90 million
transactions, and 6.01 million items. The test data contained 69,549 individuals, with 1.51 million
transactions, and 4.78 million items. For computational reasons we focused on these frequent cus-
tomers (10 or more transactions) since forecasting their behavior is likely to be of primary interest
in a practical retail setting and fitting individuals with 2 or more transactions (for example) would
have taken an inordinate amount of time to carry out over a range of values of K for a data set of
this size.

Even restricting attention to the “10 or more” data results in a very large data set of 6 million
items. To make the model training more computationally tractable we ran the initialization proce-
dure (to find the global multinomial components and mixture weights used to initialize the second
stage of the EM) using only a 10% random sample of transactions in the full data set. We then
used all of each individual’s transaction data in the full EM procedure to determine the individual
weights. All of the results below for the drugstore data were obtained in this manner. We expect
that the global component structure will be relatively robust to such sampling and we provide
specific evidence of this later in Section 6.6.

Figure 8 compares the predictive entropy scores on the test data, as a function of the number of
mixture components K. Again, the models evaluated are the mixture-based global weights (where
all individuals are assigned the same marginal mixture weights), the mixture-based individual
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Figure 9: Retail Drugstore Data: scatter plots of the log probability scores on for 5000 randomly
selected out-of-sample transactions, for individuals with at least 10 transactions in the training
data, K = 20 models, plotting log probability scores for the individual-specific model versus log
probability scores for the global weights model. Left: all of the data, Right: close up detail of a
fraction of the data.

weights, and the baseline non-mixture MAP histogram method.
For this data the non-mixture MAP histogram is more competitive than for the clothing data

set. For both levels of aggregration (left and right plots) the MAP histogram is actually more
accurate than the most accurate of the global weights mixture model. The individual weights
mixture model is still the most accurate model of all models for large values of K, on both level 1
and level 2 data. It is interesting that on this data the mixture models do not appear to overfit as
a function of K, and the out-of-sample predictive entropy score is still decreasing up to K = 200.
This may be due to the fact that this data set is much larger than the retail clothing data set (in
Figure 5, where overfitting is evident) which had 135,543 transactions for training compared to 1.9
million for training here.

The logp scores for the drugstore data set are systematically lower than those obtained for the
clothing data set in Figure 5. This difference can largely be explained by the fact that clothing
purchases generally have higher entropy across categories than drugstore purchases, e.g., approxi-
mately 5 bits for clothing versus about 2 bits for drugstore for level 1 categories. If we divide the
logp scores in Figure 5 and Figure 8 by the relevant entropies, the resulting normalized scores for
the best of the individual-specific models fall in the range of 75 to 90% of the full entropy, across
both data sets and levels. Thus, the main differences in predictability across the two data sets
appears to be explained by an overall difference in entropy across categories in the two data sets.

Figure 9 shows scatter plots of individual weight predictions versus global weight predictions
for transactions in the test data set. As with the clothing data, the predictions using individualized
weights can be seen to be systematically more accurate for specific transactions (although not
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universally more accurate).
Figure 10 shows bar charts for the estimated multinomial mixture components at level 2, for

the “10 or more” group, with K = 20. We see again that each of the multinomial components tend
to be “tuned” to a relatively small set of categories. In the lower part of the figure, we again show
a two-dimensional MDS plot generated in the same manner as for the clothing data components
earlier in Figure 7.

6.4 Interpretation of Multinomial Components

Table 2 describes the estimated component models at level 2 for the drugstore retail data. We
only list high-frequency items (or categories) that have lift ratios significantly greater than 1. A
lift ratio is defined as the probability of an item being purchased given the component compared
to the probability of an item being purchased in general. The components reveal some interesting
structure in the data. First, the components are intuitive—similar items tend to appear together
in the same component. For example, the first cluster can be characterized as generic medicine,
clusters 2 and 9 as feminine personal care products, cluster 3 as household products, and cluster
4 as baby products. This suggests that baskets are actually less heterogeneous than one might
expect. One explanation is that in Japan, unlike their US counterparts, retail drugstores are
usually smaller in size and often located in neighborhoods that are within walking distances of
customer’s homes. Shoppers pay short and frequent visits, each time simply buying targeted items
from a few categories. Thus, a typical basket tends to concentrate on similar items.

The multinomial mixture model detects dependencies among items that might not otherwise be
apparent. For example, for component 1 (vitamins, stomach medicine, etc.), there are about 195,000
baskets in the training data that are most likely to have come from this component according to
the model. Individual high-lift items shown in Table 2 (such as vitamins and stomach medicine)
are about 4 to 7 times more likely to be present in this set of baskets than in the rest of the
baskets. Pairs of such items are even more likely to be present. For example, one is 18 times
more likely to find both vitamins and stomach medicine in a random basket from component 1,
than in a random basket chosen from the remainder of the baskets. It is interesting to note that
such dependencies would not be uncovered by association rules. For example, the conditional
probability (or “confidence” in association rule terminology) of stomach medicine given vitamins
is only about 0.05 across all baskets. This is rather low and would be well below the typical
“confidence thresholds” used in association rule analyses.

In fact many such conditional probabilities relating pairs of items are quite low in this data
set. This is due to the confounding effect of the relatively large percentage of baskets that only
have a single item in them (35% overall). This “single item effect” leads to a negative correlation
between virtually all pairs of items in the data (since purchasing an item lowers the probability of
any additional item being purchased). In turn this makes dependency detection rather difficult if
based directly on conditional probabilities.

The mixture model approach tends to construct multinomial components that group together
items that co-occur with each other, even if such pairings are not common. Component 19 provides
an interesting example. It consists of 31,000 baskets and suggests an association between alchohol,
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Figure 10: Retail Drugstore Data: (a) K = 20 multinomial mixture components fitted to the “10
or more” group, (b) a 2-dimensional MDS plot of the same 20 components. The area of each circle
is proportional to the mixture weight for that component.21



Table 2: High lift items and associated probabilities for the K = 20 components (clusters) in the
drugstore data, level 2.

Cluster k=1, Weight=0.102 (194760 Baskets)
Item P(Item|k) P(Item) Lift
External Pain Killer 0.0744 0.0110 6.8
Eye Drops 0.0627 0.0111 5.6
Vitamins 0.0588 0.0088 6.7
Stomach and Intesti-
nal Medicine

0.0553 0.0090 6.2

Skin Medicine 0.0503 0.0111 4.5

Cluster k=2, Weight=0.090 (171222 Baskets)
Item P(Item|k) P(Item) Lift
Basic Cosmetics 0.1513 0.0224 6.8
Makeup Cosmetics 0.0940 0.0103 9.1
Hair Care Products 0.0929 0.0190 4.9
Cosmetics Products 0.0603 0.0086 7.0

Cluster k=3, Weight=0.087 (166125 Baskets)
Item P(Item|k) P(Item) Lift
Kitchen Cleaner 0.1956 0.0468 4.2
Fabric Softener 0.1910 0.0392 4.9
House Cleaner 0.1425 0.0354 4.0
Laundry Detergent 0.0803 0.0389 2.1

Cluster k=4, Weight=0.084 (159132 Baskets)
Item P(Item|k) P(Item) Lift
Baby Diaper 0.3097 0.0360 8.6
Milk Powder 0.1144 0.0130 8.8
Lactation and Wean-
ing Products

0.0467 0.0050 9.4

Baby Skin Care Prod-
ucts

0.0288 0.0044 6.6

Cluster k=5, Weight=0.081 (154382 Baskets)
Item P(Item|k) P(Item) Lift
Shampoo and Condi-
tioner

0.2413 0.0406 5.9

Laundry Detergent 0.1461 0.0389 3.8
Soap 0.0762 0.0174 4.4

Cluster k=6, Weight=0.061 (115911 Baskets)
Item P(Item|k) P(Item) Lift
Paper Products 0.6183 0.0929 6.7

Cluster k=7, Weight=0.057 (108696 Baskets)
Item P(Item|k) P(Item) Lift
Toothbrush 0.3200 0.0327 9.8
Toothpaste 0.0873 0.0282 3.1

Cluster k=8, Weight=0.054 (102972 Baskets)
Item P(Item|k) P(Item) Lift
Air Freshener 0.1235 0.0142 8.7
Deodorizer 0.0756 0.0089 8.5
Table Seasoning 0.0572 0.0055 10.4

Cluster k=9, Weight=0.053 (100269 Baskets)
Item P(Item|k) P(Item) Lift
Sanitary Napkins 0.3142 0.0286 11.0
Tampons 0.0415 0.0029 14.1

Cluster k=10, Weight=0.045 (86276 Baskets)
Item P(Item|k) P(Item) Lift
Food Wrappers 0.3641 0.0345 10.6

Cluster k=11, Weight=0.045 (85330 Baskets)
Item P(Item|k) P(Item) Lift
Bottled Strengthen-
ing Drinks

0.6075 0.0363 16.8

Cold Medicine 0.0325 0.0147 2.2

Cluster k=12, Weight=0.042 (79862 Baskets)
Item P(Item|k) P(Item) Lift
Cold Medicine 0.1930 0.0147 13.1
Internal Pain Killer 0.1244 0.0087 14.3
Cough Medicine 0.0643 0.0036 17.8
Throat Drops 0.0417 0.0027 15.7
Regulated Medicines 0.0399 0.0034 11.7

Cluster k=13, Weight=0.037 (70780 Baskets)
Item P(Item|k) P(Item) Lift
Light Medical Treat-
ment Products

0.2945 0.0156 18.9

Nursing Care Suppl. 0.2069 0.0096 21.5
Bandages 0.0526 0.0079 6.6
Skin Medicine 0.0408 0.0111 3.7

Cluster k=14, Weight=0.033 (61848 Baskets)
Item P(Item|k) P(Item) Lift
Cleaning Tools 0.4491 0.0319 14.1

Cluster k=15, Weight=0.029 (56060 Baskets)
Item P(Item|k) P(Item) Lift
Baby Food 0.5105 0.0241 21.2
Baby Diaper 0.0822 0.0360 2.3
Milk Powder 0.0818 0.0130 6.3
Lactation and Wean-
ing Products

0.0301 0.0050 6.1

Cluster k=16, Weight=0.027 (51802 Baskets)
Item P(Item|k) P(Item) Lift
Insecticides 0.4291 0.0163 26.3
Anti-itch Cream for
mosquito-bites

0.0690 0.0063 11.0

Cluster k=17, Weight=0.022 (42083 Baskets)
Item P(Item|k) P(Item) Lift
Body Warmers 0.5204 0.0170 30.7

Cluster k=18, Weight=0.018 (34849 Baskets)
Item P(Item|k) P(Item) Lift
Mothballs 0.2895 0.0093 31.2
Kitchen Gloves 0.0917 0.0047 19.5
Dehumidifiers 0.0729 0.0027 26.7

Cluster k=19, Weight=0.017 (31477 Baskets)
Item P(Item|k) P(Item) Lift
Snacks 0.2271 0.0077 29.6
Constipation Medic. 0.2157 0.0070 31.0
Alcoholic Drinks 0.0484 0.0008 58.6
Processed Foods 0.0276 0.0012 22.6

Cluster k=20, Weight=0.014 (26907 Baskets)
Item P(Item|k) P(Item) Lift
Beverages 0.3511 0.0075 46.7
Contact Lens Cleans. 0.1357 0.0066 20.5
Shaving Products 0.0576 0.0045 12.8
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Figure 11: Plot of the CPU time to fit the global and individual weight mixture models, as a
function of model complexity (number of components K), with a linear fit superposed on the time
measurements (left: retail clothing data, right: retail drugstore data).

junk food (snack foods and processed foods), and constipation medicine1. The conditional proba-
bilities relating these pairs of these items are again quite low due to the single-item basket effect.
For example, the conditional probability of constipation medicine given processed food is only 0.03.
Nonetheless, one is 140 times more likely to find both of these items in a randomly chosen basket
that belongs to this component, than in a random basket not in the component, i.e., they co-occur
much more frequently among baskets from this component.

It also turns out that only about 1500 baskets in total contain alcohol out of the 1.9 million
baskets in the training data, and about 1460 of these baskets are most likely to belong to component
19 given the model. Thus, alcohol is very rarely purchased, but if it is purchased then the basket
containing it is highly likely to be from component 19 in this model. Furthermore, if an individual
has purchased alcohol, the empirical evidence suggests that they are 20 times more likely to have
purchased processed foods, than if they did not purchase alcohol. This suggests a significant
dependence between the two items.

In “drilling down” to examine the composition of baskets assigned to various components we
have systematically found many subtle dependencies of this nature that lend further interpretability
to the item groupings in Table 2. Analyzing basket structure at the component level provides
insights that might not be realized by untargeted mining across the entire sample. Thus, the latent
component variables serve to focus attention on key structural dependencies that would otherwise
not be noticed.

6.5 Scalability Experiments

We conducted some simple experiments to determine how the methodology scales up computation-
ally as a function of model complexity. We recorded the CPU time for the EM algorithm as a

1This might serve as a possible replacement for the widely quoted (but thought to be apocryphal) association rule
linking beer and diapers!
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function of the number of components K in the mixture model. The experiments were carried out
on a Pentium III 1 Ghz machine with 512MB RAM (no paging). The CPU times for estimation
of global (α̂) and individual weights (α̂i) were both recorded. The estimation methodology was
the same as prescribed in table 1 in section 4. The global weights and components correspond to
parameters estimated during the initialization procedure, and individual weights and components
correspond to those obtained after convergence of the full EM procedure.

While the time-complexity per iteration of EM is linear in K, one might anticipate that EM
would require more iterations to converge as K increases, due to the possibility of more overlap
among the component models and/or local maxima in the likelihood surface. Figure 11 shows that
(for these data sets at least) this does not happen in practice and that the total convergence time of
EM remains roughly linear in K. Note that there is a constant multiplicative factor in computation
time between the global and individual weight methods. In the individual weight method we use the
parameters of the global model as the starting point and learn individualized weights while slightly
adjusting the multinomial mixture components. The extra computation required by the second
phase (“full EM”) appears empirically to be a relatively constant fraction of the time taken by the
first stage to learn the global component structure. Note that in learning the global component
structure (the initialization procedure of table 1) we use 20 random starts, while for the full EM
procedure we only use a single start.

Note also that for the figure on the right, the drugstore data, the global component model is
trained on only a 10% sample of transactions in the full data set. Thus, in this case, the additional
time to estimate the individual weight model (the vertical distance to the line above it on the
graph) is relatively larger than for the figure on the left, since in the full EM procedure the full
data set is being used to fit the model (10 times more data than was used to fit the global model).

6.6 Estimation Methodology: Sensitivity Experiments

In this section we investigate the effect on predictive accuracy of (a) using a random sample rather
than the full data set in the initialization procedure, and (b) using a “single-phase” EM procedure
without our initialization phase where we do not use the global model to initialize the individual-
specific model.

6.6.1 Initialization on Random Samples versus the Full Data

We examined the sensitivity of the individual weight estimation procedure when the initialization
procedure (consisting of estimation of the global mixture model) is based on a 10% random sample
of the full data set, compared to using all of the data. We used the same general EM methodology
as used throughout the paper (summarized in Table 1), the only difference being the amount of
data used in the initialization stage.

We used the clothing data set for these experiments since it takes far less time to train than the
much larger drugstore data. Figure 12 shows the out-of-sample predictive accuracy. The average
accuracies from the random sample method are virtually indistinguishable from those obtained
using the full data during initialization. This indicates that the global mixture components reflect
large-scale structure in the data and are not particularly sensitive to the specific training data
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Figure 12: Predictive accuracy at level 1 on out-of-sample retail clothing data (as a function of
K), using individuals with at least 10 transactions in the training data, comparing the proposed
estimation procedure using all of the training data during the initialization phase with an approach
that only uses 10% of the training data in the initialization phase.

sample used for estimation. This is useful from a practical viewpoint since fitting the global model
during initialization can take a significant fraction of the overall time required for model estimation
(e.g., see Figure 11). To put this in perspective, for 200 components for the drugstore data, the
time difference in training is 3 hours for the random sampling method versus 30 hours for the full
data method.

6.6.2 Single-Stage EM versus Two-Stage EM

The approximate empirical Bayes estimation procedure that we use could be replaced by a more
direct “typical” single-stage EM procedure. Specifically, rather than first estimating data-driven
priors ξ in the manner described earlier, we can use a “single-stage” EM approach that maximizes
the objective function defined in Equation 6 treating the prior parameters ξ as additional param-
eters to be maximized over, and using a non-informative approach as in Table 1 for setting the
multinomial component prior parameters γ. In Figure 13 we compare both approaches in terms of
predictive accuracy on the retail clothing data as a function of K. The single-stage EM procedure
consists of running EM from 20 random starting values for the parameters and selecting the highest
MAP solution, where both components and individualized weights are estimated. The two-stage
EM procedure is the same as that described earlier in the paper in Table 1.

Our proposed procedure is seen to be just as accurate as the alternative single-stage procedure.
In fact, for values of K greater than about 30, the two-stage procedure is more accurate out-of-
sample than the single-stage approach.

Our two-stage approach has two distinct practical advantages over the simultaneous approach.
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Figure 13: Predictive accuracy at level 1 on out-of-sample retail clothing data (as a function of K),
using individuals with at least 10 transactions in the training data, comparing the proposed EM
procedure (individualized mixture model) with a single-stage EM procedure.

First, from an estimation viewpoint, because of the size of the data set, the global structure can be
precisely estimated (during initialization) on a subsample of the data with the resulting parameter
estimates being relatively robust to noise in the sample (as shown earlier). Such subsampling,
however, cannot be used in a single-stage EM procedure since all the individualized weights need to
be updated at each EM iteration and, hence, each data point must be visited at each EM iteration.

Second, from a computational viewpoint, because the global structural component parameters
are estimated in the first stage, future updating of individual weights of new customers can be highly
efficient if one can afford to keep the global mixture components fixed. This would be the case, for
example, if the global distribution did not change appreciably by adding new customers. In this
case updating of the individual-specific model consists of updating only the individualized mixture
weights. This can be performed independently of other individuals and is therefore extremely fast.
This feature can be exploited to perform online updating given a stream of transactions and/or the
arrival of new customers and is therefore particularly relevant to customer profiling in e-commerce
environments, for example, where real-time profiling is often quite important. The single-stage
methodology, on the other hand, would require rerunning estimation of both the global component
parameters and the individual weights every time new customers or new transactions are added.

From these experiments we conclude that there is strong empirical evidence to suggest that the
fitting of global components is relatively robust on these data sets. Hence, in practice, a reasonable
and practical strategy is to first estimate the global components (perhaps on a sample of the data)
and then to update individual weights as new data arrives relative to this fixed global set of mixture
components. If non-stationarity is suspected (e.g., changes in products or pricing, new types of
customers, etc.) the global mixture components can be periodically re-estimated (e.g., see Cadez
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& Bradley, 2001).

7 Assessment of the Model

The model proposed in this paper addresses heterogeneity of individual purchasing behavior. It
predicts which products an individual is likely to purchase, but not how many or when they will
be purchased. Thus, there are several aspects of purchasing behavior that the proposed model
does not directly address. A fully generative model would proceed for each individual by (a)
generating transaction events at a certain rate over time, (b) generating the number of items for
each transaction given that the event occurred, and (c) then predicting the distribution of individual
categories given the total number of items. Our present model only addresses part (c) of this model.

In principle it is straightforward to add components to the present model to handle parts (b) and
(c) because the generative process can be factored into conditional probabilistic components (i.e.,
(c) is conditioned on (a) and (b), (b) is conditioned on (a)). For example, to predict the number
of items in a basket (part (b) above), a parametric (e.g., geometric) model could be applied at the
individual level (different individuals purchase different numbers of items and are each allowed their
own basket size model) or at the mixture component level (certain types of purchasing behavior
lead to characteristic distributions in terms of basket size).

The rate at which transactions are generated (part (a) above) can also be modeled as a stationary
event process (e.g., a homogeneous Poisson process). Predictable time-varying effects such as
seasonality could be handled by adding a non-homogenous seasonal Poisson process (e.g., Cox &
Isham, 1980) that governs the rate at which purchases are generated over a time interval. For
retail purchasing such as clothing, there are often strong seasonal patterns present in the data,
e.g., the purchase of warmer clothes in the fall and winter, vacation clothes in the spring and
summer, and so forth. By modeling temporal aspects of the problem in this fashion, predictions
from the model proposed in this paper would then be modulated by an overall “store visit rate”
or “component purchase rate.” In the experiments described in this paper the time interval for
the test data extended over several months (7 months for the clothing data and 12 months for the
drugstore data), and thus, seasonal effects are somewhat averaged out in time. In general, however,
an appropriate seasonal model could allow the current predictive model to achieve more accurate
forecasts out of sample.

So far we have assumed that customers are consistent in their shopping patterns. This assump-
tion is at best a crude approximation since in practice customer behavior is often non-stationary in
nature. For example, certain shoppers will make purchases at a relatively constant rate up to some
time t and then no purchases are registered for the remainder of the duration for which we have
observations. One might infer that such customers are in effect no longer “active” at this store.
However, reliably detecting such inactivity is quite difficult given the sparsity of the data available
on typical customers. Nonetheless, inference about a simple binary variable over time (to indi-
cate active or inactive) would likely be quite useful in practice (Schmittlein, Morrison & Colombo,
1987), e.g., by adding Markov modulation to the Poisson rate process described above (e.g., see
Scott, 1999). Adding a component to handle non-stationarity in customer purchase behavior would
remedy a limitation of the current model—namely, results are only scored on the distribution of
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items purchased by any customer, but not the number, so the model is in effect not penalized if a
customer purchases zero items in the future.

The mixture of multinomials transaction model could also be generalized to the mixture of
conditional independence model (of which it is a special case), as discussed earlier. Furthermore,
instead of assuming that each individual basket is being generated by a specific mixture component
multinomial, a more realistic assumption might be that baskets are composed of mixtures of basic
“behavioral components” in a manner similar to modeling documents as mixtures of basic topic
components (e.g., Hoffman, 1999). For example, an individual might have a basket of items that
reflects two “behaviors”: purchasing of vacation clothes and purchasing of business clothes, all
mixed in the same basket. We suspect that although such mixed baskets may be present in the
data, that the majority of baskets are not of this form and will be more than adequately handled
by the current model.

It should also be pointed out that in this paper we have only demonstrated the methodology
on relatively low-dimensional problems (up to 500 categories), at least low-dimensional in terms of
typical retail transaction data sets. As we descend the product hierarchy from departments all the
way down to specific products (the so-called “SKU” level), there can be thousands of different items
in a typical retail transaction database. It remains to be seen whether the type of probabilistic
model proposed in this paper can computationally be scaled to this level of granularity. We believe
that the mixture models proposed here can indeed be extended to model the full product tree, all
the way down to the leaves. The sparsity of the data, and the hierarchical nature of the problem,
tends to suggest that hierarchical Bayesian approaches will play a natural role here, where again
it seems likely that the probabilistic models we have used will tend to match well to a hierarchical
product structure. We leave further discussion of this topic to future work.

Further extensions of the model can be achieved by incorporation of customer information
if available (e.g., demographics, psychographics, and other behavioral attributes such as those
collected from credit card information). Such data could be used to enhance parameter estimates
in the existing model, in the same way that information is borrowed across baskets to enhance
individual profiles. As an example, one could incorporate a regression model into the existing
empirical Bayes framework for estimating individual weights, where the variables above act as
independent covariates and the individual weight for each individual is the dependent variable.

In summary, we present an interpretable and tractable approach to modeling of transaction
data, where we focus on certain aspects of purchasing behavior, while other important aspects such
as purchasing rates are ignored. We believe that, nonetheless, our proposed model and experimental
results represent important first steps in probabilistic modeling of large-scale transaction data.

8 Related Work

Transaction data has received considerable attention from data mining researchers, going back to
the pioneering work of Agrawal, Imielenski and Swami (1993) on association rules. Association
rules present a different approach to transaction data analysis, searching for “directional” rules in
the form of conditional probabilities for the purchase of item A given the purchase of items B and C,
etc. These rules in effect represent correlations (associations) between particular sets of items. Our
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work here complements that of association rules in that we develop an explicit probabilistic model
for the full joint distribution, rather than sets of disjoint conditional and joint probabilities (which
is one view of association rules, see Pavlov, Mannila & Smyth, 2000). Indeed, one can interpret the
multinomial probability mixture components as representing sets of associations among items in a
manner somewhat similar to that of association rules (by representing sets of items that co-occur
frequently in the data, e.g., see Figures 3, 7, and 10, and Table 2), but where the associations are
constrained to form a global coherent probability model rather than being represented simply as a
set of rules.

For forecasting and prediction it can be argued that the model-based approach (such as that we
propose here) is a more systematic framework. As discussed earlier we can in principle integrate
time-dependent factors (e.g., seasonality, non-stationarity), covariate measurements on customers
(e.g., knowledge of the customer’s age, educational-level) and other such information, all in a
relatively systematic fashion. We note also that association rule algorithms depend fairly critically
on the data being relatively sparse (e.g., Bayardo, 1998). In contrast, the model-based approach
proposed here should be relatively robust with respect to the degree of sparseness of the data.

Other approaches have also been proposed for clustering and exploratory analysis of transaction
data, but typically within a non-probabilistic framework (e.g., Strehl and Ghosh, 2000).

In the statistical literature, the general idea of using finite mixtures as a flexible modeling
approach for discrete and categorical data has been known for many years, particularly in the
social sciences under the rubric of latent class analysis (Lazarsfeld & Henry, 1968; Bartholomew
& Knott, 1999). Typically these methods are applied to relatively small and low-dimensional data
sets. More recently there has been a resurgence of interest in mixtures of multinomials and mixtures
of conditionally independent Bernoulli models for modeling high-dimensional document-term data
in text analysis (McCallum, 1999; Hoffman, 1999; Vinokourov & Girolami, to appear).

In the marketing literature there have also been numerous relatively sophisticated applications
of mixture models to retail data (see Wedel and Kamakura, 1998, for a review). Typically, however,
the focus here is on the problem of brand choice, where one develops individual and population-level
models for consumer behavior in terms of choosing between a relatively small number of brands
(e.g., 10) for a specific product (e.g., coffee).

In several recent applications, a hierarchical Bayes framework has been developed to include
mixtures of normals for distributions of individual price sensitivities (Allenby, Arora, & Ginter,
1998), and the simultaneous modeling of quantity purchase and choice (Arora, Allenby, & Ginter,
1998). In these applications either scanner panel data or survey data were used. However, the
analyses were often limited to single specific products and not market baskets across multiple
categories.

The work of Breese, Heckerman and Kadie (1998) and Heckerman et al. (2000) on probabilistic
model-based collaborative filtering bears some similarities in spirit to the approach described in
this paper except that we focus directly on the problem of individual profiles (i.e., we have explicit
models for each individual in our framework).

Our work can be viewed as being an extension of this broad family of probabilistic and statistical
modeling ideas to the specific case of transaction basket data, where we explicitly deal with the
problem of making inferences about specific individuals and handling multiple transactions per
individual.
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9 Conclusions

In this paper we investigated the use of mixture models and approximate Bayesian estimation
techniques for automatically inferring individual-level profiles from transaction data records. On
two large real-world retail data sets the proposed framework consistently outperformed alternative
approaches in terms of the accuracy of predictions on future unseen customer purchasing behavior.
Furthermore, our proposed estimation approach appears to be quite scalable to large data sets.
The methodology appears to provide an interpretable and practical framework for a variety of
transaction data applications including exploratory data abalysis, personalization, and forecasting.
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APPENDIX

A EM Methodology and Scoring Details

In this Appendix we derive the EM algorithm and the corresponding update equations for the
individual-specific model, taking into account prior distributions on the parameters.

A.1 Notation

We expand the notation introduced in section 2 in order to more precisely describe the models
and learning tasks. According to the independence assumptions, we can write the likelihood of the
parameters for a given data set D as the probability of observing the data, under the individual-
specific model:

P (D|Θ) =
N∏

i=1

ni∏

j=1

K∑

k=1

αikP (yij |θk). (8)

In this section we concentrate on the “final full EM” estimation of the individual-specific model
(Table 1) since the EM algorithm for the initialization procedure is quite straightforward and well
known in the literature, namely, EM-based MAP estimation of mixture models with multinomial
components.

For the individual-specific model we use priors on individual weights and work within a general
maximum a posteriori (MAP) framework. The objective function we are interested in maximizing
is the posterior distribution of the mixture parameters Θ:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
∝ P (D|Θ)P (Θ), (9)
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where the parameters Θ consist of all the mixture model parameters:

Θ = {θ1, . . . , θK , α1, . . . ,αN},

θk = {θk1, . . . , θkC},
C∑

c=1

θkc = 1,

αi = {αi1, . . . , αiK},
K∑

k=1

αik = 1. (10)

The distribution we use to describe each basket yij , as mentioned earlier, is a multinomial:

P (yij |θk) ∝
C∏

c=1

θ
nijc

kc , (11)

where the constant of proportionality depends only on basket yij , but not on the parameters θ
and is therefore omitted. The prior term P (Θ) in Equation 9 consists of a weight-prior and a
multinomial parameter-prior. This can be decomposed as:

P (Θ) =
K∏

k=1

P (θk|γ)
N∏

i=1

P (αi|ξ), (12)

where we use Dirichlet priors with parameters ξ and γ:

P (αi|ξ) ∝
K∏

k=1

αξk
ik ,

P (θk|γ) ∝
C∏

c=1

θγc

kc. (13)

For individualized weights the parameters of the Dirichlet prior are proportional to the estimates
of global weights α̂ from the initialization procedure:

ξ = ξessα̂, (14)

where the scalar ξess represents the so-called equivalent sample size (ESS). The value of ESS we
use for the individual-weight prior in the experiments reported in this paper is ξess = 5. This is
equivalent to specifying that each individual has 5 baskets a priori, each of which “belongs” to the
global mixture components in proportions defined by the global weights α̂.

We use a simple “flat” prior for the multinomial parameters where γc = 10−5 for each c =
1, . . . C. This particular prior smooths multinomial estimates away from zero probabilities (that
drive the loglikelihood to −∞), in essence leaving the data to largely determine the non-zero values
of the estimated multinomial probabilities.
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A.2 The MAP Optimization Framework

To derive the necessary equations used for obtaining MAP parameters, we write the log of Equa-
tion 9 in a fully expanded form:

log P (Θ|D) =
N∑

i=1

ni∑

j=1

log

[
K∑

k=1

αikP (yij |θk)

]
+

N∑

i=1

log P (αi|ξ) +
K∑

k=1

log P (θk|γ). (15)

We define the class-posterior distribution, Pij,k on each basket ij, as the probability that the basket
was generated by the k-th mixture component given the data. If we denote by cij the component
that generated basket yij , we can write the class-posterior distribution as:

Pij,k = P (cij = k|yij) =
P (yij |cij = k)P (cij = k)

P (yij)
=

αikP (yij |θk)∑K
k′=1 αik′P (yij |θk′)

,

P̄ij,k = Pij,k|Θ=
¯Θ, (16)

where the lower equation represents the class-posterior calculated for a specified set of parameters
Θ̄. The primary quantity in using the EM algorithm for MAP parameter estimation is the so-
called Q function that represents the expected value of the log-posterior (Equation 15) over the
class-posterior distribution (Equation 16) using the “current” parameters Θ̄:

Q(Θ, Θ̄) =
N∑

i=1

ni∑

j=1

K∑

k=1

P̄ij,k log [αikP (yij |θk)] +
N∑

i=1

log P (αi|ξ) +
K∑

k=1

log P (θk|γ). (17)

At each EM iteration the Q function is maximized with respect to the parameters Θ using the
current parameters Θ̄. At the end of each iteration, a set of new optimal parameters Θ becomes
the current parameters Θ̄ for the next iteration. To calculate the optimal parameters we maximize
the Q function subject to the constraints that each of the weight and multinomial parameters sum
to 1. In order to perform constrained maximization, Lagrange multipliers λ (one for each parameter
constraint) are introduced. The estimating equations for individualized weights are as follows:

∂

∂αik

[
Q(Θ|Θ̄)− λ

K∑

k′=1

αik′

]

αik=α̂ik

= 0,

ni∑

j=1

P̄ij,k
1

α̂ik
+

ξk

α̂ik
− λ = 0, (18)

from which it follows that

λα̂ik =
ni∑

j=1

P̄ij,k + ξk. (19)

Summing Equation 19 over k we obtain an expression for the Lagrange multiplier λ:

λ =
ni∑

j=1

K∑

k=1

P̄ij,k +
K∑

k=1

ξk = ni + ξess . (20)
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The last equality follows from the fact that
∑K

k=1 P̄ij,k = 1 and Equation 14. Upon substituting
λ into Equation 19 and solving for individualized weights, we obtain the final update equation for
individualized weights:

α̂ik =
1

ni + ξess




ni∑

j=1

P̄ij,k + ξk


 . (21)

Similarly, we can optimize the Q function with respect to the multinomial parameters θ:

∂

∂θkc

[
Q(Θ|Θ̄)− λ

C∑

c′=1

θkc′

]

θkc=θ̂kc

= 0,

N∑

i=1

ni∑

j=1

P̄ij,k
nijc

θ̂kc

+
γc

θ̂kc

− λ = 0, (22)

which yields the following update equation for the multinomial parameters θ̂:

θ̂kc =
∑N

i=1

∑ni
j=1 P̄ij,knijc + γc

∑C
c′=1

[∑N
i=1

∑ni
j=1 P̄ij,knijc + γc′

] . (23)

A.3 Scoring New Baskets

Suppose user i makes a purchase in the out-of-sample period. Under the individual-specific model,
a new basket y is scored according to the following equation:

P (y|Θ̂, D) = P (y|Θ̂) =
K∑

k=1

α̂ikP (y|θ̂k), (24)

Note that individualized weights α̂i for individual i are used for predictive scoring. If the new
basket y is generated by an individual that has not been observed in the training dataset D,
then individualized weights α̂i do not exist for that individual. This problem is solved by noting
that the individual can be considered to have been present in the training dataset D but that
his or her corresponding number of transactions was 0. For such an individual the estimate of
the individualized weights α̂i is independent of the model parameters and can be obtained from
Equation 21 as:

α̂ik =
1

0 + ξess

ξk = α̂k, (25)

leading to the following score:

P (y|Θ̂, D) = P (y|Θ̂) =
K∑

k=1

αkP (y|θ̂k) =
K∑

k=1

ξk

ξess

P (y|θ̂k). (26)

Here we explicitly replace the global weights α by the weight-prior ξ in order to make the notation
consistent.
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