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Clustering and prediction of sets of curves is an important problem in many areas

of science and engineering. Most clustering algorithms operate on fixed-dimensional

feature vectors, and as a result, curve analysis is often forced into this unnatural

paradigm. Perhaps more importantly, curves tend to be misaligned from each other

in a continuous manner, either in space (across the measurements) or in time. How-

ever, the notion of time within a feature-vector is very rigid corresponding only to

the discrete dimensional setup of the space itself.

In contrast to this, we develop a probabilistic framework that allows for the joint

clustering and continuous alignment of sets of curves in curve space. Our proposed

methodology integrates new probabilistic alignment models with model-based curve

clustering algorithms. The probabilistic approach allows for the derivation of consis-

tent EM-type learning algorithms for the joint clustering-alignment problem. Both

simulated and real-world datasets are used for detailed experimentation, with two

extensive applications to the clustering of cyclone trajectories presented.
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Chapter 1

Introduction

This dissertation is concerned with the central hypothesis that clustering and align-

ment should not be carried out in isolation, but instead the symbiotic relationship

between a clustering and an alignment can be exploited to increase the predictive

modelling ability of each method in concert. We introduce a novel methodology for

the clustering and prediction of sets of smoothly varying curves while jointly allowing

for the learning of sets of continuous curve transformations.

An isolated strategy that tackles the clustering and alignment problems in a

two-step sequential manner is sub-optimal. For example, suppose a set of curve

data is first preprocessed to effect an alignment and then used for subsequent clus-

tering. In the presence of distinct cluster-specific alignment behavior, the initial

alignment will be poor (see example below). The resulting clusters will not describe

the true underlying group behavior since the preprocessing has incorrectly mixed-up

the data. The opposite strategy of performing an initial clustering without regard

for cluster-specific alignments, followed by a within-cluster alignment procedure, is

also a suboptimal approach since the initial clustering may be misled by variation

in the data due to misalignment.
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An example of these effects with simulated data is shown in Figures 1.1 and 1.2.

Curves were sampled (with additive noise) from three underlying polynomials at ran-

domly translated points in time. The resulting curves are shown in Figure 1.1(a) with

unknown class labels and alignments. The same curves are shown in Figure 1.1(b)

with known class labels, and in Figure 1.1(c) with known labels and alignments.

Application of the joint clustering-alignment methodology introduced in this thesis

to the simulated data in Figure 1.1(a) results in the clusters shown in Figure 1.2(a).

The recovery of both the class labels and the alignments is accurate. The plot in

Figure 1.2(b) shows the clustering obtained by using a two-step procedure of first

aligning the data and then clustering. Neither the class labels nor the alignments

are accurately recovered with this procedure.

Our approach in solving this complex clustering and alignment problem is to

formulate models for both the clustering and alignment sub-problems and integrate

them into a unified probabilistic framework that allows for the derivation of consis-

tent learning algorithms. For the alignment sub-problem, we introduce a novel curve

alignment procedure employing model priors over the set of possible alignments and

derive EM learning algorithms that formalize the so-called Procrustes approach for

curve data. The Procrustes approach can be recognized as an iterative procedure

that aligns a set of curve data to a current mean (or other target) which itself is

then updated based on the current set of alignments (Ramsay & Silverman, 1997;

Silverman, 1995). In this way, the iterations between the E- and M-steps in our EM

alignment algorithms suggest this Procrustes behavior. These alignment models are

then integrated into a finite mixture model setting in which the clustering is car-

ried out. We make use of both polynomial and spline regression mixture models to

complete the joint clustering-alignment framework.
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(c) Data with labels and alignments

Figure 1.1: Simulated curve data with unknown clusters and alignments: (a) data
as presented to clustering algorithm, (b) same data with known cluster labels, (c)
same data with known cluster labels and alignments.
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(a) Joint clustering-alignment
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(b) Sequential alignment and clustering

Figure 1.2: Learned clusterings with joint and sequential approach: (a) clusters and
alignments jointly learned using the clustering models introduced in this thesis, (b)
clusters and alignments learned by first aligning and then clustering the data.

In the remainder of this chapter, we provide a brief introduction and motivation

for our proposed methodology, followed by a chapter outline that emphasizes the

main contributions of this work. The introduction is closed with a section defining

the notation used throughout this document.

1.1 Motivation for curve clustering

Clustering is typically used as a tool for understanding and exploring large data

sets. Curve clustering as a methodology can be seen to focus on specific types of

data sets and those algorithms that are tailored to operate on curves as a unit.

Traditionally, clustering algorithms have operated on points or on feature vectors of

fixed-dimensional size. In contrast, however, curves commonly consist of a variable

number of measurements, observed over measurement intervals of varying size, with

any number of missing observations. Principal among the contrasts with feature

vectors is that curves contain smoothness information which constrain the way in

which observations vary from one measurement to the next. Clustering methods
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like K-means (Hartigan & Wong, 1978) or Gaussian mixtures (Banfield & Raftery,

1993), for example, proceed without regard to this. This loss of potentially valuable

smoothness information can lead to reduced clustering performance.

Curve-type datasets are increasingly available due in part to large-scale data col-

lection in the scientific community. For example, Figure 1.3 shows a set of trajectory

data from the atmospheric sciences. The trajectories represent of a number of extra-

tropical cyclones that were tracked over the North Atlantic in the winter months

(November to April) from 1980 to 1995 (Gaffney et al., 2001). The cyclone trajec-

tories are plotted as tracks on a map of the North Atlantic at the corresponding

latitude-longitude positions of the center of the cyclones. The circles indicate initial

starting positions for each of the cyclone tracks. The curve data here is multidi-

mensional with respect to time (i.e., there is a two dimensional lat-lon observation

vector at each time point). The curves do not have equal lengths since cyclones have

variable length lifetimes.

Extra-tropical cyclones are the cause of significant damage in the Northern hemi-

sphere (Schubert et al., 1998), and their genesis, evolution, and links to large-scale

atmospheric effects are not well understood (Murray & Simmonds, 1991). Clustering

in this context provides a useful tool for exploring this data set.

Figure 1.4 depicts another set of trajectories tracking the center of a person’s

hand as it moves through a short video scene (Gaffney & Smyth, 1999). The x-axis

is time while the y-axis is the vertical location in pixel coordinates of the centroid of

a person’s moving hand (relative to a fixed coordinate frame). The solid and dotted

lines represent two different motions across the scene (a left-to-right movement, and

a right-to-left movement). A clustering algorithm would attempt to recover the

groups of hand movements represented by the curves.
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Figure 1.3: Cyclone trajectories tracked over the North Atlantic.
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Figure 1.4: Trajectories of the estimated vertical position of a moving hand as a
function of time, estimated from 6 different video sequences.

6



The dynamics of each hand movement differ considerably even for identical mo-

tions resulting in both unequal length curves and incorrectly aligned data. For

example, a simple left-to-right movement can either be straight, slightly curved, be-

gin with a hiccup, move up-and-down, move at different speeds, etc. Furthermore,

the clustering algorithm should not only find cluster groups but it should also return

smooth models that can be used to describe the underlying motions made by the

hand movements.

Figure 1.5 gives a final example that more directly highlights the alignment prob-

lem in particular. The figure plots an estimated velocity curve for each of 39 boys

whose heights were measured at 29 observation times over the ages of 1 to 18 (Ram-

say & Silverman, 1997). Due to similarities in human growth development, the

curves exhibit similar shape but are significantly misaligned due to differences in

individual growth dynamics. Clustering and prediction in this situation can be diffi-

cult. A further complication is that the original measurement intervals are unequal

for different subjects, thus making the analysis of the actual data in a vector space

tricky. A good curve-based approach should be able to address all of these concerns

and problems.

1.2 Outline of dissertation

The remainder of this thesis is concerned with the definition, learning, and applica-

tion of our joint alignment-clustering models. In brief overview, this thesis sets out

to do the following: (a) explain the inadequacy of standard clustering techniques for

curves, (b) define and extend model-based clustering algorithms for curves, (c) in-

troduce models for curve alignment in measurement space, (d) introduce models for

curve alignment in time, (e) integrate alignment and clustering in a unified frame-
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Figure 1.5: Estimated velocity of height measurements for 39
boys measured in cm/yr.

work, and (f) apply the joint methodology to real-world problems. The primary

contribution of this thesis is the development of a novel probabilistic framework for

the clustering and prediction of sets of smoothly varying curves while simultaneously

allowing for the learning of sets of continuous curve transformations. A chapter out-

line with a summary of each chapter’s main contributions follows.

In Chapter 2, a brief overview of existing clustering methodology (including

vector- and non-vector-based) and how it relates to the curve clustering work in

this thesis is given. Emphasis is placed on the range of applicability of each method

for curve clustering in general. The main contribution of this chapter is in clearly

setting forth the reasons why many standard clustering methods are inadequate for

curve clustering.
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In Chapter 3, the foundation for the clustering models and algorithms that are

introduced in this thesis is given. We review standard model-based clustering with

finite mixture distributions and show how curve clustering can be realized through

the use of conditional mixture distributions. These distributions take the form of

mixtures of regression models in which cluster-specific mean curves are modelled

with regression functions (e.g., polynomial regression). At the end of this chapter,

results are reported from simulated data experiments that show the benefits of using

curve-based models for the clustering of curve data. The main contributions of this

chapter are the extension of polynomial regression mixtures to multi-dimensional

curve clustering (employing curve-level memberships), the introduction of mixtures

of kernel regression models, and extensions to spline regression models.

In Chapter 4, we introduce curve clustering with mixtures of MAP (maximum

a posteriori) random effects models. These models allow for certain heterogene-

ity within clusters through the use of prior distributions on cluster parameters in

the form of mixture densities. Random effects regression mixtures (RERM) are a

mix between regression mixture models and linear random effects models (Laird &

Ware, 1982). The formulation of this problem as a hierarchical model allows for the

derivation of efficient EM learning algorithms. Experimental results with simulated

data are reported that show the increased performance of RERMs as compared to

standard mixtures of regressions, K-means, and Gaussian mixtures. The main con-

tribution of this chapter is in the introduction of the hierarchical MAP-based RERM

and the associated experimental results.

In Chapter 5, we turn our attention to the curve alignment sub-problem. We

introduce the use of probabilistic curve modelling techniques as the basis for a set

of novel alignment models. These models allow for the alignment of curve data in

measurement space. By “alignment in space” we mean as allowing for transforma-
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tions on the curve measurements themselves. The main contribution of this chapter

is in the formulation of the curve alignment problem in probabilistic terms. The

formulation unifies the specification, learning, and prediction problems in a single,

self-contained framework. The derived EM algorithm generalizes the classic Pro-

crustes approach for curve alignment, and demonstrates the use of the Mahalanobis

distance as a natural Procrustes distance metric. Experimental results with real

and simulated data are reported that demonstrate the usefulness of the alignment

models.

In Chapter 6, we address the more complex problem of curve alignment in time.

Building on the foundation of the previous chapter, we define our time-alignment

models and derive their associated learning algorithms. The main contribution is

the formulation of the time-alignment problem using probabilistic curve modelling

techniques and the exact calculation of the so-called Q-function for the case of poly-

nomial regression models. Experimental results are presented at the end of this

chapter with a real gene expression dataset and with simulated data. The results

show the effectiveness of the probabilistic formulation.

In Chapter 7, we unify the individual space- and time-alignment models into a

single joint framework that allows for transformations in both measurement space

and in time. The derivation for the joint alignment model borrows much from the

individual derivations of the component alignment models. Thus, this chapter is brief

in its presentation. We also use this chapter to extend the alignment methodology

to the case of multidimensional curves. The main contribution of this chapter is the

introduction of the joint space- and time-alignment model.

In Chapter 8, we discuss the integration of the curve alignment models with the

clustering algorithms of Chapter 3. This unification results in a model-based, joint

clustering-alignment methodology for curve data. We use this chapter to define ap-
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propriate out-of-sample test measures for model selection based on test log-likelihood

and prediction SSE (sum of squared-error) scores. Extensive simulated-data exper-

iments are reported. These experiments compare the different clustering-alignment

models against each other and to other clustering algorithms. The main contribution

is in the unification of the clustering and alignment problem, and the reporting of

the experimental results.

In Chapter 9, we introduce a new methodology for the clustering of extra-tropical

cyclone trajectories. The application requires initial detection and tracking of cy-

clone trajectories from raw MSLP (mean sea-level pressure) data maps. These data

maps were generated by a computational climate model known as a general circu-

lation model (GCM). We describe the developed procedure for the detection and

tracking of cyclones from GCM data that was employed. The results of applying

our joint clustering-alignment methodology to the resulting set of tracked cyclone

trajectories are analyzed in detail. The main contribution of this chapter is in the

application of our clustering methodology to the tracked cyclone dataset.

In Chapter 10 we present an application of our clustering methodology to an

“observed” tropical cyclone dataset. Unlike the cyclone dataset mentioned above,

this dataset consists of trajectories from actual cyclones observed in the tropical

North Pacific. The resulting clusters are analyzed and the temporal behavior of

these clusters over time is investigated. Finally, in Chapter 11, this thesis is closed

with concluding remarks.

11



1.3 Notation

In this section, the general notational framework that is used throughout this thesis

is briefly described. In later chapters, more specific notation is defined at the point

in which it is first introduced.

Vectors and matrices

In general, a vector is represented in upright bolding as x or y. A vector of zeros of

arbitrary length is denoted as 0, while a vector of ones is denoted as 1. A prime is

used to denote transpose so that x′ represents a row-vector. Matrices are represented

in capitalized upright bolding as X or V. The identity matrix is denoted as I, and

a matrix of ones is denoted with the special notation �. Note that � = 11′.

Sets of curves

In this thesis, curves are represented as variable-length vectors. Thus, yi is a curve

that consists of a sequence of ni observations or measurements. The j-th measure-

ment of yi is denoted as yij and is usually taken to be univariate (unless otherwise

stated). The associated covariate of yi is written as xi in the same manner. xi is

usually represented as time so that xij gives the time at which yij was observed.

We define italic Y as the set {y1, . . . ,yn} of n curves. In a similar manner, we

define italic X as the set {x1, . . . ,xn}. We take the notation {yi} to mean the entire

set of all yi. So in particular Y = {yi} = {y1, . . . ,yn}.

Probability distributions

We represent an unspecified probability density as p(yi|θ). The Gaussian distribu-

tion with mean µ and variance σ2 is specifically denoted as N (µ, σ2). An arbitrary

12



Gaussian random variable x is denoted as x ∼ N (µ, σ2), or as p(x) = N (x|µ, σ2).

As a rule, all densities in this thesis are implicitly conditioned on an appropriate

parameter vector. For example, if p(yi) = N (yi|Xiβ, Σ), then the left-hand side is

implicitly understood to be conditioned on the parameters θ = {β, Σ} and on the

non-random matrix Xi.

Regression models

The standard p-th order regression model for curve yi is written as

yi = Xiβ + εi, εi ∼ N (0, σ2I), (1.1)

where β is a (p + 1)× 1 vector of regression coefficients, εi is an ni × 1 noise vector,

and the matrix Xi is the usual ni × (p + 1) Vandermonde regression matrix. We

write the Vandermonde matrix for xi as Xi and associate it with the expanded form

Xi =




1 xi1 x2
i1 · · · xp

i1

1 xi2 x2
i2 · · · xp

i2

...
...

...
...

...

1 xini
x2

ini
· · · xp

ini




.
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Chapter 2

Overview of Clustering

2.1 Introduction

Clustering is a generally useful tool for many kinds of applications. It can be applied

as a preprocessing step in supervised classification problems to find prototype exam-

ples in training data (e.g., Duta et al., 1999). It can be used for image segmentation

and representation by modelling images with mixture distributions (e.g.,Jepson &

Black, 1996). It can also be used to directly learn density models of input data

which themselves can then be used for classification and prediction of future data

(e.g., Duda & Hart, 1973). More generally it can be used as an exploratory technique

to summarize or describe complex data in useful ways. This chapter gives a brief

overview of clustering in general and broadly classifies the different methods into

two groups: vector-based, and pairwise distance-based. Special emphasis is placed

throughout on the handling of curve data in each case.
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2.2 Standard clustering techniques

There are many clustering methods available to the data analyst. However, many of

these methods fail to be useful or practical when presented with curve data. Some

require arbitrary preprocessing of the data, others are computationally prohibitive,

while others fail to take advantage of the complete information available in a curve

data set. In addition, prediction either does not make sense within the framework

or is limited to some region or to points that exactly correspond to the fixed ex-

perimental design intervals. Finally, all of these methods ignore the dependence of

the curve measurements on the dependent variable (usually considered as time); the

conditional model is ignored.

2.2.1 Vector-based methods

Many common clustering algorithms in wide use today fall into the vector clus-

tering category. These standard multivariate clustering techniques require fixed-

dimensional vector data. For example, K-means (Hartigan & Wong, 1978) is a

classic example of a non-probabilistic vector clustering method that uses iterative

relocation in an attempt to minimize within-cluster variance. The error term

E =
∑
k

∑
i

zik (yi − µk)
2 (2.1)

formally gives the criterion that K-means attempts to minimize by reassigning the

points yi among the K clusters. The zik are indicator variables with a value of 1

when yi is assigned to cluster k, and µk is the mean value of cluster k.

Figure 2.1 shows an example of K-means applied to a simulated multivariate

data set. The figure shows the unlabelled data on the left in (a), while the returned
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(b) K-means clustering

Figure 2.1: K-means clustering example.

clustering from K-means is given on the right in (b). The formation of linear sepa-

ration planes in the vector space can be seen in the figure. These planes partition

the vector space into distinct contiguous cluster regions such that every point falling

in a particular region is assigned to the same cluster.

Gaussian mixtures is a natural extension of K-means to the probabilistic do-

main. There are two important differences that distinguish Gaussian mixtures from

K-means. First, the error term in (2.1) is replaced with a generalized Mahalanobis

distance based on the exponent of the normal distribution; and second, points are

assigned to clusters with a probability of membership instead of with a binary de-

cision. Gaussian mixture models are an example of a more general model-based

clustering methodology (Banfield & Raftery, 1993) from which we derive our curve

clustering algorithms in Chapter 3.

Gaussian mixtures can be defined in a mathematical sense by representing the

probability density function of yi as a multimodal mixture density. The form of a

16



mixture density is

p(yi|Θ) =
∑
k

αk pk(yi|θk), (2.2)

with K component density functions pk and K non-negative mixture weights αk

that sum to one. Each of the component densities can be seen as describing specific

cluster behavior. A resulting log-likelihood function can be defined as the sum over

all n points of the log density in (2.2):

L(Θ|y1, . . . ,yn) =
∑

i

log
∑
k

αk pk(yi|θk). (2.3)

The clustering problem then becomes maximizing the log-likelihood function over

the parameters Θ. The actual cluster labels are determined by assigning points to

the class of maximum class membership based on resulting membership probabilities.

Figure 2.2 demonstrates the increased flexibility that the mixture framework

enjoys over K-means. Figure 2.2(a) is a plot of two-dimensional simulated data

generated by a two cluster model. The class labels are shown with symbols in the

figure. Figure 2.2(b) is a representation of the clustering output from Gaussian

mixtures on the simulated data, while Figure 2.2(c) shows the K-means clustering.

A well-known limitation of K-means is that it cannot model covariance in a data

set. The effect of this can be seen by the incorrect grouping of the crossing clusters

in Figure 2.2(c). Since K-means is limited to choosing linearly bounded, contiguous

cluster regions, it can do no better than this. On the other hand, Gaussian mixtures

has no trouble finding the covariant clusters.

Applications to curves

In order to use these vector-based techniques with curve data we must preprocess

the data in such a way that reduces the curves to fixed-dimensional vectors. For
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Figure 2.2: Clustering example with Gaussian mixtures and K-means.
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example, in an analysis of cyclone trajectories, Blender et al. (1997) truncate all

trajectories under consideration to a fixed length of 3 days worth of (x, y) latitude-

longitude pairs (observed at 6-hour intervals). Upon concatenation of the x and y

observations, they end up with 24-dimensional feature vectors and use K-means to

cluster them. They demonstrate that clusters in this manner can be found; however,

cyclones do not naturally conform to such a format and this type of methodology

may result in a significant loss of valuable information.

Dougherty et al. (2002) develop an entire clustering toolbox to evaluate the ef-

fectiveness of clustering algorithms for gene expression clustering. The toolbox con-

sists of K-means, fuzzy C-means (a fuzzy version of K-means; Duda & Hart, 1973),

Kohonen-networks (a neural network motivated algorithm; Kohonen, 1995), and

standard hierarchical clustering techniques (see Section 2.2.2). None of these meth-

ods handle curve data directly, they all operate on fixed-dimensional feature vectors.

Yeung et al. (2001) employ model-based methods for gene expression clustering in

which they use Gaussian mixtures to model curve data. Although this is a bit better

than the use of K-means as in Dougherty et al. (2002), it still does not address the

underlying curve problem directly.

This and other similar work demonstrate the use of vector-based methods for

curve data; however, the reduction to fixed-dimensional space may not always be

justifiable given its somewhat ad hoc nature in many circumstances. Furthermore,

and more importantly, we lose the smoothness or temporal information contained in

the sequence of events which is not explicit in vector form. Lastly, there is limited or

no principled notion of prediction capability at points within, between, or beyond the

fixed-dimensional measurement points. In Chapter 3, we show the applications of

K-means and Gaussian mixtures to curve data produce clusters with less predictive

power than with the curve clustering methodology that we propose.
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2.2.2 Pairwise distance methods

Pairwise distance methods focus on the definition of a distance metric between every

pair of points in the data set. With this metric in hand, a similarity (or dissimilarity)

matrix D is defined which organizes the distances between each pair of points in

matrix form:

D =




0

d21 0

d31 d32 0

d41 d42 d43 0




.

This matrix can then be used with any number of classical hierarchical clustering

techniques (Everitt, 1993). In general, each technique can be described as agglomer-

ative or divisive. Agglomerative techniques start with every point in its own cluster

and then repeatedly merge two clusters based on the matrix D (divisive methods

work in the opposite manner). Agglomerative methods differ in how they decide

which clusters to merge. In single linkage clustering, the distance between two clus-

ters c1, c2 is defined as

Dc1,c2 = min dij
i∈c1,j∈c2

and at each stage the nearest clusters are merged. The resulting clusters from this

method tend to be rather elongated or “stringy” in one or a few directions since they

tend to pick up points along a line. In complete-linkage clustering, we simply replace

the min operator with max and proceed in the same manner. Since every point in

each cluster contributes to the cluster distance, there is a noticeable reduction in the

elongated effect. Still another method, the minimum-variance method (or Ward’s

method) seeks to find minimum variance clusters similar to K-means. However,

in this case, merging of sub-clusters is used to achieve this goal as opposed to an
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iterative reassignment of points.

Applications to curves

The distance metrics with these methods can be defined in many different ways on

any kind of objects, whether they be points, vectors, or curves. Focusing on curve

data, once the distances are calculated, the original curve data can be ignored and

then any type of pairwise distance-based clustering algorithm can be used.

For example, Butte and Kohane (2000) presented a method that attempted to

find functional genomic clusters in RNA expression data. Using a set of 2, 467 genes

they constructed 22 different relevance networks or clusters by using a technique

based on pairwise distance clustering. Their distance metric was based on mutual

information between each pair of gene expression profiles (curves). Mutual infor-

mation is a measure of the reduction in entropy (randomness) of one curve given

knowledge of another. Thus, if knowing curve A provides no reduction in the en-

tropy of curve B, then they have exactly zero mutual information. The clustering of

genes in this case was carried out in a divisive (as opposed to agglomerative) manner

by removal of edges in the fully connected network of genes whose mutual informa-

tion did not meet a threshold. Their hypothesis was that the resulting clusters were

scientifically valid.

An example of similar graph-based method was used by Ben-Dor et al. (1999).

They defined their distance matrix in a slightly different manner and then identified

a set of graph operations which led to a clustering of the nodes. Other example work

followed more along the line of Eisen et al. (1998), in which they analyzed a set of

gene expression data resulting from time-course experiments. They represented the

curves as vectors and used a Euclidean distance metric for the generation the distance

matrix. They pursued gene clusters using a standard agglomerative hierarchical

21



clustering algorithm on the distance matrix.

While these and other methods present plausible approaches, in practice it can

be problematic to define appropriate distance measures for complex problems. Also,

computationally, we are immediately saddled with O(n2) operations on the n curves

even before we carry out any clustering. Nor is it obvious whether one can perform

prediction with these methods either. Finally, none of these techniques take into ac-

count the smoothness information in the curves themselves during the clustering. In

the next chapter, we define a set of curve-based clustering techniques and show that

they systematically out-perform the methods discussed above by naturally handling

each of these concerns.

2.3 Summary

In this chapter we presented an overview of current clustering methods. We set out to

demonstrate the need for true curve clustering models by highlighting the deficiencies

of each of the particular standard methods. We categorized clustering techniques

into two broad categories and provided example applications to curve clustering from

each category. The clustering of curves using vector-based or hierarchical methods

provides limited capabilities for addressing the following issues:

• Clustering curves of different lengths

• Clustering curves with un-balanced designs (irregular sampling/observation
intervals)

• Clustering curves while leveraging smoothness information

• Making predictions between or beyond the measurement observations

• Handling missing observations

• Dealing with multidimensional curves (e.g., three-dimensional measurements
for the trajectory of a moving object in space)
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• Accounting for sets of misaligned curves during the clustering

In the following chapter, and in the rest of this thesis, we define and introduce

curve-based models and methodologies which specifically deal with each of these

issues.
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Chapter 3

Curve Clustering with Regression

Mixtures

3.1 Introduction

In this chapter, we discuss the specific techniques, models, and algorithms that

directly address the curve clustering problem. The methods presented here address

each of the faults that were pointed out with the standard clustering techniques

in Chapter 2 (except for the alignment problem, which is the main topic of this

thesis, and is dealt with in the following chapters). The foundation for each of these

curve clustering methods rests upon the regression mixtures framework, and more

generally, are instances of model-based clustering.

In Section 3.2, a brief introduction to density estimation as it relates to mixture

models is given. The relation between these statistical methods and clustering is

discussed. In Section 3.3, the first curve clustering model is defined. The polynomial

regression mixture model (PRM) employs conditional mixture density estimation to

uncover cluster memberships among a set of curves. In Section 3.4, an extension

24



of the PRM framework to spline regression mixture models (SRM) is discussed.

Section 3.5 introduces a novel nonparametric extension of PRM to kernel regression

mixture models (KRM).

In Section 3.6, we report the results of simulated data experiments that show the

curve-based clustering approaches defined in this chapter systematically out-perform

the more common vector-based approaches. Gaussian mixtures is used as a proxy

for the vector-based approaches. We show that Gaussian mixtures does not leverage

the available smoothness information, does not handle variable-length curve data,

and does not deal well with curves measured at different time points or that contain

missing observations (which can be seen to be an equivalent situation). Finally, the

chapter is concluded with a summary in Section 3.7.

3.2 Clustering by density estimation

Density estimation is a standard probabilistic technique that can be used to summa-

rize a set of data. Nonparametric techniques such as histogram fitting (Silverman,

1986), local polynomial regression (Fan & Gijbels, 1996), and wavelet thresholding

(Donoho et al., 1996) can be used when one does not wish to pre-specify the form

of the density function.

Parametric techniques, on the other hand, first assume a functional form for

the probability density function (PDF), for example, a normal distribution, and

then fit the model to the data. The fitting process involves setting the values of

a small set of distribution parameters (e.g., the mean and variance) so that the

resulting density “matches” the distribution of the data. The fitting process is

usually carried out using one of a number of methods: the method of moments,

Maximum likelihood (ML) estimation, maximum a posteriori (MAP) estimation,
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or fully Bayesian techniques. In this thesis, we primarily use the ML and MAP

approach

3.2.1 Finite mixture models

We can think of finite mixture models (Everitt & Hand, 1981; Titterington et al.,

1985; McLachlan & Basford, 1988) as a semi-parametric form of density estimation

in which we assume that sub-regions of the data can be summarized with individual

(component) PDFs. The overall density then takes the form of a convex combination

of these component density functions. A key feature of the mixture model is its

ability to model highly non-Gaussian, multimodal density functions using simpler

(e.g., unimodal) component densities.

In the standard setup, we model the d-dimensional vector yi by the mixture

density

p(yi|Θ) =
K∑
k

αk pk(yi|θk), (3.1)

in which αk is the k-th mixture weight and pk is the k-th component density with

parameter vector θk. The mixture weights αk sum to one and are nonnegative.

The component densities pk(·) model individual specific sub-regions of density,

while the mixture p(·) summarizes all of these sub-regions according to the mixture

weights αk.

Maximum likelihood estimation and EM

The likelihood of a data set Y = {y1, . . . ,yn} is any function of Θ that is proportional

to the probability of the data p(Y |Θ). The log-likelihood is the log of the likelihood
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and takes the form

L(Θ|Y ) = log p(Y |Θ)

=
∑

i

log p(yi|Θ)

=
∑

i

log
∑
k

αk pk(yi|θk), (3.2)

assuming the yi are i.i.d. (independently and identically distributed). ML estimates

of the parameter vector Θ correspond to values of Θ that maximize (3.2).

The ML estimates for Θ do not, in general, yield closed-form solutions since the

estimates depend non-linearly on each other. However the development of a general,

iterative ML procedure called Expectation-Maximization (EM) provides an efficient

framework for parameter estimation in the mixture context (Dempster et al., 1977;

McLachlan & Krishnan, 1997). EM is an approximate root-finding procedure that

is used to seek the root of the likelihood equation—it iteratively searches for a set

of parameters Θ̂ that maximize the probability of the observed data. We review

the necessary prerequisite EM theory that is needed for the rest of this thesis in

Appendix A.

3.2.2 Model-based clustering

The use of mixture models for clustering is sometimes referred to as model-based

probabilistic clustering (Fraley & Raftery, 1998, 2002), since a particular functional

form for the component densities (such as a Gaussian model) must be assumed.

Finite mixture models are widely used for clustering data in a variety of applications

(e.g., see McLachlan & Basford, 1988).

In a clustering context, the data Y = {y1, . . . ,yn} are assumed to have been

generated by a finite mixture model with K components. Each component density
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is associated with a cluster, and each datum yi is assumed to have been generated

by one and only one cluster.

Given the data Y and having no knowledge of cluster labels, the parameters for

the K component cluster models are inferred using, for example, the EM algorithm.

Once the parameters of the mixture have been estimated the probability wik that xi

was generated by component k can be calculated using Bayes rule:

wik = p(k|yi, Θ̂) ≈ αk pk(yi|θ̂k).

This, in turn, is interpreted as the membership probability of yi belonging to cluster

k, providing a clustering of the data points (e.g., by assigning each yi to the cluster

for which it has the largest membership probability).

3.2.3 Model-based curve clustering

A particular advantage of the probabilistic approach is that the component PDFs

can be defined on non-vector data. For example, suppose that yi is now a sequence

of curve measurements of length ni, observed at the ni time points in xi. We can

define a cluster-specific conditional probabilistic model pk(yi|xi, θk) that relates yi

to xi.

Just as in the previous section, the overall density of yi (now given xi) is a

mixture of the component PDFs. In other words, the density takes the form

p(yi|xi, Θ) =
K∑
k

αk pk(yi|xi, θk). (3.3)

This conditional mixture density is now defined on curves as objects as opposed to

fixed-length vectors. This curve density can be used in place of the mixture density
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in (3.1) to arrive at a model-based clustering procedure for curves. The generative

model for the curve mixture is as follows:

1. Assign the i-th curve to cluster k with probability αk

2. Generate the mean curve for cluster k according to the component density
model pk

3. Define the i-th curve yi to be equal to the mean curve plus some randomly
generated noise (e.g., add a Gaussian error term)

The foundation of the curve clustering model defined in this way is two part.

First, the mixture framework leads to efficient learning algorithms based on EM, and

thus, to efficient clustering algorithms. And second, the conditional PDFs directly

provide for curve models that handle variable length curves, random measurement

intervals, missing observations, and explicit handling of smoothness constraints. All

that remains is to define the functional form for the curve PDFs themselves. The

remainder of this chapter will describe several functional forms for these curve PDFs

which result in various types of curve clustering algorithms.

3.3 Polynomial regression mixtures

In this section, a curve clustering methodology based on polynomial regression mix-

ture models (PRM) is described. PRMs employ polynomial regression models with

Gaussian error terms as the component PDFs. The inclusion of these regression

models into the model-based curve clustering framework outlined above leads to

efficient EM learning algorithms for curve clustering.

In Section 3.3.1, the relevant prior work is discussed. There is a long history of

the analysis of curve data using regression models. Often these models were used

to describe two or more different behaviors within a single dataset. This work led

to methods for the automated discovery of groups of curves described by unique
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regressions. In Section 3.3.2, the model definition of PRMs is given. Section 3.3.3

derives the EM learning algorithm for PRMs. We will see that this derivation can be

directly used to derive the learning algorithms for the other curve clustering models

introduced in this chapter.

3.3.1 Prior work

Regression-based clustering has a relatively long history beginning with work on the

simple two-cluster case right up to the general EM methodology for the K-cluster

case and beyond. Most of the prior work focused on the univariate, non-curve case.

In other words, the datasets consisted of individual univariate observations that were

assumed to have been sampled from a regression curve.

One of the earliest works was that of Quandt (1972) who defined a two-component

mixture likelihood for so-called switching regressions. The methodology demon-

strated the ability to find underlying group behavior by maximizing the likelihood

using a conjugate gradient algorithm. Later, Quandt and Ramsey (1978) developed

a procedure using the method of moments to estimate the mixture parameters for

switching regressions.

Hosmer (1974) also defined a two component mixture likelihood containing re-

gression components but used maximum likelihood to estimate the mixture parame-

ters in an iterative process. Essentially, he developed an EM algorithm for mixtures

of regressions of two clusters. His paper also contains the first reference to the name

mixtures of regressions that we have so far found.

Späth (1979) developed an algorithm called clusterwise linear regression that

estimates the parameters for several different regression coefficient vectors simulta-

neously. Although there is no notion of a probabilistic model, the data is assumed to

come from K groups of behavior, each explained by a different regression function.
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The methodology is similar to K-means in that curves are iteratively relocated to

minimize a squared-error criterion.

DeSarbo and Cron (1988) developed the modern EM-based procedure for mix-

tures of linear regressions with any number of clusters. However, as with the pre-

vious work above, they focus exclusively on the univariate, non-curve case. Jones

and McLachlan (1992) extend this work to multivariate data. They develop a re-

gression mixture model based on “three-mode” data, which is essentially a type of

multivariate feature-vector data. It can be seen to be equivalent to a set of mul-

tidimensional curves of uniform length with uniform observation intervals and no

missing observations.

There has since been the extension of the conditional mixtures framework to

many types of regression models. For example, Lwin and Martin (1989) integrate

binomial probit models, Wedel and DeSarbo (1993) integrate binomial logit models,

Kamakura (1991) look at multinomial probit models, and Wang et al. (1998) develop

Poisson regression mixture models.

Our work on linear (or polynomial) regression mixtures for curve data (Gaffney &

Smyth, 1999) extended the work of DeSarbo and Cron (1988) with clusterwise linear

regression by explicitly incorporating the notion of curves and curve membership

into an overall general framework. This approach was new in the sense that all

previous work on linear regression-based clustering did not focus on curve data but

on individual, independent covariates xi and their univariate dependent responses

yi (the classic multiple regression problem; Johnston, 1984). This translated into a

data set that consisted of a random sample of individual scalar observations from K

cluster-specific multiple regression functions. There was no notion of curves but only

of single observations. The goal was to separately cluster the individual observations

in the dataset. We show the effects of incorporating cluster memberships into the
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regression mixtures framework in the next section.

Finally, a number of authors have also pursued the Bayesian formulation of the

problem. For example, Hurn et al. (2003) discuss solutions to the label-switching

problem for Bayesian inference with regression mixtures, and Viele and Tong (2002)

present consistency results of the posterior distribution.

Curve-level membership

In this section, the novelty of employing curve-level memberships in the regression

mixtures framework is discussed. In the original EM formulation for the general K

cluster case (DeSarbo & Cron, 1988), the important notion of sharing membership

strength along a curve is missing (and indeed, the notion of curves as data objects

is also not addressed).

If a curve-specific membership probability wik is defined for each curve yi and

each cluster k, then it should collect membership information from each point in

the curve to form the collective curve membership for yi. In contrast, previous

methods defined (what amounted to) observation-specific membership probabilities

w′
ijk for each univariate point yij , and cluster k. Although it is possible to define

observation-specific membership probabilities to estimate the mixture parameters

with curve data, the loss of consistent curve membership in the face of limited data

will affect the clustering.

As an example, Figure 3.1 demonstrates the significance of curve-level member-

ship. Figure 3.1(a) shows a set of simulated curves generated from three underlying

polynomials. The same data is shown in Figure 3.1(b), but with the curve informa-

tion removed. It is apparent that the problem is quite different without the curve

information. Figure 3.1(c) shows the clustering that results from running a PRM on

the curve data; the bolded lines are the cluster-specific models that were found, and
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(b) Simulated data w/o curve information
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(d) Cluster results w/o curve information

Figure 3.1: Example of the benefit of curve-level membership probabilities.

33



the different line styles (e.g., solid, dashed, etc.) give the classifications. The clus-

tering in this figure matches the true underlying polynomials. In Figure 3.1(d), the

clustering that results with the methods of DeSarbo and Cron (1988) is shown (i.e.,

without curve-level memberships). Again, the cluster-specific models are shown as

bolded lines, and the classifications are given by the symbol styles (e.g., triangle, cir-

cle, etc.). Here we see that the cluster-specific models do not match the true models

at all. Also of note is how the observation specific classifications divide up the space

in a manner similar to K-means (i.e., specific regions of the space are assigned to

specific clusters, and not specific curves). This effect can be summarized by stating

that the clustering is carried out in observation space and not in curve space as is

desired with curve-type data.

Mixtures of experts

Regression mixture models are also similar to mixtures of experts (ME; Jacobs et al.,

1991; Waterhouse, 1997), or to the straightforward recursive extension to hierarchial

mixtures of experts (Jordan & Jacobs, 1994). These models define gating networks

which contain mixtures of generalized linear models (McCullagh & Nelder, 1983).

The basic motivation is to model regions of the output space (yi) with region-tuned

experts (generalized linear models), and then have the gating network decide which

expert to use for a particular input (xi). This network/tree structure resolved from

input space mirrors the way in which the classic procedures of CART (Breiman et al.,

1984) and C4.5 (Quinlan, 1993) work.

Although mathematically similar in many respects, they differ from curve clus-

tering models in a number of ways. Mixtures of experts focus on the easier problem

of supervised learning as opposed to the more difficult unsupervised problem of clus-

tering. Also, if we set the equivalence of “choosing an expert” in an ME model with
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“choosing a cluster” in a PRM, then we see that ME models base this decision on the

input variables xi, whereas PRMs use the unconditional mixture weight αk which

comes from the generative model for the unsupervised problem.

Furthermore, typically the input variables xi for MEs are multidimensional and

the output variables yi are univariate. For PRMs, the situation is just the opposite;

xi is commonly represented as time and yi is often multidimensional giving a vector

of observations at each time point.

3.3.2 Model definition

Suppose we have a set Y of n curves as {y1, . . . ,yi, . . . ,yn}. Each curve has (a

possibly unique) length of ni with measurements observed at the points (or times)

in xi. A p-th order polynomial regression relationship between yi and xi is assumed

with an additive Gaussian error term (a common assumption in the presence of

multiple exogenous, unexplained effects).

The regression of yi on xi can be summarized with the following equation:

yi = Xiβ + εi, εi ∼ N (0, σ2I), (3.4)

where the ni × p regression matrix Xi is the Vandermonde matrix evaluated at xi,

and β is the p-vector of regression coefficients. The p-th order Vandermonde matrix

evaluated at xi is equal to

Xi =




1 xi1 x2
i1 · · · xp

i1

...
...

... · · · ...

1 xini
x2

ini
· · · xp

ini




.

This regression equation, along with the error model, defines the conditional PDF
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of yi given xi as N (yi|Xiβ, σ2I). This PDF represents a probabilistic curve model

that naturally allows for curves of variable length with unique measurement intervals

and missing observations. Furthermore, the polynomial fit also takes advantage of

smoothness information present in the data (see Section 3.6 for experimental results

that demonstrate this effect).

We can incorporate this PDF into a mixture density by adding dependence of

this PDF on k. In notation, this dependence is added in the form of subscripts on

the parameters as {βk, σ
2
k}. The incorporation of these cluster-dependent PDFs into

the conditional mixture density in (3.3) results in the definition of the PRM as

p(yi|xi, Θ) =
K∑
k

αk pk(yi|xi θk)

=
K∑
k

αk N (yi|Xiβk, σ
2
kI). (3.5)

The log-likelihood follows as the sum over all n curves of this conditional density. It

takes the form

log p(Y |X, Θ) =
∑

i

log
K∑
k

αk pk(yi|xi θk). (3.6)

We use this function to calculate the out-of-sample test log-likelihood scores for this

model by substituting in an unseen dataset Y ′ for Y . This model definition is now

used to derive the EM learning algorithm for curve clustering with PRMs.

3.3.3 EM algorithm for PRMs

In this section, we derive the EM algorithm for PRMs. It is assumed that the reader

has familiarized themselves with the necessary EM theory in Appendix A. For the

sake of notational simplicity, we also assume that every PDF is implicitly conditioned

on a set of parameters (e.g., Θ or θk), and thus we leave out the explicit dependence
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on the parameter vector in our notation.

We begin by letting zi give the cluster membership for curve i, and we write the

joint density of yi and zi as

p(yi, zi|xi) = αzi
pzi

(yi|xi)

= αzi
N (yi|Xiβzi

, σ2
zi
I). (3.7)

The cluster memberships {zi} are regarded as being hidden. The hidden-data density

then becomes the posterior p(zi|yi,xi). The complete-data log-likelihood function

Lc can be calculated by taking the sum over all n curves of the log joint density

in (3.7):

Lc =
∑

i

log αzi
N (yi|Xiβzi

, σ2
zi
I). (3.8)

E-step

In the E-step, we calculate the posterior p(zi|yi,xi) which gives the membership

probability that the i-th curve was generated from cluster zi. The membership

probability takes the form

wik = p(zi = k|yi,xi) ∝ αk pk(yi|xi)

= αk N (yi|Xiβk, σ
2
kI). (3.9)

The posterior expectation of Lc in (3.8) is then taken with with respect to the

posterior above to get the Q-function. The Q-function is calculated as follows:

Q = E[Lc|yi,xi] =
∑

i

∑
k

wik log αk N (yi|Xiβk, σ
2
kI). (3.10)
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M-step

In the M-step, we maximize Q with respect to the parameters {βk, σ
2
k, αk}. The

solutions are straightforward and are given as

β̂k =

[∑
i

wikX
′
iXi

]−1∑
i

wikX
′
iyi, (3.11)

σ̂2
k =

1∑
i wik

∑
i

wik ‖yi − Xiβk‖2 , (3.12)

and

α̂k =
1

n

∑
i

wik. (3.13)

These update equations are equivalent to the well-known weighted least-squares

solutions (Draper & Smith, 1981).

The computational complexity of this EM algorithm is linear in the number of

curves (or the total number of points in these curves). Initialization is carried out by

randomly sampling values for the membership probabilities and then beginning the

iterations with the M-step. Convergence is detected when the ratio of the incremental

improvement in log-likelihood to the initial incremental improvement during the

second iteration drops below a threshold (e.g., 1×E−6).

Figure 3.2 graphically demonstrates a simulated data example of running EM for

polynomial regression mixtures. Four curves were sampled from each of three dif-

ferent underlying polynomials and were clustered using a PRM. Figure 3.2(a) shows

all curves presented to the EM algorithm. Notice that we plot the actual class labels

here, but this information is not given to the algorithm. Figure 3.2(b) shows the

initial guess of the algorithm for the three underlying polynomials. Figure 3.2(c)

shows the same cluster centers after one iteration, and Figure 3.2(d) shows the final

clustering as output after four iterations. The last plot also shows the classifica-
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(a) Actual data
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(b) Initialization for EM
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(c) Centers after one iteration
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(d) Final clusters (four iterations)

Figure 3.2: Trace of the EM algorithm for a PRM at various iterations: (a) all curves
presented to the algorithm, (b) initial guess for the three cluster centers, (c) cluster
centers after one iteration of EM, (d) cluster locations (solid) after EM convergence
(iteration 4), and locations of the true data-generating trajectories (dotted).
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tion resulting from the clustering (which is perfect in this example) and shows the

underlying true polynomials as dotted-lines.

Experimental results with PRMs are presented at the end of this chapter in

Section 3.6. But first we extend this model to spline regression mixtures and kernel

regression mixtures.

3.4 Spline regression mixtures

In this section, we introduce a useful extension of the regression mixtures frame-

work to spline regression mixtures (SRM). The extension allows for semi-parametric

modelling of curve data as opposed to the strictly parametric polynomial regression

model described in the previous section.

3.4.1 Related work

Maes and Hastie (1997) develop a related mixture of splines model that they use to

discover curve-type features in data from the time-frequency domain generated from

speech utterances. The data consist of “images” of frequency counts over a lattice

of time-frequency points. The learning/discovery procedure sweeps across an image

in a number of rounds, and an EM procedure learns model parameters from within

sliding windows across time.

This problem is quite different than that of clustering sets of curves but nonethe-

less the mathematics of what they have done is similar. However, their methodology

is quite specific and highly optimized to include the many constraints that are re-

quired for this particular problem domain. In contrast, we introduce the definition

of mixtures of splines in a general model-based curve clustering setting that does not

require any special constraints or procedures for any particular problem domain.
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James and Sugar (2003) develop a random effects mixture of splines model similar

to the model we define in Chapter 4. However, this model is different from the spline

mixtures defined here since the incorporation of random effects leads to a two-level

hierarchical mixture model. This type of model can be seen as founded on the spline

mixtures that are defined here. We describe them as such when we discuss random

effects regression mixtures (RERM) in Chapter 4.

3.4.2 Definition of splines

Splines are piece-wise polynomials that meet certain continuity conditions at the

breakpoints (de Boor, 1978; Eubank, 1988; Green & Silverman, 1994). For example,

we might require that a spline have two continuous derivatives throughout some

valid interval. This results in curves which look and behave in a smooth manner. In

spline theory, the set of breakpoints are often called knots.

We implement splines based on B-splines in this thesis (de Boor, 1986; Eilers &

Marx, 1996). This is a common choice because B-splines are particularly efficient

for computational purposes due to the block-diagonal basis matrices that result. Let

ζ = {t1 < · · · < tN} give a nondecreasing knot sequence, and let [tm, tm+1) be the

half-open interval from tm to tm+1. Then the p-th order B-spline Bmp is a piece-wise

polynomial that has finite support over [tm, tm+p) and is zero everywhere else. In

general, the polynomial pieces of Bmp are of degree p−1. Bmp is defined in a special

way so that
L∑
m

Bmp(x) = 1,

where L = N − p gives the number of B-splines defined over the knot sequence ζ .
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The spline s(x) is then defined as a linear combination of the Bmp as

s(x) =
L∑
m

Bmp(x)cm, (3.14)

where cm gives the spline coefficients.

We can think of this as an expansion of s(x) over the L basis functions Bmp .

The basis functions can be calculated using a simple recurrence relation. All that is

needed is to pick the order of the spline and then simply run the recurrence for each

value of x. A common choice is to use fourth order B-splines which result in cubic

spline functions (since the degree of each polynomial piece in a fourth order B-spline

is at most 3).

To represent the curve yi as a spline, we equate the j-th point yij to the value

of the spline function evaluated at the j-th time point xij . In other words, we set

yij = s(xij) for all 1 ≤ j ≤ ni.

The equation for yi can be written in matrix form to simplify the notation.

Bmp(xi) is defined as the ni-vector of the individual time points of xi evaluated

under Bmp. The spline basis matrix Bi is then the ni × L matrix

Bi =
[

B1p(xi) B2p(xi) · · · BLp(xi)

]
. (3.15)

Use of this matrix allows us to represent the curve yi using a spline in the form

yi = Bic, (3.16)

where c is a vector of spline coefficients.
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3.4.3 EM algorithm for SRMs

The EM algorithm for SRMs can be derived using the same procedure as used for

PRMs in Section 3.3.3. First, Bi is defined as the spline basis matrix evaluated at

xi. Then, a regression relationship is assumed between yi and xi in the standard

way:

yi = Biβk + εi, εi ∼ N (0, σ2
kI). (3.17)

The form of the regression and the error model result in the cluster-specific condi-

tional PDF for yi:

pk(yi|xi, θk) = N (yi|Biβk, σ
2
kI). (3.18)

This defines the probabilistic curve model for SRMs. The E- and M-steps of the EM

algorithm can be derived by directly substituting this curve model into (3.7) which

gives the joint PDF for curve yi and cluster label zi for PRMs. The EM solution

that results is identical to that for PRMs with the Vandermonde matrix Xi replaced

with the spline basis matrix Bi.

The complexity, initialization procedure, and convergence condition are all iden-

tical to those with a PRM. In fact, an SRM can be learned using the exact same code

that is used to train a PRM. All that is required is to pre-compute the spline basis

matrix Bi and replace Xi with this new matrix as input to the EM algorithm for

PRMs. The output regression coefficients will be spline coefficients that represent

mean spline curves for each component PDF.
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3.4.4 Discussion

Choosing the number and location of knots

Typically, the problem at hand is not overly sensitive to the number and location of

knots. It is common to place a number of knots uniformly spaced across the interval

in question, although more knots are needed in areas of rapid function change.

In any case, automatic techniques for the selection of the number of knots and

their locations can be used. This area of research has received much attention (Fried-

man & Silverman, 1989; Kooperberg & Stone, 1991, 1992). Many schemes revolve

around the idea of starting off with many knots and employing knot deletion to re-

duce the size of the knot set. In contrast, smoothing ideas can also be used in which

a large number of knots is always used but measures are used to penalize the fitting

function. Often the penalty measures are based on function curvature (O’Sullivan,

1986, 1988; Eilers & Marx, 1996).

One can extend the current definition of SRMs to handle this type of automatic

complexity selection, but because the unsupervised clustering problem is difficult in

itself, it is wise to fix the number and location of knots ahead of time. In this thesis,

we will use knot sequences which are uniformly spaced across the interval in question

unless stated otherwise.

Splines vs. polynomial regression

The EM algorithms for PRMs and SRMs are nearly equivalent. The main difference

between the two EM algorithms is that an SRM requires the fitting of a larger

number of parameters. For example, for cubic splines, the number of coefficients in

a single spline coefficient vector is equal to N − 4, where N gives the length of the

knot sequence.
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The minimum size for the knot sequence with cubic splines is normally taken as

8 (this is because of required knot-end conditions). However, the maximum size is

potentially infinite. The larger the relevant interval, the larger the knot sequence

must be in order to efficiently model each region of the interval in question.

This results in a spline coefficient vector that can grow quite large. Even for

small intervals, a typical length of coefficient vector might be 10 or 15 or even larger,

depending on the situation. If we factor in the number of clusters, then the number

of coefficients that must be fit to the data during a run of EM can grow quite large.

This allows the problem of over-fitting to creep into the model learning process.

At a basic level, PRMs should be preferred if it can be determined that the curves

are not “wildly” non-polynomial since the more simple model will suffer less from

the over-fitting problem. However, SRMs provide an increased level of flexibility at

almost no computational cost (except for the increase in parameters) that can be

exploited in many domains where it is clear that the curves are not polynomial. In

these cases, if over-fitting is of particular concern, then the number of knots can be

decreased at the expense of less modelling flexibility.

In Section 3.6, we demonstrate another useful feature of SRMs as non-parametric

curve simulators. Since the resulting sets of generated curve data are not tied to

any particular parametric scheme, these sets of curves are ideal for simulated data

experiments with curve and non-curve clustering techniques.

3.5 Kernel regression mixtures

In this section, we introduce a novel extension of PRMs by modelling the density

function pk(yi|xi, θk) as a non-parametric regression model (originally described in

Gaffney & Smyth, 1999). These types of models can be used to relax the assumptions
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placed on the form of the regression function even further than splines allow for. This

approach is inherently more data-driven.

Non-parametric function estimation has been studied in a number of different

settings, for example, kernel smoothing (Wand & Jones, 1995), local polynomial

modelling (Fan & Gijbels, 1996), and density estimation (Silverman, 1986). In our

context, by modelling the component densities as nonparametric regression models,

we can cluster curve data for which the general relationship between y and x is un-

certain, or for when we do not wish to make any such assumptions on our regression

functions.

The basic idea behind kernel regression is that we can approximate any arbitrary

function with a series of simple locally-weighted functions, such as linear regres-

sion functions. We approximate the unknown function at a point x0, by running

a locally-weighted linear regression (of order p) about the point x0, and report the

prediction ŷ as the height of this fit. The weights are produced by a symmetric

kernel (e.g., standard Gaussian density) centered about the point x0, whose purpose

is to down-weight points far away from x0. When the random component for the

locally fit regression model is Gaussian, the solution for the regression coefficients

can be calculated using weighted least squares.

We include kernel regression model components into our regression mixture frame-

work by modifying the EM algorithm in Section 3.3.3. Instead of calculating β̂k and

σ̂2
k in (3.11) and (3.12), we require the explicit calculation of the mean ŷij (predicted

value) and variance σ̂2
ij at every associated xij , for each cluster k. We do this by solv-

ing a locally-weighted least squares problem (the weights become the membership

probabilities multiplied by the kernel weights) at each point. With this modification,

the rest of the framework remains intact.

One other consideration is the bandwidth for the kernels. The bandwidth deter-
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mines the spread of the density for a kernel. Much has been written on the subject

of learning this parameter from the data (e.g., Fan & Gijbels, 1996). In practice, we

assume a known fixed bandwidth but clearly one could generalize our algorithms to

include a “data-adaptive bandwidth” component.

The complexity of the EM algorithm for kernel regression models scales as Nm,

where N gives the total number of points in all the curves, and m gives the number

of unique x-values in the dataset. This is due to the fact that we must perform

a separate weighted-least squares regression at each of the unique x-points using

(potentially) all of the N y-points for each curve.

The main drawback of KRMs is that they are computationally prohibitive. SRMs

are computationally cheap and provide for similar flexibility. Thus, we do not pursue

the use of KRMs in the remainder of this thesis. For more extensive details and

further analysis with KRMs, see Gaffney and Smyth (1999).

3.6 Experimental results

In this section, we report experimental results with simulated data that show the

importance of employing curve modelling techniques when clustering sets of curves.

For these experiments we focus on using a spline mixture model (an SRM) as the

data generating model and then compare PRMs and Gaussian mixtures on this data.

In this way, the results are unbiased since the data generating model is different than

each of the comparison models. Results for comparisons between SRMs and Gaussian

mixtures on data generated from a PRM are similar and are not shown here.

Each of the experiments in this section was carried out as follows. A random,

three component SRM (of order 4) was chosen by sampling three spline coefficient

vectors (of length 8) from a normal distribution centered around zero (with standard
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deviation 2). The sequence of knots (of length 8 +4) was linearly spaced among the

x-axis from 0 to n, where n was set to either 20 or 50 depending on the experiment.

This model was used to generate 25 different training sets of 50 curves each and

25 testing sets of 100 curves each. Both PRM and Gaussian mixtures were trained

on each training subset and test log-likelihood scores were calculated on the test

sets and averaged across the 25 subsets (the log-likelihood scores were calculated

based on the log-likelihood equations defined for each model above). This whole

process was then repeated three times with three different randomly selected PRMs,

resulting in test scores that were averaged over 75 different test subsets from three

different spline mixture models. These averaged log-likelihood scores are reported

in what follows. Three examples of the resulting generated data are provided in

Figure 3.3. The bolded lines in the figure represent the mean spline curves for each

of the three clusters.

Accounting for smoothness information

An assumption with curve data is that the underlying model is inherently smooth.

Vector-based clustering methods such as Gaussian mixtures do not account for this

information. For example, Figure 3.4 shows the results of fitting an SRM, a PRM,

and a Gaussian mixture model to a set of curves generated from an SRM. The bolded

lines represent the mean curves for each of the three clusters in this example.

Figure 3.4(a) is identical to the data generating model and shows the underlying

spline curves as bolded lines. Figure 3.4(b) shows the curve models output from a

PRM. The component regression models are of order seven in this example. The

smoothness information is accurately accounted for with the PRM. Figure 3.4(c)

shows the mean vectors output from Gaussian mixtures. It is clear that this model

does not account for the smoothness information very well, if at all.
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Figure 3.3: Example of the spline mixture data generated for the experiments in
this section. The bolded lines represent the mean spline curves for each of the three
clusters.
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(c) Output from Gaussian mixtures

Figure 3.4: Smoothness information accounted for by SRM, PRM, and Gaussian
mixtures. The bolded lines are the mean cluster models.
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Figure 3.5: Comparison of Gaussian mixtures and PRMs for various orders of the
regression fit with PRM. The error bars show one standard deviation.

Figure 3.5 shows the results of comparison experiments between Gaussian mix-

tures and different orders of regression models for PRM. The y-axis is averaged test

log-likelihood, and the x-axis is the order of regression model used by PRM. The

error bars show one standard deviation. For small orders such as cubic or quartic,

the Gaussian mixture model out-performs PRM since the PRM model is too sim-

ple to model the rapidly changing curve data. But for orders of 5 or greater, the

PRM is able to leverage the smoothness information to generate clusterings which

are predictively better than those from Gaussian mixtures.

Accounting for variable length curves

A common problem with curve data is that curves often exhibit different lengths over

the dataset. This creates problems for vector-based clustering methods since the

curves do not conform to a fixed-dimensional vector space. For example, Figure 3.6

shows an example of variable-length curve data generated from random SRMs as

described above. The plotted circles show the ends of each curve. A common solution
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Figure 3.6: An example of variable length curve data generated from a spline mixture
model. The circles indicate the ends of each curve.

for vector-based clustering methods when presented with such data is to truncate

the curve data to a particular fixed-length and then cluster with these truncated

curves. Figure 3.7 demonstrates that this methodology is inferior to using all of the

curve data in a curve-based analysis.

The figure shows the results of experiments between Gaussian mixtures and

PRMs with variable-length simulated SRM data. The curves all have a minimum

length of 1 and a maximum length of 51. In the experiments, PRM was allowed

to train on all of the variable length curves, while Gaussian mixtures truncated the

curves to a particular fixed size before training. However, the test data was truncated

for both PRM and Gaussian mixtures so that the score comparisons were fair.

At small truncation sizes (e.g., at a length of 5 on the x-axis in the figure),

Gaussian mixtures only gets to “see” the first five points. However, since there is

not much curve variance in the first five points, the difference between Gaussian

mixtures and PRM is minimized on the truncated test set.

At larger truncation sizes, Gaussian mixtures is able to train on larger portions

of the curve dataset. However, since not all curves meet this size, many of the

52



5 15 25 35
−1.7

−1.57

−1.44

T
es

t L
og
−

lik
el

ih
oo

d

Truncated size

PRM
Gmix

Figure 3.7: Results of experiments between Gaussian mixtures and PRM on variable-
length curve data generated from an SRM.

curves are thrown out all together. This results in a degradation of prediction power

as compared to PRMs on the now much larger test sets (the test sets are larger

since the truncation size has increased). Furthermore, since a larger portion of

each individual curve is included in the truncated test set, PRM is better able to

demonstrate its leveraging of the smoothness information on the test set.

At the largest truncation sizes, Gaussian mixtures performs poorly since hardly

any curves remain in the training set; most of the curves are smaller than the largest

of the curves. Furthermore, now the test set includes almost the entire portion of

each curve and thus the curve-based approach performs better. These results indicate

that curve truncation is a particularly bad solution for dealing with variable-length

curve data.

Accounting for irregular observation points

Another common problem with curve data is that each curve may have been ob-

served/sampled at different points in time. This creates more problems for vector-
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Figure 3.8: Results of experiments with irregularly sampled curve data generated
from an SRM.

based clustering methods since none of these curves exactly correspond to any par-

ticular common vector-space. In practice, this situation is often ignored, and the

data is treated as if it were measured at the same time points.

Figure 3.8 demonstrates the potential problems with this approach. The figure

shows the results of comparison experiments between Gaussian mixtures and PRM

on irregularly sampled curve data generated from an SRM. The experiments con-

sisted of training PRM and Gaussian mixtures on the same datasets with various

levels of perturbation added in time.

For example, at the 0.5 level of perturbation in the figure, a different random

offset (a zero-mean normal offset with 0.5 standard deviation) was added to the

time points before sampling the values of each individual training curve. The true

value of the time points was given to PRM since curve-based methods model the

conditional p(yi|xi) for time xi. However, the Gaussian mixture model ignores this

small difference and assumes that all the points are measured at the same exact

time.
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The results show that the predictive capability of the Gaussian mixture model

degrades as the disparity between the actual and perceived time points at which

each curve was sampled increases. This shows that curve-based approaches are

more appropriate for clustering irregularly sampled curve data.

3.7 Summary

In this chapter, we discussed the specific techniques, models, and algorithms that

directly address the curve clustering problem. Except for the alignment problem,

the methods presented in this section addressed each of the faults that were pointed

out with the standard clustering techniques in Chapter 2

We introduced polynomial regression mixtures (PRM), spline regression mixtures

(SRM), and kernel regression mixtures (KRM) for curve clustering. The component

models of PRMs are based on parametric regression functions that represent the

mean curve using polynomials. The novelty of PRMs is in their extension of existing

linear regression mixture models to explicitly handle curve data with curve-level

membership functions.

SRMs relax this parametric requirement by using flexible spline models to repre-

sent the mean curves for the clusters. The extra flexibility is obtained at the expense

of an increase in the number of parameters. However, there is no significant increase

in computational complexity of the EM algorithm for SRMs as compared to that

of the parametric PRMs. This makes SRMs an attractive alternative to PRMs for

flexible curve clustering.

KRMs provide even more flexibility than SRMs. KRMs employ local polynomial

modelling at each time point along the x-axis to determine the actual mean curves

on a point-by-point basis. Unlike spline models, they do not enforce any smoothness
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constraints, thereby allowing for maximum flexibility. The main problem with these

models is that they are computationally prohibitive. For large amounts of data,

SRMs are recommended as a computational alternative to the KRM. Nonetheless,

KRMs are a novel extension of the regression mixtures framework

Finally, in this section, we reported extensive simulated data experiments that

show the importance of employing curve modelling techniques for curve clustering.

The experiments demonstrated that non-curve-based techniques such as Gaussian

mixtures are not able to efficiently deal with variable length curves, do not efficiently

handle irregular sampled curves or curves with missing measurements, and they do

not account for the inherent smoothness information in curves.
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Chapter 4

Random effects regression

mixtures

4.1 Introduction

In this chapter, we introduce an extension of the regression mixtures framework

that allows for the modelling of within-cluster heterogeneity. The clustering models

of Chapter 3 can be used to effectively account for subpopulations of homogeneous

behavior. However, more care should be taken when considerable variability exists

within each subpopulation or group.

For example, suppose we have a set of individuals from K groups. The implicit

assumption that is made when using a PRM is that each group of individuals are

sufficiently homogeneous to appropriately fit the common group component model.

However, in the presence of significant variability within any group, one would have

to resort to fitting more groups K to be able to sufficiently describe the data, an

option that is left undesirable.

What is needed is the ability to let an individual vary from the template for its
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group, yet still exhibit the underlying behavior that distinguishes this group from the

rest. This leads to the development of random effects regression mixtures (RERM).

A hierarchical model structure is defined with a mixture on parameters at the top

level (parameter-level) and an individual-specific regression model at the bottom

level (data-level). An EM algorithm is then defined using MAP estimation to enable

learning in the hierarchy.

In Section 4.2, the relevant prior work is discussed. Section 4.3 introduces the

hierarchical model structure used in an RERM. In Section 4.4, the derivation of the

MAP-based EM algorithm for RERMs is given. This is followed in Section 4.5 by

brief experimental results comparing RERM to both PRM and to Gaussian mixtures.

Finally, the chapter is concluded in Section 4.6 with a summary.

4.2 Prior work

EM as it relates to MAP estimation is discussed in the excellent book by McLachlan

and Krishnan (1997). Also, Ormoneit and Tresp (1996) discuss the application of EM

for MAP estimation using multivariate Gaussian mixture models. Cadez and Smyth

(1999) discuss the use of MAP-based EM algorithms within a general probabilistic

clustering framework using Bayesian hierarchical model structures.

Random effects mixtures in the Bayesian context were introduced by Lenk and

DeSarbo (2000). There they focus on fully Bayesian inference for mixtures of gen-

eralized linear models with random effects. They use Markov Chain Monte Carlo

(MCMC) techniques (Gelfand & Smith, 1990) for fully Bayesian inference (i.e., they

produce posterior distributions on parameters instead of making point estimates).

We take their lead and define a similar hierarchical model structure but instead de-

velop a MAP-based EM procedure for parameter inference in the case of mixtures
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of polynomial regression models and mixtures of splines.

In parallel to our development of RERMs (Gaffney & Smyth, 2003) James and

Sugar (2003) developed a functional clustering model for sparsely sampled functional

data. Their motivation extends from earlier work (James & Hastie, 2000) in linear

discriminant analysis with irregularly sampled curves. They define a model similar

to what is defined here but work with low-dimensional projections of group means

and do not develop a full MAP-EM algorithm with conjugate hyperpriors.

4.3 Hierarchical model structure

Suppose we have a set of n individuals from K groups and that each individual i

generates a curve yi of length ni according to the normal regression model

yi = Xiβi + εi, εi ∼ N (0, σ2I). (4.1)

This leads to the conditional density of the form

p(yi|Xiβi, σ
2) = N (yi|Xiβi, σ

2I), (4.2)

with Vandermonde matrix Xi and coefficient vector βi as with PRMs. Notice that

each individual has its own regression model through the parameter βi (i.e., there

is no βk here). This is the random effect. In fact, there is no dependence on group

membership at all at this level, the bottom-level (or data-level) of the hierarchy.

Instead at this level we allow for individual-specific heterogeneity.

At the top-level of the hierarchy there is a probabilistic model that describes

the distribution of the parameters βi for each individual. Let zi give the group

membership for curve yi. Knowledge of membership allows us to define a distribution
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on βi according to the group template as

p(βi|zi, φzi
) = N (βi|µzi

,Rzi
), φzi

= {µzi
,Rzi

},

where N is the multivariate normal density with mean µzi
and covariance Rzi

.

Unconditional of class membership, the prior for βi,

p(βi|Φ) =
∑
k

αk N (βi|µk,Rk), (4.3)

is a finite mixture with Φ = {α1, . . . , αK , φ1, . . . , φK}. At this level of the hierarchy

we allow for the clustering of homogeneous group behavior. As a result, we now have

a finite mixture model allowing for homogeneous group behavior at the top-level, and

a regression model allowing for individual heterogeneity at the bottom-level.

One possible problematic issue with this model is that K distinct covariance

matrices must be estimated. One solution to avoid possible estimation problems is

to pool the K covariance matrices into a single representative matrix R. Banfield

and Raftery (1993) introduced a number of methods to reparameterize covariance

matrices so that instead of all clusters sharing a single R, they only share certain

chosen characteristics (e.g., orientation, size, or shape).

We can also introduce a Bayesian regularization methodology to the framework

to curb problematic estimations. We define hyperpriors for Rk and αk in this regard.

The standard conjugate priors for R−1
k and α = (α1, . . . , αK)′ are the Wishart density

W (R−1
k |R0, ν) and the Dirichlet density D(α|η) (Buntine, 1994; Gelman et al., 1995;

Ormoneit & Tresp, 1996). With the estimation problem addressed, the model is

completed by assuming a simple non-informative prior for both σ2 and µk.
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4.3.1 MAP estimation

The hierarchical model specification naturally leads to a MAP estimation. In other

words, it is natural to define the posterior of the parameters given the data as

being proportional to the likelihood of the bottom-level times the prior of the top-

level. Let Θ = {β1, . . . , βn, σ2} be the parameters at the bottom-level and let Φ

be the parameters at the top-level. Then, for the set of n curves Y = {yi}n
i and

the corresponding set of time points X = {xi}n
i , the MAP objective function M is

proportional to the posterior p(Θ, Φ|Y, X) of the parameters. The objective function

for the parameters Θ and Φ is defined as

M(Θ, Φ) = log [p(Y |X, Θ, Φ)p(Θ, Φ)]

= log [p(Y |X, Θ)p(Θ|Φ)p(Φ)] ,

where

p(Y |X, Θ) =
∏
i

N (yi|Xiβi, σ
2I),

p(Θ|Φ) =
∏
i

K∑
k

αk N (βi|µk,Rk),

and

p(Φ) = D(α|η)
∏
k

W (R−1
k |R0, ν).

4.4 MAP-based EM algorithm

Analysis of M leads to the conclusion that direct maximization is not feasible. How-

ever, we can derive a MAP-based EM algorithm that produces consistent parameter

estimates. The derivation proceeds by first declaring both the group memberships
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zi and the individual-specific regression coefficients βi as being hidden. This results

in the joint posterior p(βi, zi|yi) as the hidden-data density.

In the EM framework, the function M is referred to as the incomplete-data

function since it does not contain all the missing data. It is the missing data that

makes the problem complex. Therefore, to make the problem easier we simply define

another function that does contain the missing data. Let Z be the complete set of

memberships zi for all individuals, and notate the set of all unobservable βi as β.

The complete-data MAP objective function of σ2 and Φ takes the form

MC(σ2, Φ) = log
[
p(Y,Z, β|X, σ2, Φ)p(Φ)

]

= log [p(Y |X, Θ)p(Θ,Z|Φ)p(Φ), ]

with

p(Y |X, Θ) =
∏
i

N (yi|Xiβi, σ
2I),

p(Θ,Z|Φ) =
∏
i

αzi
N (βi|µzi

,Rzi
),

and

p(Φ) = D(α|η)
∏
k

W (R−1
k |R0, ν).

Notice that the logarithm of the summation has been removed due to the move from

p(Θ|Φ) to p(Θ,Z|Φ). The true values for Z and β aren’t known, so expectations

with respect to their joint posterior is taken in their place.

The remaining derivation for the EM algorithm consists of two steps: (1) the

expected value of MC is taken with respect to the posterior hidden distribution

p(Z, β|Y ), and (2) this expectation is maximized over the parameters σ2 and Φ to

yield the new parameter values.
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E-Step

The posterior p(Z, β|Y ) factors into p(Z|Y )p(β|Z, Y ). This leaves two factors to be

calculated: the membership probability p(zi = k|yi), and the expected value of the

posterior p(βi|zi,yi). First, we calculate the membership probability

wik = p(zi = k|yi)

∝ αk p(yi|σ2, φk) (4.4)

that curve i was generated from cluster k. Note that we are not given βi in

p(yi|σ2, φk); this is the marginal model of yi. Second, we set the expected value

of βi given yi and zi = k to

β̂ik = (1/σ2X′
iXi + R−1

k )−1(1/σ2X′
iyi + R−1

k µk)

which is the mean of the posterior p(βi|yi, zi = k). Note that β̂ik is simply the result

of Bayesian regression with prior µk. Also, for simplicity, we set

Vβ̂ik
= (1/σ2X′

iXi + R−1
k )−1

which gives the posterior covariance.

M-Step

In the M-step, we use the results from the E-step to update the model parameters.

First, we maximize the top-level (the mixture model on parameters), and then we

maximize the bottom-level (the regression model on y and x data). For the top-level
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we update the parameters

α̂k =

∑n
i wik + (ηk − 1)

n + (
∑

k ηk − K)
,

µ̂k =

∑n
i wikβ̂i∑n

i wik
,

and

R̂k =

∑n
i wik

[∥∥∥β̂i − µ̂k

∥∥∥2
+ Vβ̂ik

]
+ R−1

0∑n
i wik + (ν − (p + 1))

, (4.5)

while on the bottom-level we update the parameter

σ̂2 =

∑
ik wik

[∥∥∥yi −Xiβ̂i

∥∥∥2
+ Vβ̂ik

]
N

where N =
∑

i ni.

There is one small issue of setting the hyperparameters for the hyperprior p(Φ).

In practice we set ν to the neutral value of p+1 so that it cancels in the denominator

of (4.5). We also set R−1
0 to ωI for some positive ω. In this way, ω acts as a type of

smoothing parameter. Unless otherwise stated, we also set the Dirichlet to neutral

values (e.g., η1 = · · · = ηk = 1); however, it can be used to deal with issues such as

background clusters. In this case, you may want to enforce a rule that for every 100

curves, there “should” be at least one in the background.

The computational complexity of this EM algorithm is still linear in the number of

data points as with PRM and SRM. Initialization is carried out by sampling random

values for the membership weights wik, and then solving for β̂ik by removing the

terms involving R and µk. The EM algorithm can then be started with the M-

step. Convergence is detected in the same manner as with PRM, SRM, and KRM;

by monitoring the log-likelihood until the incremental improvement drops below a
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threshold value (see Section 3.3.3 for the exact criterion as described for PRMs).

4.5 Experimental results

Figure 4.1 shows simulated curve data generated from the hierarchical model struc-

ture described in Section 4.3. Underlying the data are three different quadratic

polynomials each allowing heterogeneity among the curves common to its group.

The curves were generated by choosing cluster k with probability αk, drawing βi

from N (βi|µk,Rk), and then producing yi from N (yi|Xiβi, σ
2I).

The left plot of Figure 4.1 shows the generated curve data with no classification

labels. The right plot shows a view of parameter space. In this plot, the horizontal

axis gives the value of βi0 (the y-intercept) while the vertical axis gives βi2 (the

coefficient of x2). The variance in parameter space can be seen from this view.

This data was given to RERM and was set to find three groups. The results are

shown in Figure 4.2. The left plot of Figure 4.2 shows the data as clustered/classified

by the mixture model. The clustering is shown as solid, dashed, and dashed-dotted

curve groups. The mean curve for each group is shown by bolded lines. The right

plot shows the clustered data in parameter space. As with the previous plot, the

symbols for the means of the groups are bolded/filled-in.

Figure 4.3 gives the actual or true clustering from the generated data. You can

see that the hierarchical model was able to find the means and the variance both at

the bottom-level and the top-level of the structure.

It is instructive to understand how a standard PRM deals with this dataset. The

results from this test are shown in Figure 4.4. There is no plot for the top level in

this figure since this model does not have any notion of a hierarchy. However, the

linear regression model spreads the mean curves out across the mass of data so that
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Figure 4.1: Simulated data from three underlying quadratic polynomials. The left
plot shows the data-level and the right plot shows a view of the parameter-level.
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Figure 4.2: Clustering results with random effects regression mixtures. The “means”
are shown in bold.
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Figure 4.3: Simulated data from Figure 4.1 with the true class labels and underlying
curves added.
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Figure 4.5: Comparisons between random effects linear regression mixtures, linear
regression mixtures, and p-Gaussian mixtures. The left plot shows the training
log-likelihood and the right plot shows the test log-likelihood.

it can account for all of the variance at the bottom-level in the most likely fashion.

Of course, this is not the state of nature, but it is doing the best it can in this case.

Absent the ability to model the variance in some other way, it must incorrectly infer

the placement of the underlying groups of behavior.

One thing we might want to test is the comparison between random effects re-
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gression mixtures and the method of fitting a separate regression line of order p− 1

to each curve in your data set and then use straight Gaussian mixtures to cluster

the fitted regression coefficients, and thereby the original curve data. We call this

the p-Gaussian method since one firsts projects the original curve data down into

a p-dimensional vector space using a polynomial fit of order p − 1 and then applies

Gaussian mixtures in this p-dimensional space.

Conceptually, we can think of random effects regression mixtures as doing this in

an iterative fashion, where at each iteration the bottom-level uses the results from

the top-level to perform the projection, and the top-level uses the results from the

bottom-level to perform the clustering. In this way the method attempts to utilize

information from both levels in the most effective manner.

Figure 4.5 shows the results of comparison tests between the p−Gaussian method,

RERM, and PRM. For the experiments, twenty-five training and test data sets were

randomly generated from a hierarchical model structure at each of five different

variance levels, resulting in 250 different data sets. The top-level of the model

consisted of a mixture on the coefficients for three underlying linear polynomials.

The covariance matrix was set as diagonal and shared by all three clusters, with

the diagonal elements being the measure of variance that was changed during data

generation. The variance at the data-level was fixed during the generation of the

training and test sets.

Each of the three clustering methods were presented with the training and test

sets, and the resulting training and test log-likelihood scores per data point were

recorded. In Figure 4.5 we see that the random effects linear regression model

consistently beat the other two over the testing interval in both training and test

log-likelihood scores. Again we see evidence that standard linear regression mixtures

cannot cope with the variance structure in these types of data sets as it gets beat
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by both p-Gaussian mixtures and RERM.

4.6 Summary

In this chapter, we introduced a novel extension to the regression mixtures frame-

work of the previous chapter. This extension allows for the modelling of significant

within-cluster variability without resorting to the undesirable solution of arbitrarily

increasing the number of clusters to provide a better model fit. The framework can

be defined in a natural way as a two-level hierarchical model in which the clustering

of individuals occurs at the top-level and the modelling of the output data from the

individuals occurs at the bottom-level. The definition of the hierarchy leads to an

efficient MAP-based EM algorithm for the estimation of both the individual-specific

model parameters and the top-level hyperparameters which describe the cluster-

specific variability.

Simulated data experiments were presented that showed the effectiveness of the

two-level hierarchy for the modelling of clustered data with significant within-cluster

variability. This variability is well described through the use of top-level distributions

on individual-specific regression parameters. Reported results showed that the PRM

is particularly bad at modelling this type of two-level data. It was out-performed by

a projection-based Gaussian mixtures method in which the underlying dataset was

first projected into the parameter space in which Gaussian mixtures was run.

We leave this model aside in the rest of this thesis, and instead focus on the

integration of the more basic regression mixtures of the previous chapter with the

alignment models introduced in Chapters 5, 6, and 7. The interested reader is

referred to Gaffney and Smyth (2003) for more detailed experimental results with

RERMs.
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Chapter 5

Curve Alignment in Measurement

Space

In previous chapters, we looked at the clustering problem. In this and the following

two chapters we set this problem aside and focus on the curve alignment problem.

We unify both clustering and alignment in Chapter 8.

5.1 Introduction

It is common for sets of curves that result from a data measuring process to be

misaligned from each other. This can be caused by factors such as incompatible

measurement procedures or underlying differences in the curve generation process.

In some instances an explicit alignment is not desired since the unaligned curves may

provide useful information that is inherent to the process and may yield scientific

interpretation. For example, signal delays in gene regulation networks provide clues

to the underlying network structure. However, in other cases the search for an

alignment is of primary importance; we shall assume this in what follows.
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The main contribution of this chapter lies in the introduction of a novel proba-

bilistic curve alignment model that allows for the alignment of curve data in mea-

surement space. We refer to alignment in measurement space as allowing for trans-

formations on the curve measurements themselves as opposed to the more difficult

problem of allowing for transformations in time which is discussed separately in

Chapter 6. Often we refer to alignment in measurement space as alignment in space

or space-alignment.

Much of the previous work in curve alignment is founded in optimization theory.

Often the resulting procedures are complex with many external constraints that

help make the problem well-defined. In contrast, we formulate the problem from

a probabilistic viewpoint that unifies the specification, learning, prediction, and

constraint problems in a single, self-contained framework.

This chapters is organized as follows. We define the alignment problem and

discuss the relation of our new methodology to previous work in Section 5.2. In Sec-

tion 5.3 we introduce our space-translation alignment model that allows for trans-

lations in measurement space. We use this section to lay the foundation for the

introduction of the rest of our alignment models described in this thesis.

In Section 5.4, the extension to the more complex affine alignment model which

adds scaling in measurement space is derived. This introduces joint priors on trans-

lations and scalings, and can be described by a simple Bayesian network (Pearl,

1988; Jensen, 1996). Section 5.5 presents a set of experimental results with both

real and simulated data that demonstrate the benefits gained with the probabilistic

formulation. The chapter is concluded with a summary in Section 5.6.
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Figure 5.1: Estimated (and randomly translated) position of the center of the lower
lip during the speaking of the syllable “bob”; (left) unregistered curves, (right)
registered curves.

5.2 Problem definition and prior work

An example alignment problem is given in Figure 5.1 which shows simulated data

motivated by experiments in speech modelling. The figure shows twenty curves

that were simulated based on the “lip” data set analyzed in Ramsay and Silverman

(1997). The experiment involved observing the position of the center of the lower

lip at the moment the syllable “bob” was uttered.

The curves shown in the left plot are randomly translated versions of the original

data (not shown) with noise added. The curves shown in the right plot are the

registered versions of the curves that are obtained using our spline alignment model

described below. It’s clear from the figure that the underlying shape is more clearly

expressed in the aligned curves.

The general curve alignment problem has active ongoing research in many fields

under different names. For example, in statistics, self-modelling regression meth-

ods employ a parametric shape invariant model that allows for space- as well as

time-alignment (Lawton et al., 1972; Kneip & Gasser, 1988). They use non-linear

72



curve models (e.g., non-linear regression models) to represent the curve data and

develop iterative optimization procedures to solve for the alignments. A related

method known as structural averaging also employs landmark points to aid in the

alignment (Kneip & Engel, 1995).

Curve alignment is known as curve registration in functional data analysis (Silver-

man, 1995; Ramsay & Silverman, 1997; Ramsay & Li, 1998). Curves are represented

as smooth functionals (e.g., using splines) and alignments are learned in an iterative

fashion by minimizing integrated criteria in spline space (e.g., squared-error).

The method of dynamic time warping (DTW) grew out of speech recognition (Sakoe

& Chiba, 1978) and specifically addresses the time-alignment problem. However,

by defining transformation-invariant distance measures, alignment in measurement

space can also be achieved (Keogh & Pazzani, 1998). DTW makes use of dy-

namic programming techniques to discover an alignment that minimizes the warping

distance or cost (we will address DTW techniques in the next chapter on time-

alignment).

Finally, point-set matching is important in medical imaging (among other appli-

cations) where 2D and 3D shapes are aligned within images (Goodall, 1991; Kendall,

1984; Neumann & Lorenz, 1998; Dryden & Mardia, 1998). Much of the work in this

area is relevant to the joint problem of clustering and aligning. We discuss this work

in Chapter 8 that addresses the joint problem.

In a broad sense, each of these methods contains a very specific iterative opti-

mization routine to effect an alignment. In general, they iterate between estimating

an alignment and updating a reference curve that represents the ideal to which the

set should be aligned. This type of iterative procedure is common in multivariate

statistics; it is loosely known as Procrustes (Mardia et al., 1979; Ramsay & Silver-

man, 1997). Many of the above methods also employ self-tailored normalization
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Figure 5.2: Example of cross-sectional mean curve.

procedures that address well-known identifiability issues (discussed below) with the

alignment problem (see, e.g., Kneip & Gasser, 1988).

In contrast, we look at the problem from a probabilistic model-based viewpoint

which unifies the specification, learning, prediction, and identifiability problems in

a single, self-contained framework. This leads to an iterative EM algorithm that

naturally encompasses the Procrustes procedure and leads to a simple-to-implement

algorithm.

5.2.1 Curve preprocessing

Looking at the translation problem in Figure 5.1, the problem seems rather straight-

forward. For example, a similar alignment can be obtained by subtracting off the

individual mean of each curve. In other words, the aligned curve y′
i is calculated

as y′
i = yi −

∑
j yij/ni, for the curve of length ni. This is a standard technique

for normalizing a set of curves (i.e, conform in a standard way) before any further

analysis is performed. However, this will cause all curves to artificially vary about

zero. The underlying shape is well represented but the overall level has been shifted

(which is important for curve prediction, among other things).

74



The cross-sectional mean curve, defined as µ =
∑

i yi/ni, represents the mean

level of all curves at each point along the x-axis. The cross-sectional mean curve is

represented in Figure 5.2 by the dashed (blue) line. An alignment that preserves the

overall level of the curve dataset can be obtained by subtracting from each curve,

the mean deviation of the curve from the cross-sectional mean curve. This results

in the exact same shape as the first case except now the curves vary about the

cross-sectional mean curve instead of zero. In other words, this procedure globally

translates the first alignment to be centered over the cross-sectional mean curve. We

refer to these types of “one-off” techniques as curve preprocessing or curve normal-

ization.

We can attempt to further improve this alignment by modelling an overall mean

by something other than the cross-sectional mean curve, and then calculate devi-

ations from this new mean curve. In fact, we might refer to this as model-based

alignment since the alignment is carried out with respect to an assumed model and

not in relation to a simple model-free mean calculation. This is the strategy that is

pursued in this thesis.

A useful feature of the alignment models proposed in this thesis is that they can

be used in addition to prior curve preprocessing. In other words, a particular type

of preprocessing can be employed to give a rough estimate of the curve alignments.

Then, the application of our alignment models to this rough estimate can be used

to give a more refined alignment. In Chapter 9, we show an application to cyclone

clustering in which this is the optimal strategy. This procedure results in the implicit

modification of the alignment priors as will be seen below.
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5.3 Translations in space

We begin with an alignment model that allows for translations in measurement space.

The exposition below defines the foundation upon which all our alignment models

are based. We will follow a standard template for the description of new models

throughout the rest of this thesis. The five-step procedure is as follows:

1. Provide the model definition

2. Define the transformation priors

3. Calculate the resulting joint and marginal probability models

4. Define the log-likelihood function

5. Derive the associated EM algorithm

5.3.1 Model definition

The derivation that follows equally applies to several types of regression models (e.g.,

in particular, both polynomial regression and spline regression models). However, we

describe this section from the viewpoint of applying spline regression models to the

problem. The alternative viewpoint will be taken in the next chapter with models

for alignment in time.

We model a set of curves using the same spline regression model as defined in

Section 3.4. The spline regression takes the form

yi = Biβ + εi, εi ∼ N (0, σ2I), (5.1)

where yi gives the i-th curve of length ni, Bi is the associated ni × L spline basis

matrix, β is the p×1 mean spline coefficient vector, and N (0, σ2I) gives the Gaussian

noise model.
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We add a curve-specific translation scalar di that allows for the entire curve to

be translated as a unit. We incorporate this translation into the regression model as

yi = Biβ + di + εi, εi ∼ N (0, σ2I). (5.2)

This results in a spline regression model that allows for arbitrary translations in

measurement space. The associated curve probability model p(yi|θ, di) is conditioned

both on the global parameters θ = {β, σ2} and also on the new unknown translation

di (it is also implicitly conditioned on the non-random matrix Bi). In order to fit

the model to the available data, both θ and each of the di must be found.

Before we define the EM algorithm which performs this fitting task, we motivate

the algorithm by quickly walking through a possible fitting procedure. The estima-

tion is difficult because we have missing data. The problem would be straightforward

if we knew the values of di; however, these values are hidden from the observer. Sup-

pose we initially set each of the di to zero and then solve the regression equation

in (5.2) for the ML estimate θ̂. This is a sensible thing to do; however, we are also

in search of the values for the translation parameters themselves. Each d̂i can be

found as the solution to the associated minimization problem:

d̂i = arg min
di

∥∥∥yi −Biβ̂ − di

∥∥∥2
. (5.3)

These solutions provide estimates for each of the parameters β̂, σ̂2 and d̂i. However,

the estimate σ̂2 is incorrect since it includes variance from the translations that were

not subtracted out of the regression (since we set all di = 0).

An improved estimate can be obtained by resolving the regression equation while

substituting d̂i for di. The new solution not only produces an improved σ̂2 but as a

result a new estimate for β̂ is produced as well. These values can then be used to
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set up a new minimization problem which again leads to a new regression equation

and so forth and so on.

This demonstrates the use of a model-based Procrustes alignment strategy for

curve data. As pointed earlier, the above estimation procedure seems to mirror

the way in which the EM algorithm works. This similarity is exploited and the

associated EM algorithm is derived in Section 5.3.2. The above iterative procedure

is a non-probabilistic, model-based Procrustes alignment method. We use this type

of method in Section 5.5.2 as a comparison to the full probabilistic EM approach.

We give the name non-probabilistic Procrustes (NPP) to this type of procedure.

There is one more problem, however. The estimation in this case is not well-

defined (i.e., the model is not identifiable). There are infinitely many valid solutions

(in a maximum likelihood sense) for the values of the translation parameters {di}
and the global distribution parameters θ for any particular set of curves. It is easy to

generate new solutions with the same likelihood as any current solution. First, pick

any real number and add it to the current value of each di. Then, re-estimate the

new value for β with the set {di} fixed. The mean curve will simply be translated

by the chosen real number added to the di, the variance will remain unchanged, and

most importantly, the likelihood will also remain unchanged.

The problem is that there are no restrictions on the translations themselves.

Borrowing a term from machine learning, the method does not employ an inductive

bias over translations (Mitchell, 1997). Many different normalization schemes have

been used to deal with this predicament. For example, Härdle and Marron (1990)

chose the first curve as the reference curve and fixed its alignment parameters to

some particular values (e.g., in this case, we might fix d1 to zero) which pins down a

particular “frame of reference”. Other schemes require that the mean of the set {di}
be zero which achieves the same sort of goal. This problem is handled automatically
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in our framework through the use of alignment priors, which we now turn to.

Prior model: p(di)

In the preceding example, we initially estimated θ by setting the di to zero. This

initialization makes a couple of implicit assumptions: (1) the most likely translation

is the zero translation, and (2) negative or positive translations are equally likely.

We can make these assumptions explicit by considering di to be a random variable

with an associated prior probability density attached to it. A useful prior model for

the random variable di is the zero-mean Gaussian:

p(di) = N (di|0, v2). (5.4)

This encompasses the two implicit assumptions above and also discounts large trans-

lations over smaller ones. The variance v2 determines the degree to which larger

translations are discounted. This variance will be learned from the data within the

ensuing EM algorithm.

Specifying the transformation parameters as random variables is done in Kneip

and Gasser (1988), but they do this for asymptotic reasons only (they do not actually

employ priors in the algorithm). Rønn (2001) specifies priors on time shifts, as we

will see in the next chapter, but he does not use them to develop a full EM algorithm.

Integration of this prior into the joint probability density for curve yi and trans-

lation di leads naturally to identifiable estimation procedures. We discus this inte-

gration after presenting the graphical model structure associated with this model.
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Figure 5.3: Graphical model structure for the specified alignment model. The use of
plates allows for the explicit notation of the curve samples and the model parameters.

Plate representation of the model structure

Figure 5.3 shows a diagram of the graphical model structure for this problem using

plates (Buntine, 1994). Plates are an extension of standard graphical models that

explicitly represent the data samples and the parameters as nodes in the graph. The

nodes “inside” of the box (or plate) in the figure are thought of as being repeated n

times (consisting of a stack of n plates), representing the n curve samples. This is

denoted by the n in the lower-left corner of the (“top”) plate. The nodes outside of

the plate have only one instance each, but directly affect the nodes of the n plates

to which they point. This means each of their arcs are also repeated n times.

The plate structure clearly describes the set of priors that are employed (and not

employed) for this alignment model. Notice that only variables are located in the

plate and only parameters are located outside. The model does not use hyperpriors.

In particular, notice that there are no incoming arcs to any of the parameters outside

of the plate. One can easily employ hyperpriors in this model if the need arises. For

example, the conjugate hyperprior for the prior parameter v2 is the inverse gamma

distribution (Gelman et al., 1995).

80



Joint, marginal, and log-likelihood

The model specification in (5.2) results in the conditional probability density for yi

as

p(yi|di) = N (yi|Biβ + di, σ
2I). (5.5)

If we assume that di is a random variable with the prior specified in (5.4), then the

joint probability density for yi and di takes the product form

p(yi, di) = p(yi|di)p(di)

= N (yi|Biβ + di, σ
2I)N (di|0, v2). (5.6)

The joint density contains complete information about the model from which all

other densities can be derived. For example, we can integrate over di to obtain the

marginal density for yi. This density can be calculated as follows.

p(yi) =
∫

p(yi, di) ddi

=
∫

p(yi|di) p(di) ddi

=
∫

N (yi|Biβ + di, σ
2I) N (di|0, v2) ddi

= N (yi|Biβ, v2
�+ σ2I), (5.7)

where � notates an ni × ni matrix of ones. The marginal density on the left is

implicitly conditioned on the parameters θ = {β, σ2} and on the non-random matrix

Bi as is always the case in this thesis (unless otherwise stated). The reader should

not confuse this marginal density with the fully Bayesian marginal in which θ has

been integrated out of the model.

The marginal density for yi has a non-diagonal covariance matrix. The marginal
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model that results from the standard regression equation in (5.1) necessitates in-

dependence among the curve measurements of yi. However, by considering di as a

random variable we have added non-zero covariance between the curve measurements

themselves. This is due to the fact that di affects the entire curve. The variance

of any particular yij is v2 + σ2, and the covariance between yij and yik is v2 with a

correlation of v2/(v2 + σ2).

This density leads directly to the definition of the log-likelihood for the set Y =

{yi}n
1 of n curves. The log-likelihood is the sum over all n curves of the log marginal

of yi:

log p(Y ) =
∑

i

logN (yi|Biβ, v2
�+ σ2I). (5.8)

It is this function which we attempt to maximize using the EM algorithm developed

next.

5.3.2 EM translation algorithm

In this section, we derive the new EM space-translation algorithm. A review of the

necessary prerequisite EM theory is provided in Appendix A. The derivation covers

four steps. First, we specify the hidden or missing data and define the hidden-data

density (the posterior of the hidden data given curve yi). Second, we define the

complete-data log-likelihood function Lc which is the joint log-likelihood of Y and

the hidden data. Third, we calculate the Q-function by taking the expectation of Lc

(w.r.t. the hidden-data density). And finally, we derive the parameter re-estimation

equations by maximizing the Q-function. The first two steps are initial specification

steps, while step 3 is the E-step, and step 4 is the M-step.

In the first step, we declare the hidden data as the translations {di} since these

data cannot be directly observed. The posterior p(di|yi), then, represents the hidden-
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data density (giving us a distribution on the values for the unknown translations).

In the second step we define the complete-data log-likelihood function as the joint

log-likelihood of Y and the hidden data {di}. This can be written as the sum over

all n curves of the log joint density in (5.6). This function takes the form

Lc =
∑

i

log p(yi|di)p(di)

=
∑

i

logN (yi|Biβ + di, σ
2I) N (di|0, v2). (5.9)

The EM algorithm will iterate between calculating the posterior p(di|yi) in the E-

step and calculating new parameter estimates in the M-step. We address these last

two steps next.

E-step

In the E-step we first calculate the posterior p(di|yi) and then use this to take

expectations of the complete-data log likelihood function in (5.9). The posterior can

be calculated analytically in this case. Upon expansion of the posterior

p(di|yi) ∝ p(yi|di)p(di)

∝ exp
{
−‖yi − Biβ − di‖2 /2σ2 − d2

i /2v2
}

,

we recognize this as the normal density N (di|d̂i, Vdi
) since we have an exponential

function of a quadratic polynomial in di. The mean can be identified as

d̂i =
Vdi

σ2
(yi − Biβ)′1 (5.10)

with a variance of

Vdi
= (ni/σ

2 + 1/v2)−1. (5.11)
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From this we see the posterior mean d̂i is the weighted difference between the actual

curve and the model-based mean curve (which plays the role of the cross-sectional

mean here). This difference is down-weighted as the noise model grows (increase in

σ2) or as the likely range of translations shrinks (decrease in Vdi
). Thus, we find

that the probabilistic framework naturally produces a weighted form of the basic

normalization technique described at the beginning of Section 5.3 (i.e., set di to the

mean of the difference between the curve and the cross-sectional mean curve). The

variance equation is the inverse of the sum of the two relevant precisions, a common

result in Bayesian estimation (Gelman et al., 1995).

Calculating the Q-function

We now turn to the calculation of the Q-function as the posterior expectation of Lc

from (5.9) with respect to the hidden-data density calculated above. We will use

this function in the M-step to derive the parameter re-estimation equations. The

expectation can be calculated by expanding the normal densities and substituting

in the posterior mean d̂i for E[di|yi] and (d̂2
i + Vdi

) for E[d2
i |yi]:

Q =
∑

i

E
[
logN (yi|Biβ + di, σ

2I) N (di|0, v2)
∣∣∣yi

]

=
∑

i

−ni

2
log 2πσ2 − 1

2σ2
f(d̂i|yi) −

1

2
log 2πv2 − 1

2v2
g(d̂i) (5.12)

where

f(d̂i|yi) = E
[
‖yi − Biβ − di‖2

∣∣∣yi

]

=
∥∥∥yi − Biβ − d̂i

∥∥∥2
+ niVdi

, (5.13)
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and

g(d̂i) = E
[
d2

i

∣∣∣yi

]

= d̂2
i + Vdi

. (5.14)

M-step

The last step that must be defined is the M-step. In the M-step we maximize the

Q-function in (5.12) over the set of parameters {β, σ2, v2}. The maximization is

straightforward and resembles the standard least squares solution for regression.

The parameter re-estimation equations are

v̂2 = 1/n
∑

i

g(d̂i), (5.15)

σ̂2 = 1/N
∑

i

f̂(d̂i), (5.16)

and

β̂ =

[∑
i

B′
iBi

]−1∑
i

B′
i(yi − d̂i), (5.17)

where f̂ is the function f with β replaced by β̂.

An NPP alignment procedure (defined in Section 5.3.1) for this model consists

of calculating β̂ exactly as it is here (assuming that you replace the cross-sectional

mean curve with Biβ, i.e., a model-based NPP). However, the equation for σ̂2 would

not contain the niVdi
term and there would be no calculation for v̂2 at all (since this

is not present in a non-random approach).
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Further details

A typical initialization for this algorithm consists of sampling random values for d̂i

and Vdi
, and then proceeding directly to the M-step. The computational complexity

of this algorithm is linear in the total number of points N =
∑

i ni.

We provide experimental results that measure the performance of this algorithm

in Section 5.5. This framework is now used to extend the methodology to allow for

translations as well as scaling in measurement space.

5.4 Affine transformations in space

In this section we focus on extending the methodology of the previous section to

include translations as well as possible scaling in measurement space. The derived

extension demonstrates the flexibility of the probabilistic framework.

5.4.1 Model definition

We turn to a graphic example of the affine alignment problem using simulated data.

Figure 5.4 shows twenty curves which were simulated from the “pinch” data set

analyzed in Ramsay and Silverman (1997). The experiment involved measuring the

exerted force between the thumb and forefinger during a brief impulse of pinching.

The curves in the left plot are randomly transformed versions of the original data

(not shown). The curves in the right plot are the registered versions output from

our affine-alignment spline model introduced below. Note that the shape as well as

the overall mean-level are well represented in the aligned curves.

The model definition is an extension of the spline regression model in (5.2). We

add a new scale parameter ci to this model which results in the following affine-
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Figure 5.4: Curves measuring the force exerted between the forefinger and thumb;
(left) randomly transformed versions, (right) registered curves.

alignment spline regression model:

yi = ciBiβ + di + εi, εi ∼ N(0, σ2I). (5.18)

This spline model now allows for arbitrary translation and scaling in measurement

space. The associated curve probability density p(yi|θ, ci, di) is conditioned both on

the global parameters θ = {β, σ2} and also on the unknown transformation variables

{ci, di}.
The same identifiability problem must be dealt with for this model as in the

previous modelling case in Section 5.3.1. This problem is handled automatically

in our framework in the same manner as before, through the use of priors on the

possible set of transformations.

Prior model: p(ci, di)

We begin by making an initial independence assumption for the joint prior model.

That is, given no other information, we set p(ci, di) = p(ci)p(di). This is a natural

assumption since given no data, we have no reason to believe ci covaries with di
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unless the specific situation calls for it.

Given our independence assumption, the problem is reduced to specifying two

separate priors. The translation prior was specified earlier in Equation (5.4) and

we use the same prior here. For the scaling prior, it is desirable that a value of 1

be the most likely value (i.e., no scaling at all) with successive values decreasing in

likelihood. Again an extremely useful prior for this job is the Gaussian density. In

other words, we set

p(ci, di) = N (ci|1, u2)N (di|0, v2), (5.19)

where u2 gives the variance for the prior model on ci, and v2 gives the variance for

di as before.

This scale prior technically allows for negative scaling (and is also symmetric

about one). In practical terms, the ensuing EM algorithm won’t allow for negative

scaling unless the data set actual contains it. Other priors which prevent negative

scaling values can be used. A log-normal density is an example of this type of

prior. However, preliminary results did not show any significant improvements over

the more analytically friendly Gaussian priors, and thus we use the prior defined

in (5.19) for the results in this thesis.

Integration of this prior into the joint probability density for curve yi and trans-

formation parameters {ci, di} leads naturally to identifiable estimation procedures.

The corresponding plate structure for the affine alignment model is shown in Fig-

ure 5.5. There are two extra nodes for this model. The unobservable scaling variable

ci and its associated variance prior parameter u2.
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Figure 5.5: Graphical model structure for the affine alignment model.

Joint, marginals, and log-likelihood

The model specification in (5.18) results in the conditional probability density for

yi as

p(yi|ci, di) = N (yi|ciBiβ + di, σ
2I). (5.20)

If we consider both ci and di as random variables with prior density (5.19), then the

joint probability density for the curve yi and the transformation parameters {ci, di}
takes the product form

p(yi, ci, di) = p(yi|ci, di)p(ci)p(di)

= N (yi|ciBiβ + di, σ
2I)N (ci|1, u2)N (di|0, v2). (5.21)

We can integrate over each of the transformation parameters in the joint model to

obtain all of the marginal densities. For example, the marginal of yi conditioned on

ci is

p(yi|ci) =
∫

p(yi, di|ci) ddi

= N (yi|ciBiβ,V), V = v2
�+ σ2I.
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Note the covariance terms in V are not zero but are equal to v2 while the variances

are v2 + σ2. The covariance V contains all model variance except that associated

with the conditioned variable ci. For the marginal of yi conditioned on di we get

p(yi|di) =
∫

p(yi, ci|di) dci

= N (yi|Biβ + di,U), U = u2Biββ′B′
i + σ2I,

where the covariance terms are essentially cross-products of Biβ weighted by u2. The

covariance U contains all model variance except that associated with the conditioned

variable di.

The unconditional marginal of yi can be calculated by integrating over both ci

and di. Again, we can calculate this analytically as

p(yi) =
∫ ∫

p(yi, ci, di) dciddi

= N (yi|Biβ,U + V − σ2I)

Note that U + V − σ2I contains all of the model variance. This marginal density

then leads directly to the definition of the log-likelihood for the set Y = {yi}n
1 of n

curves. The log-likelihood is the sum over all n curves of the log marginal of yi:

log p(Y ) =
∑

i

logN (yi|Biβ,U + V − σ2I). (5.22)

We attempt to maximize this function using the EM algorithm developed next.
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5.4.2 EM affine algorithm

We again follow our four step procedure (see Section 5.3.2) for deriving EM al-

gorithms. In the first step, we begin by regarding the unknown transformation

parameters {ci, di} as hidden. The hidden-data density is then the joint posterior

p(ci, di|yi). Even though the prior model p(ci, di) factors independently, the joint

posterior does not. This can be seen from the plate diagram shown in Figure 5.5.

The node representing yi in the Bayesian network inside of the plate activates the

link between ci and di. Therefore, knowledge of yi makes ci and di dependent.

In the second step, we define the complete-data log-likelihood function as the

joint log-likelihood of Y and the hidden data {ci, di}. This can be written as the

sum over all n curves of the log joint density in (5.21). This function has the form

Lc =
∑

i

logN (yi|ciBiβ + di, σ
2I)N (ci|1, u2)N (di|0, v2). (5.23)

The final two steps, the E- and M-steps, are given next.

E-step

In the E-step we first calculate the joint posterior p(ci, di|yi) and then use this to

take expectations of Equation (5.23). The posterior can be calculated analytically

in this case. Upon expansion of the density we have

p(ci, di|yi) ∝ p(yi|ci, di)p(ci)p(di)

∝ exp
{
−‖yi − ciBiβ − di‖2 /2σ2

−(ci − 1)2/2u2 − d2
i /2v2

}
, (5.24)
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which can be recognized as a bi-variate normal density since this is an exponential

function of a quadratic polynomial in two variables. All that remains is to find

the five parameters that identify this distribution: two means, two variances, and a

single covariance. After some algebraic manipulation the resulting parameters can

be found. For the posterior means we have

ĉi = Vci
(β′B′

iV
−1yi + 1/u2) (5.25)

and

d̂i = Vdi
(yi − Biβ)′ U−11, (5.26)

where Vci
and Vdi

are the posterior variances given below. Notice that the equation

for d̂i is again the weighted difference between the actual curve and the model-based

mean curve. The difference between this equation and that of (5.10) is that the

noise model has been augmented and replaced by U = u2Biββ′B′
i + σ2I which is

the variance associated with the random term ciβBi + εi. In other words, U is

the variance associated with everything except di. Likewise, the equation for ĉi is

discounted by V which is the variance associated with everything except ci.

After a little more work, the posterior variances can be written as

Vci
= (β′B′

iV
−1Biβ + 1/u2)−1, (5.27)

Vdi
= (1′U−11 + 1/v2)−1, (5.28)

with the posterior covariance being

Vcidi
= −uv

√
λVci

Vdi
1′Biβ. (5.29)
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The equation for λ is

λ = (u2β′B′
iBiβ + σ2)−1(niv

2 + σ2)−1.

The variance equations are straightforward to interpret. For example, the posterior

variance of di is sensible in that it is the inverse of the sum of the precisions 1/v2 and

U−1, which are the precisions associated with di and everything but di, respectively.

It is satisfying that the posterior covariance is negative so that larger values of

ci would tend to explain away larger values of di, given knowledge of yi. This is

exactly what we would expect given that in the Bayes net described by the plate

diagram in Figure 5.5, yi activates the link between ci and di. Using these results

we now turn to the calculation of the Q-function.

Calculating the Q-function

The calculation of the Q-function consists of taking the posterior expectation of (5.23)

with respect to p(ci, di|yi) that we just calculated above. We can greatly sim-

plify this operation by first taking the posterior expectation of the noise term

εi = (yi − ciBiβ − di). We can write this expectation and the related variance

as

ε̂i = E[εi|yi] = yi − ĉiBiβ − d̂i, (5.30)

and

Vεi
= Var[εi|yi] = Vci

Biββ′B′
i + Vdi

�+ 2Vcidi
Biβ1′. (5.31)

We also note that E[ε′iεi|yi] = ε̂′iε̂i +tr(Vεi
). With this we now take the expectation

of (5.23) with respect to p(ci, di|yi). First we expand the normal densities and carry
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the expectation across the non-random terms.

Q =
∑

i

∫ ∫
[log p(yi|ci, di)p(ci, di)] p(ci, di|yi) dci ddi

=
∑

i

−ni

2
log 2πσ2 − 1

2σ2
E [ε′iεi|yi]

−1

2
log 2πu2 − 1

2u2
E
[
(ci − 1)2|yi

]
− 1

2
log 2πv2 − 1

2v2
E
[
d2

i |yi

]
. (5.32)

Notice that we are left with taking expectations that only require substitution of

known sufficient statistics from the E-step. The substitutions result in the final

equation for the Q-function:

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2
[ε̂′iε̂i + tr(Vεi

)]

−1

2
log 2πu2 − 1

2u2

[
(ĉi − 1)2 + Vci

]
− 1

2
log 2πv2 − 1

2v2

[
d̂2

i + Vdi

]
.

M-step

The final step that must be defined is the M-step. In the M-step the Q-function is

maximized over the parameters {β, σ2, u2, v2}. The maximization is straightforward

as is usually the case with EM since most of the hard work is done in the more

difficult E-step. The parameter re-estimation equations are

û2 = 1/n
∑

i

[
(ĉi − 1)2 + Vci

]
, (5.33)

v̂2 = 1/n
∑

i

[
d̂2

i + Vdi

]
, (5.34)

σ̂2 = 1/N
∑

i

[ε̂′iε̂i + tr(Vεi
)] , (5.35)
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and

β̂ =

[∑
i

B′
iBi(ĉ

2
i + Vci

)

]−1∑
i

B′
i(ĉi(yi − d̂i) − Vcidi

). (5.36)

These re-estimation equations are quite similar to (5.15)–(5.17) that give the re-

estimation equations in the translation case. The only difference is in accounting for

the extra variance added due to the uncertainty of ci and in locating the mean curve

coefficients β̂ while handling the scaling effect.

Further details

A typical initialization of EM consists of sampling random values for the posterior

means ĉi, d̂i, the posterior variances Vci
, Vdi

, and the posterior covariances Vcidi
. EM

can then be directly started at the M-step. The computational complexity of the

EM-affine algorithm is identical to the EM-translation algorithm; it is linear in the

total number of points N .

5.5 Experimental results

In this section, we report experimental results on simulated as well as real data that

show the EM alignment models out-perform model-free preprocessing and the non-

probabilistic model-based alignment method of NPP. Results for both translation-

and affine-alignment methods using spline regression as well as polynomial regression

models are given.

The fundamental motivating factor for the development of the alignment models

in this chapter is to facilitate the integration of curve alignment and curve cluster-

ing in a unified framework. However, a valid question is how the new alignment

methodology itself compares to more basic alignment methods such as model-free

curve normalization.
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Table 5.1: NPP Space-Translation Procedure.

1. Initialize all d̂i to random values.

2. Set β̂ = [
∑

i B
′
iBi]

−1∑
i B

′
i(yi − d̂i) and σ̂2 = 1/n

∑
i

[∥∥∥yi −Biβ − d̂i

∥∥∥2
]
.

3. Set all d̂i = 1
ni

(yi − Biβ)′1 and enforce identifiability with
∑

i d̂i = 0.

4. Jump back to step (2) until convergence (no change in the parameters).

Recall in the translation case that model-free curve normalization consists of

setting the i-th translation di to the mean difference between the curve yi and the

cross-sectional mean curve. In Section 5.3.2, we showed that the estimate for d̂i in

Equation (5.10) is a weighted form of the above curve normalization estimate. The

weighted estimate is

d̂i =
Vdi

σ2
(yi −Biβ)′1. (5.37)

There are two main differences between (5.37) and curve normalization. First, the

term Biβ replaces the cross-sectional mean curve; and second, the weight Vdi
/σ2

determines the degree to which the difference (yi − Biβ)′1 affects the translation.

It is this weighting in the EM algorithm that increases alignment performance.

In addition to comparing the EM alignment models to model-free normalization,

we also compare results with a non-probabilistic replica of the alignment models

introduced in this chapter. We give the name non-probabilistic Procrustes (NPP) to

this method. It follows a Procrustes procedure based on our EM algorithms except

that it does not consider the transformation parameters as random variables, and

hence, it does not model the uncertainty associated with these hidden data. We

provide a listing of the NPP procedure for the translation case in Table 5.1. A

listing for the affine version of NPP is similar and is not provided.
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Figure 5.6: Example trajectories from the cyclone dataset that were tracked over
the North Atlantic.

5.5.1 Experiments with cyclone data

In this section, we report experimental results using a real dataset. The dataset

consists of 614 cyclone trajectories tracked over the North Atlantic from 1980 to

1995 (Gaffney et al., 2001). An example plot of these trajectories shown on a map

of the North Atlantic is given in Figure 5.6. The plotted circles indicate the initial

positions of each trajectory. The trajectories are two-dimensional, giving the latitude

and longitude positions of the cyclones at each time point. These multidimensional

curves are modelled with a separate regression model for each output dimension. In

other words, both the latitude vs. time and the longitude vs. time dimensions are

represented with a regression model as in Equation (5.18). The probabilistic model

for the two-dimensional trajectory is then the product of the two individual density

models.

The general use of multidimensional curves within our alignment methodology is

explicitly derived in Chapter 7. Further details regarding this cyclone dataset and

the specific modelling issues involved are discussed in detail in Chapter 9.
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Figure 5.7: Graphic example of the alignments achieved with (left) preprocessing,
and (right) EM-Affine on a real cyclone dataset. The bolded lines in each plot give
the mean curves.

Graphical comparison to preprocessing

Before presenting explicit quantitative analysis with this dataset, we provide quali-

tative analysis in the form of graphs. Figure 5.7 shows the results of applying curve

preprocessing (left) and the polynomial EM-affine algorithm (right) to a subset of

the cyclone trajectories. Second-order polynomial regression models are used in the

EM-affine case. The preprocessing involved aligning to the cross-sectional mean

and then dividing each curve through by its standard deviation. That is, we set

y′
i = (yi − di)/σi, where di gives the offset for alignment with the cross-sectional

mean, and σi gives the standard deviation of the curve yi.

The figure shows the curves of longitude versus time for each of the trajectories in

the subset. The thick bolded lines give the representation of the mean curve for each

alignment. It is quite obvious that the alignment resulting from the preprocessing is

not as compact as that output from the EM-affine algorithm. In fact, the alignment

from preprocessing is quite diffuse; its variance is twice that of the alignment from

EM.
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The mean curve for the preprocessing alignment is also not smooth. It tends

to follow the noise of the various trajectories. Furthermore, it doesn’t particularly

describe any of the trajectories. It does not describe “curve behavior”, but instead

point-set behavior. The mean curve from the EM alignment appears to match the

trajectories more closely and is smooth.

Cross-validation comparisons with NPP

In this section, we describe cross-validation experiments between NPP and the EM

alignment algorithms. The experiments used Monte Carlo cross-validation as defined

in Appendix B.

The test scores calculated during the cross-validation were based on prediction

SSE (sum-of-squared error) scores (the prediction SSE score is described in detail in

Section 8.5.3). The score is calculated by taking the learned model and predicting

the test curve point ŷij at xij given the partial test curve yi(j−1) (which contains all

the points up to time j − 1). This prediction is subtracted from the true value yij,

the result is squared and summed across all the predictions along the curve. Adding

these values across all curves in a test set and dividing by the number of predictions

gives us the mean prediction SSE score for the test set.

The experiments consisted of 25 runs of MCCV. During each run, a random

subset of 70 cyclones was used for training and a random subset of 30 cyclones was

used for testing. Predictions for the entire last half of each curve were made. The

test scores were averaged over the 25 runs and are reported in Table 5.2.

Eight models were compared, four using polynomial regression and four using

spline regression. The spline models are denoted with the suffix “Spline” appended

to the end of each name. The translation models are denoted as “Trans” and the

affine models as “Affine”.
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Table 5.2: MCCV results for the EM alignment and NPP models on the cyclone
data. The run-averaged SSE score for each of the models is shown under column µ.
The corresponding standard deviation is shown under σ.

Model Prediction SSE Scores
µ σ

EM Affine 14.3611 4.1480
NPP Affine 14.5215 4.4493
EM Affine Spline 15.9214 4.5133
NPP Affine Spline 18.8216 8.1180
EM Trans 72.1898 15.3944
NPP Trans 72.4254 15.4808
EM Trans Spline 88.0819 33.8302
NPP Trans Spline 88.3507 33.8767

The EM-affine model performed the best overall, just edging out its model-based

NPP counterpart. The results show a clear distinction between the translation mod-

els and the affine models on this dataset. The more complex affine models showed a

fundamental increased capacity for predictive generalization with the cyclones.

It appears that the spline-based alignment models suffered from over-fitting as

they are out-performed by the polynomial-based alignment models for each of the

translation- and affine-alignment problems. Experimental results presented with a

real-world gene expression dataset in the next chapter demonstrate an application

in which spline-based alignment models lead to better out-of-sample prediction than

the polynomial-based methods.

5.5.2 Experiments with simulated data

In this section, we present experimental results with simulated data. The results

show that the probabilistic EM alignment models were able to uncover the under-

lying “true” transformations with greater accuracy than the non-probabilistic NPP

methods at increasing levels of measurement noise.
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The simulated data used in these experiments were generated by random spline

models. The spline models were of order 4 with 12 knots uniformly spaced across the

interval from 0 to 20. The spline coefficients were randomly drawn from a normal

distribution with vector mean 1 and scalar variance 64.

The spline models were used to generate two different data sets. One with added

normal translations in measurement space used to test the translation-based algo-

rithms, and the other with added affine transformations in measurement space used

to test the affine-based algorithms.

The experiments for the translation-based algorithms were run as follows. Twenty-

five different sets of 25 random spline curves with added translations were generated

from a single underlying spline model (i.e., the same spline coefficient vector was

used in each case). Each of the curves was evaluated at a random set of 21 time

points (uniformly distributed). The translation models were then run on each of the

datasets. The output translation parameters from each model were compared to the

“true” translations and the mean sum-of-squared error was recorded in each case.

This process was repeated at each of four different levels of the measurement noise

σ2, resulting in the evaluation of 100 different subsets of curve data from a single

underlying random spline model. Finally, this entire procedure was carried out over

three different randomly generated spline models. This resulted in the evaluation of

300 different subsets of data.

The experiments for the affine-based algorithms were carried out in the exact

same manner except that random affine transformations were added to the curve

datasets instead of only translations. Figure 5.8 shows four examples of the randomly

generated data. The top-row in the figure shows two translation-based datasets,

while the bottom-row shows two affine-based datasets. The plots in the right of the

figure contain more noise than those in the left.
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Figure 5.8: Example generated data from random spline models with different levels
of noise. The top row shows two data sets generated with random translations; the
bottom row shows two data sets generated with random affine transformations. The
plots in the left of the figure demonstrate the lower levels of noise present in the
sampled data, and the plots in the right demonstrate the higher levels of noise.
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The results for the space-translation case can be seen in the left of Figure 5.9.

Five models were compared; the same naming scheme used in the previous section is

used here except for the new model “Norm” which means preprocessing by aligning

to the cross-sectional mean.

These results confirm our intuition that separate modelling of both the measure-

ment noise and the transformation noise should lead to improved performance. At

low levels of noise, all of the methods are able to discern the true translations from

the measurement noise except for Norm. This is because the cross-sectional mean

is not a good representation of the “mean curve” when curves have been measured

at different time points, as is common with curve data. As the measurement noise

grows, the non-probabilistic alignment methods have a more difficult time at sepa-

rating the translations from the curve noise. The results also indicate that both the

polynomial and spline regression versions exhibit identical performance.

The results for the affine-transformation case are shown in the right of Figure 5.9.

(Note that the Norm method has not been included in these results.) We see similar

behavior in these results. At low levels of noise, the problem is easy, and thus all

of the methods can recover the correct transformations. But at increased levels of

noise, the non-probabilistic methods perform poorly.

5.6 Summary

In this chapter, we introduced a novel probabilistic curve alignment model that al-

lows for the alignment of curve data in measurement space. The new methodology

represents data objects using a curve representation that eliminates many of the

common problems in curve-based analysis. The use of two such representations was

demonstrated: polynomial regression models, and spline regression models. A proba-
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Figure 5.9: Cross-validation results for EM, NPP, and normalization alignment
methods. Both polynomial and spline models are shown in each plot. The left
plot was generated from the results for translations in space, and the right plot was
generated from the results for affine transformations in space. Error bars denote one
standard deviation on each side of the plotted mean.

bilistic framework was established employing priors over the set of possible alignment

transformations allowing for the identifiable estimation of the unobservable “true”

dataset alignment. The framework naturally leads to iterative EM algorithms that

provide for the alignment estimation. The main contributions of this chapter can be

listed as follows:

• Probabilistic formulation of the space-alignment problem employing priors over
the set of possible transformations (resulting in identifiable learning proce-
dures).

• EM algorithm derivation that formalizes the use of a Mahalanobis distance in
a Procrustes-type alignment procedure.

• Derivation of the analytic solution of the general affine alignment problem in
measurement space.

• Use of curve models in the alignment methodology allowing for the handling
of irregular sampled data, variable length curves, missing observations, and
leveraging of smoothness information.

• Experimental results with real and simulated data that demonstrate the value
of the probabilistic formulation.
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Chapter 6

Curve Alignment in Time

6.1 Introduction

In the previous chapter, we introduced an alignment model for curves that allowed

for transformations in measurement space. A related and more difficult problem

deals with curves which are misaligned in time. In this chapter we propose a novel

probabilistic curve alignment model that allows for the continuous alignment of

curves in time.

Much of the previous work in time-alignment is couched in optimization theory

resulting in complex iterative algorithms with additional constraints that help make

the problem well-defined. In contrast, we extend the approach of the previous chapter

and apply probabilistic modelling to time-alignment for curves.

We define the time-alignment problem and discuss the novelty of our new method-

ology in relation to previous work in Section 6.2. In Section 6.3 we introduce our

time-translation alignment model and derive the supporting EM time-translation

algorithm. In Section 6.4 we introduce a time-alignment model that allows for lin-

ear transformations (affine) in time. In Section 6.5, we report experimental results
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Figure 6.1: Curves measuring the height acceleration for 39 boys; (left) smoothed
versions of raw observations, (right) aligned curves.

with a real gene expression dataset and with simulated data that show the benefits

of the probabilistic formulation. Finally, we close the chapter with a summary in

Section 6.6 .

6.2 Problem definition and prior work

An example alignment problem is given in Figure 6.1 which focuses on the underly-

ing dataset shown earlier in Figure 1.5. The left graph shows a set of spline curves

representing the acceleration of height for each of 39 boys whose heights were mea-

sured at 29 observation times over the ages of 1 to 18 (Ramsay & Silverman, 1997).

The right plot shows the aligned versions output from our spline alignment model

(allowing for translations in time). The aligned curves represent the average behav-

ior in a much clearer way. For example, it appears there is an interval of 2.5 years

from peak (age 12.5) to trough (age 15) that describes the average cycle that all

boys go through. The example demonstrates a common problem with curve data in

that the important features of curves tend to be randomly translated in time.

There are two main approaches to aligning curves in time. The first requires
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the identification of landmarks usually associated with maxima, minima, or other

critical or inflection points of a curve. A set of curves is then aligned so that the

landmarks of each curve are synchronized. Landmarks can either be automatically

identified or can be defined by an external expert. Gasser and Kneip (1995) coined

the term structural points that encompass both critical (maxima, minima, singular)

and inflection points. They regard these points as defining the structure of curves.

In their paper, they develop a nonparametric technique that automatically locates

landmarks associated with regions of high structural intensity among a set of curves.

A related technique known as structural averaging (Kneip & Gasser, 1992) jointly

aligns curves and identifies these structural points using an iterative algorithm.

A related form of landmark alignment is also used in areas such as medical

imaging where it is sometimes referred to as point-set matching (Goodall, 1991;

Kendall, 1984; Neumann & Lorenz, 1998; Dryden & Mardia, 1998). 2D and 3D

shapes are described by sets of points, often consisting of expert-defined landmarks.

Iterative Procrustes scaling algorithms are used to estimate the correspondences

between the landmarks and the transformations on those landmarks that best align

the shapes.

The second main approach to curve alignment in time does not require land-

marks, but instead a global fitting function is defined that is optimized to achieve an

alignment. Dynamic time warping (DTW) is an example of this type of method. Its

origins are based in speech recognition but have since been applied to many other

types of problems (Sakoe & Chiba, 1978; Rabiner & Schmidt, 1980). DTW searches

for a monotonic warping of the time axis that minimizes a chosen distance function.

It is common to choose a distance function that is invariant to selected transfor-

mations such as translation in measurement space. However, DTW in its standard

form is not a curve modelling technique (it is model-free) and can be considered a
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discrete alignment method since it only allows time points to be repeated, skipped

or selected. There is no notion of warping to intermediate points along the axis.

Despite the absence of a curve model, it has been applied to time-series data sets

for query retrieval and clustering in large databases (Keogh & Pazzani, 1998, 1999).

Wang and Gasser (1997) develop a continuous time-alignment DTW technique

that does take advantage of parametric and semi-parametric curve models. This

method requires sets of noise-free curves, thus, requiring the fitting of smooth func-

tionals to the entire curve data set as a preprocessing procedure.

A similar approach is taken in functional data analysis (Ramsay & Silverman,

1997). As with the continuous time-alignment DTW technique, functional data anal-

ysis requires the fitting of a smooth function (e.g., a spline) to the data from each

curve. The set of estimated smooth functions is then used as a proxy for the actual

data which is not used in further analysis. One of the tools used in functional data

analysis is curve registration. Ramsay and Li (1998) detail a Procrustes algorithm

that aligns functional data objects by learning an appropriate monotone transfor-

mation for each curve that minimizes a penalized squared-error alignment criterion.

A similar framework is demonstrated by Silverman (1995) in functional principal

components analysis which allows for time shifts through the iterative optimization

of integrated sum-of-squares objective functions.

In relation to this body of prior work, we can say that our new approach is

characterized by a number factors: it formulates the problem from a probabilis-

tic viewpoint, is not confined to landmarks, allows for continuous time-alignment,

and employs curve models to deal with issues such as variable length sequences and

irregular sampled curves. The framework naturally leads to an iterative EM algo-

rithm that is similar in many respects to the way in which many of these previous

methods operate. However, the formulation of this problem in probabilistic terms is
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important for a number of reasons: (1) the explicit use of priors on transformations

help define the alignment operation more clearly in a self-contained manner, (2)

the resulting EM algorithm formalizes the iterative Procrustes alignment method

and demonstrates the use of the Mahalanobis distance metric for alignment, (3)

the probabilistic framework helps with the integration of alignment into other more

complex problems (such as joint alignment and clustering), and (4) the flexibility

of probabilistic models easily allows for the addition of different prior models on

transformations in a principled manner.

6.3 Translations in time

In this section we derive an alignment model for translations in time. We follow

our previously defined template for the description of new models. The five-step

procedure is as follows:

1. Provide the model definition

2. Define the transformation priors

3. Calculate the resulting joint and marginal probability models

4. Define the log-likelihood function

5. Derive the associated EM algorithm

Unlike the space-alignment models in the previous chapter, the derivations for

the time-alignment models in this chapter are specific to the particular regression

models that are used. Because of the way in which the spline basis matrix Bi

is defined (see Section 3.4), it is not possible to find closed-form solutions for the

required expectations in the E-step of the resulting EM algorithms. For this reason,

we show the derivations in this chapter using polynomial regression models which,
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in particular, allow for closed-form solutions of the Q-function. An identical spline-

based EM time-alignment algorithm can still be derived, with the only exception

being that the calculation of the Q-function in Equation (6.20) does not contain all

of the required posterior variance terms. We discuss the use of spines within our

time-alignment methodology during the discussion of the exact calculation of the

Q-function in Section 6.3.2.

6.3.1 Model definition

We model a set of curves using a polynomial regression model of the form

yi = Xiβ + εi, εi ∼ N(0, σ2I). (6.1)

We allow for a continuous random translation in time by adding the time translation

parameter bi. In other words, we posit that the curve yi was actually measured not

at xi but at some translated time xi − bi. This translation cannot be added to

the model in the same manner as in (5.2) for translations in space. Instead, the

Vandermonde matrix Xi must be modified to use xi − bi as its input.

To facilitate the writing of equations, we introduce two forms of non-standard

notation. First, we write X i for the Vandermonde matrix evaluated at any particular

transformed time (e.g., xi − bi in this case). Second, we also want to be able to em-

phasize a particular transformation that is inside of X i. For this we use the notation

�xi − bi� which emphasizes the translation bi in this case. Using this notation, we
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write the translated Vandermonde matrix X i as

�xi − bi� =




1 (xi1 − bi) (xi1 − bi)
2 · · · (xi1 − bi)

p

1 (xi2 − bi) (xi2 − bi)
2 · · · (xi2 − bi)

p

...
...

...
...

...

1 (xini
− bi) (xini

− bi)
2 · · · (xini

− bi)
p




.

The time-translated regression model can be written with this notation as either

yi = X iβ + εi, εi ∼ N (0, σ2I), (6.2)

or

yi = �xi − bi�β + εi, εi ∼ N (0, σ2I), (6.3)

depending on our needs.

Prior model: p(bi)

We consider bi to be a random variable with an associated prior probability density

attached to it. The prior model for the time translation should encode the idea

that the most likely translation is the zero translation and should also discount the

likelihood of large translations. A zero-mean Gaussian prior is a good fit for this

and so we set p(bi) = N (bi|0, s2), where s2 gives the variance. This variance will be

learned from the data within the ensuing EM algorithm. Rønn (2001) also specifies

a prior on time translations in this manner but he does not use them to develop an

EM algorithm as we do here.

The graphical plate structure for the time-translation model is shown in Fig-

ure 6.2. We have introduced a new node xi representing the sequence of “times” at

which curve yi was observed. The time translation bi affects yi through this node
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Figure 6.2: Graphical model structure for the time-translation alignment model.

in the graphical model.

Joint, marginal, and log-likelihood

The model specification in (6.2) results in the conditional probability density for yi

as

p(yi|bi) = N (yi|X iβ, σ2I). (6.4)

If we assume that bi is a random variable with prior N (bi|0, s2), then we can write

the joint probability density for yi and bi in the form

p(yi, bi) = p(yi|bi)p(bi)

= N (yi|X iβ, σ2I)N (bi|0, s2). (6.5)

From this joint probability density we can produce the marginal density for yi by

integrating over bi. However, the time-alignment model does not afford an ana-

lytic solution for this integration. We can, instead, approximate this integral using

numerical integration. Since it is relatively easy to obtain samples from the prior

distribution N (bi|0, s2), we can use a standard Monte Carlo integration technique

for this purpose (Lange, 1999; Gentle, 1998; Press et al., 1992). The approximation
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becomes

p(yi) =
∫

p(yi|bi)p(bi) dbi

≈ 1

M

∑
m

p(yi|b(m)
i ),

where

b
(m)
i ∼ N (0, s2), for m = 1, . . . , M.

The log-likelihood is then the sum over all n curves of the approximate log

marginal of yi:

log p(Y ) =
∑

i

log
∫

p(yi, bi) dbi

≈ ∑
i

log
∑
m

p(yi|b(m)
i ) − n log M (6.6)

It turns out, exact calculation of the log-likelihood is not required for the align-

ment model. In fact, the EM algorithm only requires calculation of the joint density

in (6.5). We will see in Chapter 8, that the integration of alignment and clustering

do require the explicit calculation of the marginal and the log-likelihood. But for

now, the only reason for any calculation of the log-likelihood is to monitor the EM

algorithm for convergence.

However, it is possible to employ a stopping criterion that does not compute the

log-likelihood function and thus avoids the numerical integration altogether (e.g., by

allowing for a fixed number of iterations or by monitoring the change in the values of

variables). In any case, the approximation is shown to be sufficiently accurate even

for a sample size of M = 100 (see Section 8.4.1 for a discussion of this behavior).
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6.3.2 EM time-translation algorithm

In this section, we follow our four step procedure for deriving EM algorithms (see

Section 5.3.2). We begin by regarding the unknown time-translation parameters {bi}
as hidden. The hidden-data density, then, becomes the posterior p(bi|yi), giving us

a distribution on the possible unknown values for the time translations.

In the second step, we define the complete-data log-likelihood function as the

joint log-likelihood of Y and {bi}. This is the sum over all n curves of the log joint

density in (6.5). This function takes the form

Lc =
∑

i

log p(yi|bi)p(bi)

=
∑

i

logN (yi|X iβ, σ2I)N (bi|0, s2). (6.7)

The EM algorithm will iterate between calculating the expected value of Lc with

respect to p(bi|yi) in the E-step and calculating the new parameter estimates in the

M-step.

E-step

In the E-step, we first calculate the posterior p(bi|yi) and then use this to take

expectations of the complete-data log-likelihood function in (6.7). For the posterior

we have

p(bi|yi) ∝ p(yi|bi)p(bi)

∝ exp
{
−‖yi − �xi − bi�β‖2 /2σ2 − b2

i /2s2
}

(6.8)

which, in general, cannot be identified with a known parametric density and does

not provide closed form solutions for the required sufficient statistics except for
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Figure 6.3: Example plots of the normalized posterior p(bi|yi). The top-row shows
an estimate of the normalized posterior in the left axes, for the curve plotted with
circle symbols in the right. The bottom-row shows the same situation for another
curve in the same dataset.

the specific case of polynomial regression models of order one. For the general

case, we must seek an approximation. In the following subsections, we describe

the approximation problem and show how we handle this within our framework.

We then turn to the problem of exact calculation of the Q-function given these

approximations.

Posterior approximation

The fact that posterior densities tend towards highly peaked Gaussian densities has

been widely noted (e.g, Gelman et al., 1995, Tanner, 1996) and leads to the normal

approximation of posterior densities. Figure 6.3 shows the data-driven estimates of
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the posterior p(bi|yi) for two different curves during a run of the EM-translation

algorithm. The estimates were generated by evaluating Equation (6.8) over a fine

grid of time points with the results normalized and plotted.

The top-row shows an estimate of the normalized posterior (on the left) for

the curve plotted with circle symbols (on the right). The bottom-row shows the

associated plots for another curve in the same dataset. The plots clearly show that

the posteriors resulting from the EM-translation algorithm do appear Gaussian.

In the companion figure (Figure 6.4), the same posteriors are estimated a few

iterations later. The posteriors are now more highly peaked about the mean than

they were earlier. These results suggest that the normal approximation is appropriate

for the current situation.

There isn’t a need to approximate the entire posterior in order to complete the

EM algorithm since the EM algorithm only requires the computation of sufficient

statistics in the E-step. Only two quantities are needed: E[bi|yi] and E[b2
i |yi].

We can obtain relatively good approximations of these two quantities. First we

use a univariate unconstrained maximization technique to find the mode b̂i of the

log posterior density l ∝ log p(bi|yi) which coincides with E[bi|yi] when the posterior

is approximately normal. Then we estimate the posterior variance Vbi
by evaluating

the inverse of the observed information I at b̂i:

Vbi
= I−1(b̂i|yi)

=

(
−d2l

db2
i

)−1
∣∣∣∣∣∣
b̂i

.

The observed information can be computed analytically; it is the negative second

derivative of l. The Bayesian justification for this approximation is based on expand-

ing the log-posterior density about the mode using the first two derivatives (Tanner,
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Figure 6.4: Example plots of the normalized posterior p(bi|yi) corresponding to
a few iterations after the same posteriors estimated in Figure 6.3. The top- and
bottom-rows show the corresponding estimates to those in the companion figure.

1996). The approximation is valid asymptotically.

Calculating the exact Q-function

Calculation of the Q-function is quite complex but can be computed efficiently once

the analytic solution is found. We start by writing out the general form for the

posterior expectation of Lc from (6.7):

Q =
∑

i

∫ [
log p(yi|bi)p(bi)

]
p(bi|yi) dbi

=
∑

i

∫ [
logN (yi|X iβ, σ2I)N (bi|0, s2)

]
p(bi|yi) dbi
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=
∑

i

∫ [
−ni

2
log 2πσ2 − 1

2σ2

∥∥∥yi −X iβ
∥∥∥2 − 1

2
log 2πs2 − b2

i

2s2

]
p(bi|yi) dbi.

After carrying through the integral we end up with the form

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2
E
[
‖yi − X iβ‖2

]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]
, (6.9)

in which the E operator encloses the last part of the integration that has not been

carried out. We proceed by isolating this calculation in the form

E
[
‖yi −X iβ‖2

]
= y′

iyi − 2y′
iE[X i]β + β′E[X ′

iX i]β. (6.10)

In order to complete the Q-function we must calculate the two remaining expecta-

tions E[X i] and E[X ′
iX i]. A useful solution is a decomposable one; one in which the

expectation fits the form E[X i] = X̂ i + ∆, where X̂ i is �xi − b̂i� and ∆ is whatever

is left over. We derive such a solution next.

Calculating E[X i]

The expectation of X i is equal to the matrix of component-wise expectations:

E[X i] = E
[
�xi − bi�

]
=




1 E [(xi1 − bi)] · · · E [(xi1 − bi)
p]

...
...

...
...

1 E [(xini
− bi)] · · · E [(xini

− bi)
p]




. (6.11)

The component-wise expectations can be further broken down through use of the

binomial formula:

E[(xij − bi)
p] = E

[ p∑
m=0

(−1)mCp
mxp−m

ij bm
i

]
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=
p∑

m=0

(−1)mCp
mxp−m

ij E [bm
i ] , (6.12)

where Cp
m is the number of combinations of p items taken m at a time. We are

now left with the problem of taking the expectation of a random variable raised to

an arbitrary power, or to calculating an arbitrary moment. However, the only two

statistics that we have at our disposal from the posterior p(bi|yi) are the mean b̂i

and the variance Vbi
that we approximated. Therefore, we need a decomposable

closed-form solution for the m-th moment of a normally distributed random variable

in terms of its mean and variance.

Interestingly, during a cursory search of the relevant literature, we were not able

to find such a solution. Fortunately, we were able to derive the solution for the

general case. Suppose that z ∼ N (µ, σ2), then we can write the m-th moment of z

in terms of just µ and σ as

E[zm] = µm + γmz, γmz =
�m/2�∑
q=1

GqC
m
2qσ

2qµm−2q, (6.13)

where Gq =
∏q

j=1(2j − 1) is the product of the first q odd numbers. We can now

substitute this closed-form solution into (6.12) and run the binomial theorem in

reverse:

E[(xij − bi)
p] =

p∑
m=0

(−1)mCp
mxp−m

ij E [bm
i ]

=
p∑

m=0

(−1)mCp
mxp−m

ij [̂bm
i + γmbi

]

= E[(xij − b̂i)
p] + ∆p

b(xij), (6.14)

where

∆p
b(xij) =

p∑
m=0

(−1)mCp
mxp−m

ij γmbi
.
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The full matrix expectation E[X i] can then be written succinctly in the form

E[X i] = �xi − b̂i� + Vxi, (6.15)

in which the matrix Vxi is

Vxi =




0 0 ∆2
b(xi1) · · · ∆p

b(xi1)

...
...

...
...

...

0 0 ∆2
b(xini

) · · · ∆p
b(xini

)




, (6.16)

and where ∆0
b(xi) = ∆1

b(xi) = 0.

Calculating E[X ′
iX i]

The calculation of E[X ′
iX i] follows directly from E[X i]. First we let

Em =
ni∑
j

E [(xij − bi)
m] , (6.17)

which is just the sum of column m + 1 of E[X i] in (6.11). This allows us to write

E[X ′
iX i] as

E[X ′
iX i] =




ni E1 E2 · · · Ep

E1 E2 E3 · · · Ep+1

...
...

...
...

...

Ep Ep+1 Ep+2 · · · E2p




. (6.18)

In other words, we can find E[X ′
iX i] simply by summing down the columns of E[X i]

and placing the column-sums in the right positions of this matrix. In notation,
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summing (6.14) over j results in the decomposable solution for Em as

Em =
ni∑
j

(xij − b̂i)
m +

ni∑
j

∆m
b (xij).

The full matrix expectation E[X ′
iX i] can then be written in the form

E[X ′
iX i] = �xi − b̂i�

′�xi − b̂i� + Vxxi, (6.19)

where Vxxi is

Vxxi =




0 0
∑

j ∆2
b(xij) · · · ∑

j ∆p
b(xij)

0
∑

j ∆2
b(xij)

∑
j ∆3

b(xij) · · · ∑
j ∆p+1

b (xij)∑
j ∆2

b(xij)
∑

j ∆3
b(xij)

...
...

...

...
...

...
...

...

∑
j ∆p

b(xij) · · · · · · · · · ∑
j ∆2p

b (xij)




.

What results is a straightforward computation for Q. The computational effort is

spent computing ∆m
b (xij) for 2 ≤ m ≤ 2p which has complexity O(p3). However, p

is the order of the regression model which is usually just 2, 3, or 4.

The complete Q-function

We are now able to complete the specification of the Q-function. Using the results

for E[X i] and E[X ′
iX i] we can rewrite (6.9) as

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2
E
[∥∥∥yi − X iβ

∥∥∥2
]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]

=
∑

i

−ni

2
log 2πσ2 − 1

2σ2

[∥∥∥yi − X̂ iβ
∥∥∥2 − 2y′

iVxiβ + β′Vxxiβ
]

−1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]
, (6.20)
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where X̂ i = �xi − b̂i�.

This result is valid only for the polynomial-based time-alignment model. Equa-

tion (6.20) cannot be computed for the spline-based time-alignment model. In gen-

eral, this is because we are not able to expand the components of the spline basis

matrix using the binomial formula as in (6.12). Although we can expand the com-

ponents using the underlying recursive definition of the associated B-spline basis

functions (de Boor, 1978), this results in a series of integrations involving partial

error functions that cannot be computed analytically.

As a result, the corresponding Q-function for the spline-based time-alignment

model can be written as

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2

[∥∥∥yi − B̂iβ
∥∥∥2
]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]
, (6.21)

where the posterior variance terms associated with the error function
∥∥∥yi − B̂iβ

∥∥∥2

have been removed. Note that B̂i is the time transformed version of the usual spline

basis matrix.

M-step

In the M-step we maximize the Q-function over the set of parameters {s2, σ2, β}.
The parameter re-estimation equations can be easily solved for since the previously

hidden-data has been filled-in from the E-step. The derived solutions are as follows:

ŝ2 = 1/n
∑

i

[
b̂2
i + Vbi

]
, (6.22)

σ̂2 = 1/N
∑

i

[∥∥∥yi − X̂ iβ
∥∥∥2 − 2y′

iVxiβ + β′Vxxiβ
]
, (6.23)
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and

β̂ =

[∑
i

X̂ ′
iX̂ i + Vxxi

]−1∑
i

X̂ ′
iyi −V′

xiyi. (6.24)

If you were to perform a non-probabilistic Procrustes alignment for this model, you

would remove all terms involving Vxi and Vxxi from the above equations, and you

would not calculate ŝ2 at all (since this is not present in a non-random approach).

What you end up with is an exact least squares solution for non-probabilistic Pro-

crustes. The EM approach, on the other hand, incorporates the uncertainty of bi

into the solutions.

Further details

Initialization for the time-translation model can be carried out by randomly sampling

values for the posterior mean b̂i, and variances Vbi
, and then starting the iterations

at the M-step. The complexity of the time-translation algorithm is O(NMI), where

N is the total number of points, M gives the average number of iterations of the

minimization procedure to find the posterior modes, and I gives the average number

of iterations of EM.

We provide experimental results for this model in Section 6.5. We next use this

framework to extend the methodology to handle scaling as well as translations in

time.

6.4 Affine transformations in time

In this section we focus on extending the methodology of the previous section to

include linear scaling transformations (e.g., “stretching” or “compression”) as well

as possible translations in time. We begin by presenting the model definition and

then develop an EM alignment algorithm for affine transformations.
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6.4.1 Model definition

We use a polynomial regression model of the form

yi = Xiβ + εi, εi ∼ N(0, σ2I). (6.25)

We augment this model to allow for random affine transformations in time (i.e.,

aixi − bi). As in the previous section, we will need to modify the Vandermonde

matrix Xi to be evaluated at the transformed time aixi − bi instead of at its usual

xi.

The notation of the previous section is reused so that X i notates the Vander-

monde matrix evaluated at any particular transformed time (e.g., aixi − bi in this

section). We also adopt the notation that X i = �aixi − bi� to emphasize the role

of the transformation variables. With this notation the time-transformed regression

model takes the form

yi = �aixi − bi�β + εi, εi ∼ N (0, σ2I). (6.26)

Prior model: p(ai, bi)

For the joint prior, we make the independence assumption p(ai, bi) = p(ai)p(bi) (we

do not assume any prior knowledge about covariance between scaling and transla-

tions). We take the joint prior from Section 5.4.1 and reuse it here. In other words,

we assume that ai ∼ N (1, r2) and bi ∼ N (0, s2), and thus, the priors specify that the

most likely transformation is the identity transformation. The associated plate dia-

gram for the time-affine model is shown in Figure 6.5. The unobservable alignments

ai, bi affect yi through the xi node in the graphical model.
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Figure 6.5: Plate diagram describing the time-affine model structure.

Joint, marginal, and log-likelihood

The model specification in (6.26) results in the conditional probability density for

yi as

p(yi|ai, bi) = N (yi|�aixi − bi�β, σ2I). (6.27)

With the assumption that ai and bi are random variables, the joint probability

density for yi, ai and bi takes the form

p(yi, ai, bi) = p(yi|ai, bi)p(ai)p(bi)

= N (yi|�aixi − bi�β, σ2I)N (ai|1, r2)N (bi|0, s2). (6.28)

From the joint model we obtain the marginal density for yi; however, it cannot

be computed analytically. Instead, we use Monte Carlo integration for this task

since it is relatively easy to obtain samples from the prior distribution p(ai, bi). The

approximation becomes

p(yi) =
∫ ∫

p(yi|ai, bi)p(ai)p(bi) daidbi

≈ 1

M

∑
m

p(yi|a(m)
i , b

(m)
i ),
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where

a
(m)
i ∼ N (1, r2), and b

(m)
i ∼ N (0, s2), for m = 1, . . . , M.

The log-likelihood follows directly from this approximation and takes the form

log p(Y ) ≈∑
i

log
∑
m

p(yi|a(m)
i , b

(m)
i ) − n log M. (6.29)

As in the previous case (Section 6.3.1), the EM algorithm does not explicitly require

the evaluation of this approximation. However, it can be calculated to monitor

algorithm convergence as noted previously.

6.4.2 EM affine algorithm

In this section we derive the EM time-affine algorithm. The derivation borrows

much from the derivations of Sections 5.4.2 and 6.3.2. As such, this information and

discussion is not unnecessarily repeated (except where appropriate).

We begin by regarding the unknown transformation parameters {ai, bi} as hidden,

and thus the hidden-data density becomes the posterior p(ai, bi|yi) (giving us a

distribution on the values for the unknown transformation variables). The complete-

data log-likelihood function is then the joint log-likelihood of Y and {ai, bi}. This is

the sum over all n curves of the log joint density in (6.28). This function takes the

form

Lc =
∑

i

log p(yi|ai, bi)p(ai)p(bi)

=
∑

i

logN (yi|X iβ, σ2I)N (ai|1, r2)N (bi|0, s2). (6.30)
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E-step

In the E-step we calculate the posterior p(ai, bi|yi) and then use this to take expec-

tations of the complete-data log-likelihood function in (6.30). For the posterior we

have

p(ai, bi|yi) ∝ p(yi|ai, bi)p(ai)p(bi)

∝ exp
{
−‖yi − �aixi − bi�β‖2 /2σ2 − (ai − 1)2/2s2 − b2

i /2s2
}

,

which, in general, cannot be identified with a known parametric density and does

not provide closed form solutions for the required sufficient statistics. Thus, we must

seek an approximation.

Posterior approximation

We use the same normal approximation as in Section 6.3.2 except that now we are

working in two dimensions. We must find the vector (âi, b̂i) representing the multi-

dimensional mode of p(ai, bi|yi) and calculate the covariance matrix for (âi, b̂i).

To find the mode we use a multi-dimensional minimization technique to solve for

the vector (âi, b̂i):

(âi, b̂i) = arg min
(ai,bi)

{−2 log p(ai, bi|yi)}.

We use a Nelder-Mead optimization method to perform the minimization (Nelder &

Mead, 1965).

For the covariance matrix we evaluate the inverse of the observed information

matrix I at (âi, b̂i) which is the negative Hessian of the log-posterior density (see

Section 6.3.2). For convenience, we keep to our earlier notation so that the posterior

variance of ai is Vai
, the posterior variance of bi is Vbi

, and their covariance is Vaibi
.
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Calculating the Q-function

Calculation of the Q-function is slightly more complex with affine transformations

than with translations, but we carry much of the notation over from Section 6.3.2.

We start by writing out the general form for the posterior expectation of Lc:

Q =
∑

i

∫ ∫ [
log p(yi|ai, bi)p(ai)p(bi)

]
p(ai, bi|yi) daidbi

=
∑

i

∫ ∫ [
logN (yi|X iβ, σ2I)N (ai|1, r2)N (bi|0, s2)

]
p(ai, bi|yi) daidbi.

After carrying through the logarithm and the integral we end up with the form

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2
E
[
‖yi −X iβ‖2

]

−1

2
log 2πr2 − 1

2r2

[
(âi − 1)2 + Vai

]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]
(6.31)

in which the E operator encloses the last part of the integration that has not been car-

ried out. The remaining integration hinges on the calculation of E[X i] and E[X ′
iX i]

which we turn to next

Calculating E[X i]

The calculation of E[X i] centers around the solution of E[(aixij − bi)
p] (see Sec-

tion 6.3.2). Using the binomial theorem we can expand this as

E[(aixij − bi)
p] = E

[ p∑
m=0

(−1)mCp
mxp−m

ij ap−m
i bm

i

]

=
p∑

m=0

(−1)mCp
mxp−m

ij E
[
ap−m

i bm
i

]
. (6.32)
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We focus on the joint expectation E
[
ap−m

i bm
i

]
which can be expanded further into

the form

E
[
ap−m

i bm
i

]
= E[ap−m

i ]E[bm
i ] + Cov(ap−m

i , bm
i ). (6.33)

The product of expectations can be expanded further still by using the closed-form

solution for Gaussian moments in Equation (6.13):

E[ap−m
i ]E[bm

i ] = (âp−m
i + γ(p−m)ai

)(b̂m
i + γmbi

). (6.34)

Multiplying through and collecting the terms we find that

E[ap−m
i ]E[bm

i ] = âp−m
i b̂m

i + Γmp
i , (6.35)

where

Γmp
i = (âp−m

i γmbi
+ b̂m

i γ(p−m)ai
+ γ(p−m)ai

γmbi
).

Substituting this result back into the joint expectation (6.33) we have

E
[
ap−m

i bm
i

]
= âp−m

i b̂m
i +

(
Γmp

i + Cov(ap−m
i , bm

i )
)
. (6.36)

Finally, we substitute this result into (6.32) and reverse the binomial theorem:

E[(aixij − bi)
p] =

p∑
m=0

(−1)mCp
mxp−m

ij E
[
ap−m

i bm
i

]

=
p∑

m=0

(−1)mCp
mxp−m

ij

[
âp−m

i b̂m
i +

(
Γmp

i + Cov(ap−m
i , bm

i )
)]

= E[(âixij − b̂i)
p] + ∆p

ab(xij), (6.37)
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where

∆p
ab(xij) =

p∑
m=0

(−1)mCp
mxp−m

ij

(
Γmp

i + Cov(ap−m
i , bm

i )
)
.

The full matrix expectation E[X i] can then be written succinctly in the form

E[X i] = �âixi − b̂i� + Vxi, (6.38)

in which the matrix Vxi is

Vxi =




0 0 ∆2
ab(xi1) · · · ∆p

ab(xi1)

...
...

...
...

...

0 0 ∆2
ab(xini

) · · · ∆p
ab(xini

)




,

and where ∆0
ab(xi) = ∆1

ab(xi) = 0.

Calculating E[X ′
iX i]

Using our updated calculations for E[X i] and ∆m
ab, the calculation of E[X ′

iX i] follows

exactly that in Section 6.3.2. Hence we only give the final results here. The full

matrix expectation E[X ′
iX i] is

E[X ′
iX i] = �âixi − b̂i�

′�âixi − b̂i� + Vxxi, (6.39)
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where Vxxi is

Vxxi =




0 0
∑

j ∆2
ab(xij) · · · ∑

j ∆p
ab(xij)

0
∑

j ∆2
ab(xij)

∑
j ∆3

ab(xij) · · · ∑
j ∆p+1

ab (xij)∑
j ∆2

ab(xij)
∑

j ∆3
ab(xij)

...
...

...

...
...

...
...

...

∑
j ∆p

ab(xij) · · · · · · · · · ∑
j ∆2p

ab(xij)




Approximation of Cov(an
i , bk

i )

Despite the elegant solution for E[X i], we have one remaining problem. The solutions

of Cov(al
i, b

k
i ) for all l, k ≥ 1 such that l + k = p are needed. There are only (p − 1)

such combinations, which means there aren’t many to calculate since p (the order

of the regression model) is usually 2,3, or 4. In the quadratic case, which is quite

common, we only need one of these, Cov(ai, bi). But we already have this in the

form of Vaibi
. So in the quadratic case there is no extra required calculation.

For the case when p ≥ 3, we use sampling to estimate the needed covariances.

The procedure is to sample from the posterior p(ai, bi|yi) using the approximate

normal fit that we made in the E-step. Then, using the samples, we can estimate

all of the needed covariances.

We have found that a small number of samples (e.g., M = 50) leads to sufficient

approximations. In fact, the method performs well even in the extreme case of

setting all the covariances to zero.
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The complete Q-function

The complete calculation of the Q-function follows by substitution of (6.38) and (6.39)

into (6.31):

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2

[∥∥∥yi − X̂ iβ
∥∥∥2 − 2y′

iVxiβ + β′Vxxiβ
]

−1

2
log 2πr2 − 1

2r2

[
(âi − 1)2 + Vai

]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]
(6.40)

where X̂ i = �âixi − b̂i�.

The Q-function for the spline-based alignment model cannot be computed exactly

just as in the former case described in Section 6.3.2. Consequently, the Q-function for

the spline-based alignment model is identical to Equation (6.40) with the removal

of the posterior variance terms associated with the error function
∥∥∥yi − X̂ iβ

∥∥∥2
as

shown earlier.

M-step

In the M-step we maximize the Q-function over the set of parameters {r2, s2, σ2, β}.
The solutions can be derived in a straight-forward manner. The derived equations

are as follows:

r̂2 = 1/n
∑

i

[
(âi − 1)2 + Vai

]
, (6.41)

ŝ2 = 1/n
∑

i

[
b̂2
i + Vbi

]
, (6.42)

σ̂2 = 1/N
∑

i

[∥∥∥yi − X̂ iβ̂
∥∥∥2 − 2y′

iVxiβ̂ + β̂
′
Vxxiβ̂

]
, (6.43)

and

β̂ =

[∑
i

X̂ ′
iX̂ i + Vxxi

]−1∑
i

X̂ ′
iyi −V′

xiyi. (6.44)
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In the non-probabilistic Procrustes version applied to this model you would remove

all terms that contain Vxi and Vxxi from the above equations, and you would

not solve for r̂2 or ŝ2 since they do not appear in such a version. This results in a

standard least squares solution for NPP.

Further details

Initialization for the time-affine model can be carried out by randomly sampling

values for the posterior means âi, b̂i, variances Vai
, Vbi

, and the covariance Vaibi
,

and then starting the iterations at the M-step. The complexity of the time-affine

algorithm is O(NMI), where N is the total number of points, M gives the average

number of iterations of the minimization procedure to find each of the posterior

modes, and I gives the average number of iterations of EM.

6.5 Experimental results

In this section, we present experimental results with both simulated and real data.

The motivating factor for the development of these probabilistic alignment models

is to facilitate the integration of curve alignment and curve clustering. However, it

is still important to demonstrate to what extent these alignment models are useful

in themselves.

We compare the EM time alignment algorithms of this chapter to a time-alignment

version of NPP from the last chapter. Note that NPP primarily differs from the full

EM alignment algorithms in that it does not treat the transformation parameters

as random. It still gets the benefit of using curve models to represent the set of

sequence data and uses an iterative algorithm to optimize the alignments. The goal

of these experiments is to determine whether the probabilistic modelling is benefi-
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Table 6.1: NPP Time-Translation Procedure

1. Initialize all b̂i to random values.

2. Set β̂ =
[∑

i X̂
′
iX̂ i

]−1∑
i X̂

′
iyi and σ̂2 = 1/N

∑
i

∥∥∥yi − X̂ iβ
∥∥∥2

.

3. Set all b̂i = arg minbi
‖yi − �xi − bi�β‖2 and enforce

∑
i b̂i = 0.

4. Jump back to step (2) until convergence (no change in the parameters).

cial for curve alignment. A listing for the time-translation version of NPP is given

in Table 6.1. A listing for the affine-version is similar and is not provided.

6.5.1 Experiments with gene expression data

In this section, we present experimental results with the time-alignment models on

a real gene expression dataset. This dataset consists of normalized gene expression

observations over time. The expression profiles measure the activity of cell cycle-

regulated genes in yeast. The full dataset contains 800 curves giving the expression

profiles for 800 different genes. Clustering is often used in gene expression analysis

to reveal groups of genes with similar profiles that may be physically related to

some underlying biological process (e.g., Spellman et al., 1998; Eisen et al., 1998;

Ben-Dor et al., 1999; Aach & Church, 2001). However, here we use this dataset to

demonstrate the time-alignment problem since there are known time-delay effects in

these profiles. Further details about the creation and basic analysis of this dataset

can be found in Spellman et al. (1998).

Figure 6.6 shows 100 randomly selected genes from this dataset. The y-axis is

the normalized log-ratio of expression, and the x-axis is time. The curves show a

definite periodicity that is characteristic of these cell cycle-regulated genes.
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Figure 6.6: Example expression profiles from the gene dataset.
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Figure 6.7: Example alignments output from (left) spline-based EM time-translation
(4th order) and (right) polynomial-based EM time-translation (5th order) for the
gene dataset.

Figure 6.7 shows the alignment of 100 randomly selected genes for both spline

EM time-translation (left) and polynomial EM time-translation (right). The mean

curves are shown with bolded lines. It is obvious that the spline models are more

suited for the alignment problem with this dataset. The 5th order polynomials are

not able to discern the cyclic behavior of these profiles.

Table 6.2 shows the MCCV prediction SSE test scores obtained on the gene
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Table 6.2: MCCV results for the EM time-alignment and NPP models with the gene
expression data. The run-averaged prediction SSE score for each model is shown in
column µ. The corresponding standard deviation is shown in σ.

Model Prediction SSE Scores
µ σ

EM Trans Spline 0.1458 0.0527
NPP Trans Spline 0.1458 0.0487
EM Trans 0.1712 0.0252
EM Affine 0.1734 0.0268
NPP Affine 0.1921 0.0273
NPP Trans 0.2004 0.0248

expression dataset for the EM time-alignment models (polynomial and spline) and

with NPP (polynomial and spline). The experiments consisted of 25 runs. At each

run, a random sample 150 genes was selected. The models were trained on half of

this subset and tested on the remaining half. Curve predictions for the last half of

each curve in the test set were made (using the same technique as that described in

Section 5.5). The test SSE scores were averaged over the 25 runs and are reported

in the table.

The out-of-sample scores show that both of the polynomial EM alignment algo-

rithms out-perform polynomial NPP, with the EM-translation model scoring the best

of the non-spline methods. This demonstrates the usefulness of the full probabilistic

formulation.

The spline-based translation algorithms, however, show the best performance

overall. Since the full posterior expectation in Equation (6.20) cannot be computed

for the spline-based EM models, the full probabilistic formulation is not able to

be leveraged; and thus, both NPP and spline-based EM-translation show similar

performance.
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6.5.2 Comparisons with simulated data

In this section, we present experimental results with simulated data. The results

show similar characteristics to those from the space-alignment models of the previous

chapter. That is, the EM alignment models demonstrate a prowess at recovering the

hidden transformations even when faced with large levels of measurement noise (σ2).

The experiments in this section were based on the exact same data generation

procedure described in the experimental results section of the previous chapter. How-

ever, a slightly different set of spline models were used. We describe the procedure

again for completeness.

The simulated data was generated by random spline models. The spline models

were of order 4 with 15 knots uniformly spaced across the interval from 0 to 40.

The spline coefficients were randomly drawn from a normal distribution with vector

mean 1 and scalar variance 64.

The spline models were used to generate two different data sets. One with added

normal translations in time used to test the translation-based algorithms, and the

other with added affine transformations in time used to test the affine-based algo-

rithms.

The experiments for the translation-based algorithms were run as follows. Twenty-

five different sets of 50 random spline curves with added translations in time were

generated from a single underlying spline model (the same spline coefficient vector

was used in each case). Each of the curves was evaluated across a linear span of 21

time points over the interval of 10 to 30 (the same points were used for each curve).

The translation models were then run on each of the datasets. The output

translation parameters from each model were compared to the “true” translations

and the mean sum-of-squared error was recorded in each case. This process was

repeated at each of of four different levels of the measurement noise σ2, resulting in
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Figure 6.8: Example generated data from random spline models with different levels
of noise. The top row shows two data sets generated with random translations in
time; the bottom row shows two data sets generated with random affine transforma-
tions in time. The plots in the right of the figure contain more noise than those in
the left

the evaluation of 100 different subsets of curve data from a single underlying random

spline model. Finally, this entire procedure was carried out over three different

randomly generated spline models. This resulted in the evaluation of 300 different

subsets of data.

The experiments for the affine-based algorithms were carried out in the exact

same manner except that random affine transformations in time were added to the

curve datasets instead of only translations. Figure 6.8 shows four examples of the

randomly generated data. The top-row in the figure shows two translation-based
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Figure 6.9: Cross-validation results for the EM and NPP time-alignment models:
(left) results for translations in time, and (right) results for affine transformations in
time. Error bars denote one standard deviation on each side of the plotted mean.

datasets, while the bottom-row shows two affine-based datasets. The plots in the

right of the figure contain more noise than those in the left.

The results for the time-translation case can be seen in the left of Figure 6.9.

The spline-based alignment models were not used in these comparisons since they

match the generated model exactly, and thus they out-perform all other models by

default.

At low levels of noise, both of the methods are able to discern the true translations

from the measurement noise. However, as the measurement noise grows, NPP has a

more difficult time at separating the translations from the curve noise.

Similar but more pronounced results for the affine-transformation case are shown

in the right of Figure 6.9. The same relationships between the level of noise and the

relative accuracy of NPP hold for this case as well.
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6.6 Summary

In this chapter, we introduced a novel probabilistic curve alignment model that

allows for the alignment of curve data in time. We derived two specific alignment

models, one that allows for translations in time, and another that allows for arbitrary

affine transformations in time. Our new approach allows for continuous alignments

in time by using curve representations of data objects embedded into a probabilis-

tic framework. This formulation naturally leads to iterative EM algorithms that

can be used to discover the underlying “true” alignment of a dataset. The main

contributions of this chapter can be listed as follows:

• Probabilistic formulation of the alignment problem employing priors over the
set of possible transformations (resulting in identifiable alignments).

• Allowance for true continuous time-alignment that does not depend on a set
of defined landmarks.

• EM algorithm derivation that formalizes the use of a Mahalanobis distance in
a Procrustes-type alignment procedure.

• Derivation for the exact calculation of the expected complete-data log-likelihood
function (i.e., the Q-function) in the EM-time alignment algorithm for poly-
nomial regression curve models.

• Use of curve models in the alignment methodology allowing for the handling
of irregular sampled data, variable length curves, missing observations, and
leveraging of smoothness information.
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Chapter 7

Joint Space- and Time-Alignment

Models

7.1 Introduction

In this brief chapter, we discuss two extensions to the novel probabilistic alignment

methodologies introduced in Chapters 5 and 6. The primary purpose of this chapter

is to introduce models that simultaneously allow for alignments in both measure-

ment space and in time. However, this chapter is also used to develop an extended

framework that allows for the incorporation of multi-dimensional curves.

This chapter is organized as follows. In Section 7.2, we merge the two space- and

time-alignment models into a joint alignment model that simultaneously allows for

alignments in space and time. These models provide for maximum curve alignment

flexibility. However, as such, they should be used in parallel to analysis of whether

or not important aspects of the underlying curve dataset may be inappropriately

removed. The derivation in this section is given in a succinct manner since much of

the work in the previous two chapters can be directly applied here.
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In Section 7.3, the framework is explicitly extended to include the handling of

multidimensional curves. A multidimensional curve can contain a vector of observa-

tions at each time point instead of the univariate yij . Thus, the j-th time point of

curve yi consists of a vector of observations yij. The extension to multi-dimensional

curves is required in Chapters 9 and 10, where we discuss the application of our

joint clustering-alignment models to the problem of clustering two-dimensional cy-

clone trajectories. Finally, the chapter is concluded in Section 7.4 with a summary.

7.2 Joint space- and time-alignment

In this section, we merge the alignment methodologies of the previous two chapters

to allow for space as well as time alignment in a single model. The derivation for the

complete alignment model allowing for affine transformations in both measurement

space and time is given here, with the understanding that the other joint alignment

models (e.g., allowing for only translations in measurement space and time) can be

considered as special cases of this complete model. Much of the necessary concepts

have been extensively detailed in the previous two chapters, and we refer to these

chapters as needed.

7.2.1 Model definition

We begin with the model definition for the joint-affine alignment model. The re-

gression models and the transformation priors for the two space- and time-alignment

models can be merged together to form one complete specification. This specification

can be defined as follows:

yi = ci�aixi − bi�β + di + εi, (7.1)
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with the time transformation priors

ai ∼ N (1, r2), bi ∼ N (0, s2), (7.2)

and the measurement space priors

ci ∼ N (1, u2) , di ∼ N (0, v2), (7.3)

with the noise model

εi ∼ N (0, σ2I). (7.4)

This regression model allows for translation and scaling in time with the inclusion

of ai, bi, and for translation and scaling in measurement space with ci, di. Further

equations can be simplified by grouping the transformation variables into the set

Φi = {ai, bi, ci, di}.

Joint, marginals, and log-likelihood

The model specification in Equations (7.1)–(7.4) results in the conditional probability

density for yi as

p(yi|Φi) = N (yi|ci�aixi − bi�β + di, σ
2I), (7.5)

with the joint taking the form

p(yi, Φi) = p(yi|Φi)p(Φi), (7.6)

where

p(Φi) = N (ai|1, r2)N (bi|0, s2)N (ci|1, u2)N (di|0, v2). (7.7)
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Just as in the individual space and time alignment cases, the marginals can be

computed analytically over the space transformation parameters, but not over the

time transformation parameters.

For example, the space transformation parameters can be separately integrated

out of (7.6) resulting in the marginal of yi conditioned only on the time transforma-

tion parameters. This conditional marginal takes the form

p(yi|ai, bi) =
∫ ∫

p(yi, ai, bi, ci, di) dci, ddi

= N (yi|X iβ,U + V − σ2I), (7.8)

with U = u2X iββ′X ′
i + σ2I and V = v2� + σ2I. The unconditional marginal for

yi; however, cannot be computed analytically. As previously, we use Monte Carlo

integration for this task. The resulting unconditional marginal for yi is approximated

by

p(yi) =
∫ ∫

p(yi|ai, bi)p(ai)p(bi) dai dbi

≈ 1

M

∑
m

p(yi|a(m)
i , b

(m)
i ), (7.9)

where

a
(m)
i ∼ N (1, r2), and b

(m)
i ∼ N (0, s2), for m = 1, . . . , M. (7.10)

The log-likelihood follows directly from this approximation and takes the form

log p(Y ) =
∑

i

log
∑
m

p(yi|a(m)
i , b

(m)
i ) − n log M. (7.11)
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7.2.2 Joint EM alignment algorithm

In this section, we briefly outline the joint EM alignment algorithm. The steps are

quite similar to the particular steps of the individual alignment models. We refer to

those steps were appropriate.

In the first step, we regard the unknown set of transformation parameters Φi as

hidden. This results in setting the hidden-data density to p(Φi|yi). In the second

step, we define the complete-data log-likelihood function Lc as the sum over all n

curves of the log joint density in (7.6):

Lc =
∑

i

log p(yi|Φi)p(Φi). (7.12)

The remainder of the algorithm is specified in the E- and M-steps below.

E-step

In the E-step, the posterior p(Φi|yi) is calculated and then used to take the posterior

expectation of Lc. This results in the Q-function which is maximized in the M-step.

The E-step can be broken down into two sub-steps. First, the E-step defined in

Section 6.3.2 for the time alignment models is carried out. Then, the E-step defined

in Section 5.4.2 for the space alignment models is completed, conditioned on the

results from the first sub-step.

Specifically, the posterior p(Φi|yi) can be factored as p(ci, di|ai, bi,yi)p(ai, bi|yi).

The first sub-step involves solving for the vector (âi, b̂i) representing the multi-

dimensional mode of p(ai, bi|yi) and estimating the associated covariance matrix for

(âi, b̂i). This approximate procedure can be carried out using the methods defined

in Section 6.3.2.

The second sub-step consists of using the analytic solution provided in Sec-
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tion 5.4.2 to solve for the posterior means and covariances of p(ci, di|âi, b̂i,yi). The

only difference from the solutions in Section 5.4.2 is that now the results are condi-

tioned on the values for âi and b̂i estimated in the first sub-step. This does not change

the mathematics since we just replace the spline basis matrix Bi in the solutions pro-

vided in Equations (5.25)–(5.29) with the time transformed matrix X̂ i = �âixi − b̂i�.

For example, the corresponding solutions for the posterior means given in Equa-

tion (5.25) are

ĉi = Vci
(β′X̂ ′

iV
−1yi + 1/u2) (7.13)

and

d̂i = Vdi
(yi − X̂ iβ)′ U−11, (7.14)

where Vci
and Vdi

are the associated posterior variances.

Calculating the Q-function

The calculation of the Q-function consists of taking the posterior expectation of (7.12)

with respect to p(Φi|yi) calculated above. The mathematics of this calculation are

a bit more complex than with the individual time-alignment model, but the general

procedure is the same. Here, we just give the final result. The complete Q-function

can be written as

Q =
∑

i

−ni

2
log 2πσ2 − 1

2σ2
f(Φ̂i|yi) + g(Φ̂i), (7.15)

where

f(Φ̂i|yi) =
[∥∥∥yi − ĉiX̂ iβ − d̂i

∥∥∥2 − 2y′
iVxiβ + β′Vxxiβ + 2β′Vxcd1 + niVdi

]
,
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and

g(Φ̂i) = −1

2
log 2πr2 − 1

2r2

[
(âi − 1)2 + Vai

]
− 1

2
log 2πs2 − 1

2s2

[
b̂2
i + Vbi

]

−1

2
log 2πu2 − 1

2u2

[
(ĉi − 1)2 + Vci

]
− 1

2
log 2πv2 − 1

2v2

[
d̂2

i + Vdi

]
.

The definitions of Vxi,Vxxi, and Vxcd are similar to those in the time alignment

case and can be derived using the methods described in Section 6.4.2.

M-step

In the M-step, we maximize the Q-function over the complete set of parameters

{r2, s2, u2, v2, σ2, β}. The solutions for the transformation variances {r2, s2, u2, v2}
are identical to those in Sections 5.4.2 and 6.4.2 and the reader is encouraged to

review those solutions there. We provide the solutions for β̂ and σ̂2 since they are

somewhat different than for the previous models:

β̂ =

[∑
i

ĉ2
i X̂

′
iX̂ i + Vxxi

]−1 [∑
i

ĉiX̂ ′
i(yi − d̂i) + V′

xiyi − V′
xcd1

]
, (7.16)

and

σ̂2 = 1/N
∑

i

f̂(Φ̂|yi), (7.17)

where N =
∑

i ni and f̂ is the function f in which β has been replaced by β̂.

The initialization and convergence procedures are simply borrowed from the re-

spective procedures of the individual alignment models. So that we initialize the

algorithm by sampling values for the various posterior means and variances and

then proceed to the M-step. The convergence can be detected by monitoring the

log-likelihood for a threshold drop in incremental improvement (this is what is done

in this thesis). However, the change in the values of the parameters can also be
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monitored to determine a convergence criterion that does not require the calculation

of the log-likelihood.

7.2.3 Discussion

The joint model described above must solve n four-dimensional search problems

associated with finding the four optimal transformation parameters for each of the n

curves in the dataset. This leads to an increased propensity to over-fit as compared

to either of the individual alignment models. Thus, the extra flexibility that the

joint models provide must be evaluated in parallel to the risk of over-fitting.

Nonetheless, the joint alignment models can always be useful tools for exploratory

analysis. For example, the resulting learned alignment models can be used to assess

the level of transformation variability that is inherent in any particular curve dataset.

Whether this variability is associated with random transformation noise or due to

underlying scientific causes is a question that should be analyzed carefully.

The complexity of the joint alignment models are similar to the complexity of the

individual time alignment models since the discovery of the time-alignment transfor-

mations dominate the complexity. The complexity of the joint alignment model is

O(nLI) where n is the number of curves, L is some measure of the length of curves

in the dataset (e.g., the mean or maximum length of all curves), and I gives the

number of iterations of EM.

Typically, L for curve data is much smaller than that for classic time-series

data. For example, L is approximately 15 for the application to cyclone trajectories

discussed in Chapter 9 and it is about 30 for the application discussed in Chapter 10.

Whereas for time-series data, typical values for L might be 200, or even 2000, or

more.

The joint alignment models in this chapter were pursued mostly for completeness.
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We did not extensively experiment with these methods due to the factorial explosion

of the number of experiments that must be carried out to investigate each of the

joint alignment models (there are eight of them, four each of spline and polynomial),

and each of the individual alignment models (there are eight of them also), plus the

different orders of each of the models. In addition, our primary concern was the

integration of clustering and alignment. This adds an increased layer of complexity

which creates even more model choices that must be evaluated.

As such, we primarily focus on the individual alignment models in the remainder

of this thesis. However, we do report some experimental results with the joint

alignment models in the application chapters of 9, and 10.

7.3 Multidimensional curves

In this section, we introduce the extension of the curve alignment methodology

to multidimensional curves. Thus far, we have implicitly assumed that the curve

yi consisted of a sequence of univariate curve measurements. However, in many

applications these curves are multidimensional. That is, at each time point, a D-

dimensional vector of measurements may have been observed.

Often, it is useful to explicitly emphasize that a particular curve is multidimen-

sional. We denote multidimensional curves as ỹi. Then, ỹi consists of D columns

such that the qth column y
(q)
i contains the sequence of univariate curve measure-

ments for the q-th observation variable. In other words, each y
(q)
i corresponds to a

standard curve yi packed into a matrix multidimensional curve ỹi.
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7.3.1 Multidimensional space-alignment regression models

Multidimensional curves can be incorporated into an alignment regression model

in a straight-forward manner. For example, the multidimensional curve ỹi can be

included into a regression model that allows for translations in measurement space

by defining a regression model for each dimension separately. For example, the

regression model for the q-th dimension is defined as

y
(q)
i = Xiβq + diq + εi, diq ∼ N (0, v2

q), εi ∼ N (0, σ2
qI), (7.18)

where βq gives the regression coefficients for the q-th dimension (i.e., the regression

coefficients for the q-th column of ỹi), and diq gives the translation for the q-th

dimension. The parameters v2
q , σ

2
q can be used to allow for separate variance terms

in each dimension. If desired, this dependence can be removed.

The model specification results in the joint density for the multidimensional curve

ỹi and the D translation parameters {diq} as follows:

p(ỹi, di1, . . . , diD) =
∏
q

N (y
(q)
i |Xiβq + diq, σ

2
qI)N (diq|0, v2

q ). (7.19)

The joint density factors for two necessary reasons: (1) conditional independence is

assumed between the dimensions of ỹi, and (2) each dimension is assumed to have

its own set of translation parameters. Absent either of these two conditions, the

density would not factor. The marginal density p(ỹi) also factors as
∏

q p(y
(q)
i ), and

so the log-likelihood of Y = {ỹi}n
1 takes the form

log(Y ) =
∑

i

log p(ỹi)

=
∑
iq

log
∫

p(y
(q)
i |diq)p(diq) ddiq. (7.20)
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It is apparent from the sum over i, q in the last equation that the log-likelihood is

treated as if n(D − 1) extra curves have been added to the dataset. The integration

in the last equation can be carried out analytically which gives the log-likelihood in

the form

log(Y ) =
∑
iq

logN (y
(q)
i |Xiβq, v

2
q�+ σ2

qI). (7.21)

7.3.2 Multidimensional time-alignment regression models

It makes sense to have D separate transformation parameters for alignment in mea-

surement space since the individual dimensions may need to be translated and scaled

separately. However, for alignment in time, the situation is contrary. It is natural

to assume that the dynamic behavior of each dimension has occurred over the same

time scale. Therefore, the time-transformation parameters will need to be shared

over the D dimensions.

In the time-translation case, each of the one-dimensional curves of ỹi share a

single translation parameter bi. The conditional density of ỹi is

p(ỹi|bi) =
∏
q

p(y
(q)
i |bi)

=
∏
q

N (y
(q)
i |X iβq, σ

2
qI), (7.22)

in which there is only one bi for all q. The conditional density factors, but the

marginal density p(ỹi) does not since the dimensions exhibit dependence through

the translation bi. Therefore, for the log-likelihood of Y we get a different result:

log(Y ) =
∑

i

log p(ỹi)

=
∑

i

log
∫

p(bi)
∏
q

p(y
(q)
i |bi) dbi. (7.23)
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The product over the dimensions is now trapped inside of the integral. This results

in a slightly more complex problem. However, the approximate log-likelihood can

still be computed using Monte Carlo techniques in the same way as before. The

approximation can be computed as follows:

log(Y ) ≈∑
i

log
∑
m

∏
q

p(y
(q)
i |b(m)

i ) − n log M, (7.24)

where

b
(m)
i ∼ N (0, s2), for m = 1, . . . , M. (7.25)

7.3.3 Discussion

The remainder of the derivation for multidimensional curves directly follows from

the previous derivations except for the handling of the various individual q subscripts

on the dimension-dependent parameters. The result is that each of the alignment

models that have so far been defined have an equivalent multidimensional extension.

We demonstrate the application of these multidimensional extensions in Chap-

ters 9 and 10. However, we return to the implicit denoting of multidimensional

curves throughout the remainder of this thesis since the extra notation required for

multidimensional curves is not needed in general.

7.4 Summary

The main contribution of this chapter was in the introduction of a set of new joint

space- and time-alignment models that result from the merging of the individual

alignment models of the previous two chapters. We demonstrated an example deriva-

tion for these models by focusing on the complete alignment model that allows for
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affine transformations in both measurement space and time. The straight-forward

extension demonstrated the flexibility of the probabilistic formulation for curve align-

ment.

This chapter also introduced an extension of our alignment methodology to mul-

tidimensional curves. This allows for a vector of observations to be accounted for

at each point along a curve. For example, 3D trajectories are curves that consist of

three-dimensional vectors of position observations at each time point. The proba-

bilistic formulation easily allows for the incorporation of multidimensional curves by

defining an appropriate conditional density for the curve measurements. The con-

ditional density can then be substituted into the alignment methodology without

further modification, resulting in the alignment of multidimensional curves.

This chapter concludes the three-part introduction of the novel probabilistic curve

alignment methodology used in this thesis. The remainder of this dissertation is

concerned with the methods and procedures that result in a joint clustering and

alignment methodology for the analysis of sets of smoothly varying curves. We de-

velop such a joint clustering-alignment methodology in Chapter 8, and then present

two extensive applications of the joint methodology to the clustering of cyclone tra-

jectories in the following two chapters.
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Chapter 8

Curve-Aligned Clustering

8.1 Introduction

In this chapter, we unify the alignment models of the previous three chapters with

the clustering models of Chapter 3. The alignment models were specifically devel-

oped so that their integration into a model-based clustering algorithm was natural.

Most of the foundation work for the model specifications and learning was covered

extensively in these previous chapters. As such, the first half of this chapter deals

with the integration issues in a broad sense—leaning on the the foundation work

of the previous chapters—and the second half details extensive simulated experi-

ments with our new joint alignment and clustering methodology. We present the

application of this joint methodology to two “real-world” datasets in Chapters 9,

and 10.

There is much prior work focusing on each of the separate clustering and align-

ment problems as we have pointed out in previous chapters. However, there is only a

minimal amount of prior work that has looked at the joint curve clustering-alignment

problem itself. The main contribution of this chapter is in the introduction of new
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Figure 8.1: Simulated dataset with random translations in time and added measure-
ment noise.

models and algorithms that directly address this problem.

This chapter is organized as follows. We discuss the relevant prior work in Sec-

tion 8.2 and point-out the novelty of our contribution. In Section 8.3 we derive our

joint clustering-alignment framework by demonstrating how to add cluster depen-

dency to the space-affine alignment model of Section 5.4. In Section 8.4 we discuss

the extrapolation of this derivation to all of our alignment models. We also make use

of this section to discuss some special issues regarding the time-alignment models.

In Section 8.5 we change tack and go from specification to evaluation. In this

section we describe the techniques and measures that we use to compare and evaluate

our new joint methodology. We discuss cross-validation methods (Burman, 1989)

for model selection and derive the test log-likelihood and prediction SSE measures.

We follow this in Section 8.6 by detailing the results of systematic evaluations of our

new models and methods on simulated data. The evaluations show the effectiveness

of our new approach. We conclude the chapter with a summary in Section 8.7.

Before we leave the introduction, we present a simple illustrative example. Fig-

ure 8.1 shows a simulated dataset with random translations in time and added
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measurement noise. The underlying generative model contains three clusters each

described by a cubic polynomial (not shown). Figure 8.2 shows the clustering that

results using our new joint EM-based approach (described below) and two sequential

approaches (align first, then cluster; and cluster first, then align).

Figure 8.2(a) shows the true alignments and clustering that each method must

uncover. The output of our joint approach is shown in Figure 8.2(b). We can see

that it closely resembles the true picture in Figure 8.2(a). The clustering and the

alignment are both accurate. Figure 8.2(c) shows what happens if you align the

data first. The resulting clustering is shown adjacent to this in Figure 8.2(d). The

alignment is clearly incorrect; however, many of the classifications are correct (there

are only a few misclassified examples). Figure 8.2(e) shows the result of clustering

first. The within-cluster alignment is shown adjacent to this in Figure 8.2(f). This

sequential approach results in significant misclassification and incorrect alignment.

The example demonstrates that the best approach to the clustering problem is to

apply a joint clustering-alignment methodology. Either of the sequential approaches

will most likely fail in one way or another given significant misalignment in clustered

data.

8.2 Prior work

Despite the dearth of joint curve clustering and alignment work, there has been

related work in other areas. One area where there has been some success in simul-

taneous alignment and clustering is in the modelling of image data using mixture

densities. Although there is no notion of sets of curves or curve models, the joint

architecture is related. For example, the transformed mixture of Gaussians (TMG)

model uses a probabilistic setup and an EM algorithm to learn mixtures of images
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(f) Align second

Figure 8.2: Comparison of joint EM and sequential clustering-alignment: (top-row)
ground truth and joint EM, (middle-row) align and then cluster, (bottom-row) clus-
ter and then align. The original data is shown in Figure 8.1
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jointly subject to various forms of linear transformations (Frey & Jojic, 1999, 2002,

2003). However, this model only considers discrete sets of transformations that shift

pixels in images, whereas we are focused on curve modelling that allows for arbitrary

continuous alignment in time. In other work, Jojic et al. (2000) demonstrate that the

probabilistic framework allows for a natural extension of the TMG to transformed

hidden Markov models which they use to cluster video sequences in time.

A related area where there has been much work on a similar problem is in medical

imaging. Aligning of 2D and 3D shapes in images is important in medical imaging. It

is common to represent such shapes by a set of points (commonly called a point-set).

The representation is readily applicable to the methods of statistical shape analysis

which is why the technique is a popular choice (Cootes et al., 1994; Neumann &

Lorenz, 1998; Staib & Duncan, 1992). A problem with this approach, however,

is that the correspondences between different point-sets are in general unknown.

Without knowledge of the correspondences, the alignment of shapes is difficult.

The joint correspondence-alignment problem has similarities to the joint cluster-

alignment problem that we address here. There has been several papers that have

dealt with this problem in one way or another. For example, Cross and Hancock

(1998) develop a dual-step EM algorithm formulated using a graph-based representa-

tion of correspondence constraints that simultaneously solves for the correspondences

and the alignment parameters. Several softassign influenced algorithms have been

developed that also handle this problem directly (Rangarajan et al., 1997; Gold

et al., 1998). The joint correspondence-alignment problem is solved in an iterative

optimization framework that employs deterministic annealing in which softassign is

used to rid the objective function of problematic penalty terms. Chui et al. (2004)

follow a similar tack, but instead formulate the problem in probabilistic terms and

then use an iterative process with an embedded deterministic annealing procedure
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employing clustering as a de-noising process. Xue et al. (2001) apply an iterative

fuzzy algorithm that jointly finds the correspondences and affine transformation pa-

rameters for the point-sets.

In many ways, these correspondence-alignment algorithms can be seen as similar

to our joint curve clustering-alignment algorithms. However, the various solutions

presented in these papers are quite specific to the problem at hand. The higher

dimensional space requires more complex procedures and external constraints that

are needed to make the problem manageable. In contrast, the novelty of our approach

lies in its self-contained probabilistic formulation in which priors on transformations

naturally provide for clustering models that are transformation-invariant without

any extra specialized constraints or procedures. In addition, our focus is on the

application to curve analysis and those curve models that are used to represent

them. Our framework naturally leads to easy-to-understand EM algorithms that are

easily coded-up in MATLAB using only the provided routines.

In related work (Chudova et al., 2003, 2003), we have shown how transformation-

invariant curve clustering can be incorporated into a Gaussian mixtures framework.

In this work, we did not model transformations as random variables with prior

probability densities. Instead we treated them as extra variables to be optimized

separately as an addition to the standard Gaussian mixtures framework. We also

showed how a general Bayesian network can be used for simultaneous local (non-

linear) time-warping and clustering of curve data.

8.3 Adding cluster dependence

We can view the integration of alignment and clustering as either adding cluster

dependence to the alignment models or as adding alignment to the clustering models.
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Because of the way in which we defined the alignment models, the viewpoints are

equivalent; however, we present this section from the former viewpoint—we add

cluster dependence to the alignment models.

Instead of deriving the joint alignment-clustering algorithms for each of the mod-

els defined in Chapters 5 and 6, we instead present an example derivation for a single

model which then allows the reader to extrapolate the methodology to the remain-

ing cases. We chose to derive the joint algorithm for the space-affine model of

Section 5.4.1 since it includes the space-translation model as a special case. The

derivations for the time-alignment models follow closely with what we present here;

however, there are a couple of issues which require special attention in the time-

alignment case. We discuss these in Section 8.4.

To this end, we begin with the space-affine spline alignment model defined in

Section 5.4.1 which we reproduce here as Equation (8.1):

yi = ciBiβ + di + εi, εi ∼ N(0, σ2I), (8.1)

with priors ci ∼ N (1, u2) and di ∼ N (0, v2). We add cluster dependence to this by

repeating this model over K different clusters. This results in affixing k to each of

the parameters {β, σ2, u2, v2} to arrive at the cluster-dependent regression model:

yi = ciBiβk + di + εi, εi ∼ N(0, σ2
kI), (8.2)

with priors ci ∼ N (1, u2
k) and di ∼ N (0, v2

k). Instead of placing dependence on every

parameter, we may instead only wish to treat some subset of them. For example,

we may posit that there are only single u2,v2 parameters shared among all of the

clusters and only βk and σ2
k provide the cluster-specific behavior. We describe the

general case in which every parameter is dependent on k.
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We denote the cluster-dependent conditional density for yi using a subscripted

k as pk(yi|ci, di) and write

pk(yi|ci, di) = N (ciBiβk + di, σ
2
kI). (8.3)

When cluster membership is unknown, we have a conditional mixture distribution

in the form

p(yi|ci, di) =
∑
k

αk pk(yi|ci, di), (8.4)

with non-negative mixture weights αk that sum to one. This is a mixture model

that assumes the transformation parameters ci, di are known. The next step is to

write down the densities for when both (or one or the other) of the transformation

parameters are unknown.

8.3.1 Joint, marginals and log-likelihood

The updated k-dependent joint and marginal densities (see Section 5.4.1) follow in a

straightforward manner. Essentially, there are now K separate joints and marginals,

one of each for each cluster. The cluster-dependent joint takes the product form

pk(yi, ci, di) = pk(yi|ci, di)pk(ci)pk(di)

= N (yi|ciBiβk + di, σ
2
kI)N (ci|1, u2

k)N (di|0, v2
k). (8.5)

We can integrate over each of the transformation parameters in the joint model to

obtain all of the cluster-dependent marginal densities. For example, the cluster-

dependent marginal of yi given ci is

pk(yi|ci) =
∫

pk(yi, di|ci) ddi
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= N (yi|ciXiβk,Vk), Vk = v2
k� + σ2

kI. (8.6)

Notice that now the covariance matrix Vk is indexed by cluster k. The cluster-

dependent marginal of yi given di is

pk(yi|di) =
∫

pk(yi, ci|di) dci

= N (yi|Xiβk + di,Uk), Uk = u2
kXiβkβ

′
kX

′
i + σ2

kI. (8.7)

The remaining cluster-dependent marginal results from integration over both of the

transformation parameters as in

pk(yi) =
∫ ∫

pk(yi, ci, di) dci ddi

= N (yi|Biβk,Uk + Vk − σ2
kI). (8.8)

Since these equations all depend on k, we then naturally obtain mixture densities

when cluster membership is unknown. For example, the mixture density for the

unconditional marginal of yi is

p(yi) =
∑
k

αk pk(yi). (8.9)

The marginal density then leads directly to the definition of the log-likelihood for

the set Y = {yi}n
1 of n curves. The log-likelihood is the sum over all n curves of the

log marginal of yi:

log p(Y ) =
∑

i

log
∑
k

αk N (yi|Biβk,Uk + Vk − σ2
kI). (8.10)
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8.3.2 Joint EM clustering-alignment algorithm

The derivation of the joint clustering-alignment algorithm follows closely with that

in Section 5.4.2 while handling the hidden cluster memberships. In this section, we

again follow our four-step template for describing EM algorithms.

In the first step, we let zi give the cluster membership for curve yi. We then

regard the transformation parameters {ci, di} as well as the cluster memberships {zi}
as being hidden. The hidden-data density then becomes the posterior p(zi, ci, di|yi).

In the second step, we define the complete-data log-likelihood function as the

joint log-likelihood of Y and the hidden data {ci, di, zi}. This can be written as the

sum over all n curves of the log of the product of αzi
and the cluster-dependent joint

density in (8.5). This function takes the form

Lc =
∑

i

log αzi
pzi

(yi|ci, di) pzi
(ci) pzi

(di). (8.11)

The remaining two steps (the E- and M-steps) are defined next.

E-step

In the E-step we calculate the joint posterior p(zi, ci, di|yi) and then use this to take

expectations of the complete-data log-likelihood function in (8.11). We can make

use of the previous work in Section 5.4.2 by factoring the posterior p(zi, ci, di|yi) =

p(ci, di|zi,yi)p(zi|yi) and taking expectations first with respect to p(ci, di|zi,yi) and

then with respect to p(zi|yi).

We begin with the first factor of the posterior. The form of this factor as

p(ci, di|zi = k,yi) ∝ pk(yi|ci, di)pk(ci)pk(di)

∝ exp
{
−‖yi − ciBiβk − di‖2 /2σ2

k − (ci − 1)2/2u2
k − d2

i /2v2
k

}
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is identical to that in (5.24) except that now we have K different posteriors, one for

each value of zi. The result is that these K posteriors can each be identified with an

individual bi-variate normal posterior (as in Section 5.4.2) which is fully described

by its set of means, variances, and covariances. For completeness we give identical

equations to those in (5.25)–(5.29) but include cluster dependence. For the posterior

means we have

ĉik = Vcik
(β′

kB
′
iV

−1
k yi + 1/u2

k), (8.12)

d̂ik = Vdik
(yi − Biβk)U

−1
k 1, (8.13)

the posterior variances are

Vcik
= (β′

kB
′
iV

−1
k Biβk + 1/u2

k)
−1, (8.14)

Vdik
= (1′U−1

k 1 + 1/v2
k)

−1, (8.15)

and finally the posterior covariance is

Vcikdik
= −ukvk

√
λkVcik

Vdik
1′Biβk. (8.16)

The equation for λk is

λk = (u2
kβ

′
kB

′
iBiβk + σ2

k)
−1(niv

2
k + σ2

k)
−1.

All that remains is to calculate the remaining factor of the posterior, namely, p(zi =

k|yi). This is the membership probability wik that yi was generated by cluster

zi = k. Its calculation is straightforward:

wik = p(zi = k|yi) ∝ p(yi|zi = k)p(zi = k)
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= αk pk(yi) (8.17)

= αk N (yi|Biβk,Uk + Vk − σ2
kI). (8.18)

Calculating the Q-function

The calculation of the Q-function consists of taking the posterior expectation of (8.11)

with respect to p(ci, di|yi, zi)p(zi|yi) calculated above. We can simplify this opera-

tion by first taking the posterior expectation of the noise term εi = (yi−ciBiβk−di)

with respect to p(ci, di|yi, zi = k). We can write this expectation and the related

variance as

ε̂ik = E[εi|yi, zi = k] = yi − ĉikBiβk − d̂ik, (8.19)

Vεik
= Var[εi|yi, zi = k] = Vcik

Biβkβ
′
kB

′
i + Vdik

�+ 2Vcikdik
Biβk1

′. (8.20)

We also note that E[ε′iεi|yi, zi = k] = ε̂′ikε̂ik + tr(Vεik
). With this, we now take

the expectation of (8.11) with respect to p(zi, ci, di|yi). First we expand the normal

densities and carry the expectation across the non-random terms.

Q =
∑
ik

wik

∫ ∫
[log αk pk(yi|ci, di)pk(ci)pk(di)] p(ci, di|yi, k) dci ddi

=
∑
ik

wik log αk − wikni

2
log 2πσ2

k −
wik

2σ2
k

E [ε′iεi|yi, k]

−wik

2
log 2πu2

k −
wik

2u2
k

E
[
(ci − 1)2|yi, k

]

−wik

2
log 2πv2

k −
wik

2v2
k

E
[
d2

i |yi, k
]
. (8.21)

We are left with taking expectations that only require substitution of known sufficient

statistics from the E-step. The substitutions result in the final equation for the Q-
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function:

Q =
∑
ik

wik log αk − wikni

2
log 2πσ2

k −
wik

2σ2
k

[ε̂′ikε̂ik + tr(Vεik
)]

−wik

2
log 2πu2

k −
wik

2u2
k

[
(ĉik − 1)2 + Vcik

]

−wik

2
log 2πv2

k −
wik

2v2
k

[
d̂2

ik + Vdik

]
. (8.22)

M-step

The M-step is identical to that in Section 5.4.2 except for the appearance of the

membership probabilities and the solutions for the mixture weights α̂k. The pa-

rameter re-estimation equations can be written for 1 ≤ k ≤ K as follows. For the

mixture weights we have

α̂k =

∑
i wik

n
. (8.23)

The transformation variances have the solutions

û2
k =

1∑
i wik

∑
i

wik

[
(ĉik − 1)2 + Vcik

]
, (8.24)

v̂2
k =

1∑
i wik

∑
i

wik

[
d̂2

ik + Vdik

]
. (8.25)

The measurement noise can be estimated by

σ̂2
k =

1∑
i wikni

∑
i

wik [ε̂′ikε̂ik + tr(Vεik
)] ; (8.26)

and finally, we estimate the regression coefficients using

β̂k =

[∑
i

wikB
′
iBi(ĉ

2
ik + Vcik

)

]−1∑
i

wikB
′
i(ĉik(yi − d̂ik) − Vcikdik

). (8.27)
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Essentially, the joint EM algorithm simultaneously solves K different alignment

problems in the E-step and fits K different curve models in the M-step. The role

of the membership probabilities is to determine how much influence each curve has

in each of the K fitting problems in the M-step. If you consider that one can hold

up and look at each one of the K joint alignment and fitting problems as parallel

panes of glass, then each pane of glass can be seen as a separate EM alignment

algorithm (from Chapter 5, 6, or 7) with the membership probabilities determining

which panes of glass are etched with which curves and to what degree.

Having derived the joint EM algorithm for affine transformations in measurement

space, we now discuss the extrapolation of the derivation to the other alignment

models.

8.4 Extrapolation to other models

In this section we discuss the extrapolation of the derivation of the previous section

to the remaining EM alignment models introduced in the previous chapters. Special

issues regarding the memberships probabilities and the log-likelihood in the time-

alignment case are also discussed.

8.4.1 General derivation of joint clustering algorithms

The derivation of the joint EM clustering-alignment algorithms for the other models

defined in Chapters 5, 6, and 7 can be extrapolated from the example procedure

described in Section 8.3. The basic idea is to represent each cluster with its own

probabilistic alignment model and then form a mixture over these clusters. The

joint EM algorithm is then identical to the specific EM alignment algorithm but

making allowances for the membership probabilities and the mixture weights. This
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Table 8.1: Labels used to refer to each of the joint clustering-alignment models based
on the PRM model.

Name Measurement Space Time
Trans Affine Trans Affine

PRM TM X
PRM AM X
PRM TT X
PRM AT X
PRM TM TT X X
PRM AM TT X X
PRM TM AT X X
PRM AM AT X X

natural integration is an important asset of the model-based probabilistic formulation

introduced in this thesis. Table 8.1 lists the abbreviations that are used in the rest

of this thesis to refer to each combination of clustering and alignment model. Only

the versions for the PRM model are listed in the table, but there are an equivalent

set of abbreviations for the SRM model also. There are some issues that require

special attention in the integration process. We discuss these next.

Calculating memberships and the log-likelihood

The calculations for the membership probabilities and the log-likelihood are straight-

forward when only transformations in measurement space are considered. But when

transformations in time are allowed, we discover that the equations do not reveal

closed-form solutions. The reason for this is because both the membership probabil-

ities and the log-likelihood are functions of the cluster-dependent marginal density

for yi, a density which cannot be computed analytically. For the time-translation

case, this density is

pk(yi) =
∫

pk(yi|bi)pk(bi) dbi
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=
∫

N
(
yi

∣∣∣ �xi − bi�βk, σ
2
kI
)
N (bi|0, v2

k) dbi.

We saw in Section 6.3.1 that this integral cannot be solved for analytically. In-

stead, because sampling from the prior pk(bi) is rather easy, we can use Monte Carlo

integration. The approximation becomes

pk(yi) =
∫

pk(yi|bi) pk(bi) dbi

≈ 1

M

∑
m

pk(yi|b(m)
ik ) (8.28)

where

b
(m)
ik ∼ N (0, s2

k), for m = 1, . . . , M.

Plugging this into our generic equation for membership probabilities in (8.17) leads

to the approximation for the memberships wik:

wik ∝ αk pk(yi)

≈ αk
1

M

∑
m

pk(yi|b(m)
ik ). (8.29)

The accuracy of this approximation is discussed below.

Like the membership probabilities, the log-likelihood must also be approximated.

The log-likelihood is the sum over all n curves of the unconditional marginal of yi

(unconditional of cluster membership). The approximate unconditional marginal of

yi is a mixture density of the form

p(yi) =
∑
k

αk pk(yi)

≈ 1

M

∑
k,m

αk pk(yi|b(m)
ik ). (8.30)
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The mixture density arises because cluster membership must be summed out of the

equation. The approximate log-likelihood of Y follows directly from (8.30):

log p(Y ) =
∑

i

log p(yi)

≈ ∑
i

log
∑
k,m

αk pk(yi|b(m)
ik ) − n log M. (8.31)

Approximation accuracy

In this section, we look at the accuracy of the approximations used for both the

membership probabilities and the log-likelihood. Although they are both based on

the same underlying density, the nature of the problem is different in each case.

In practice, the membership probabilities do not require overly accurate approx-

imations for successful application of EM. Membership probabilities often tend to-

ward polar opposites of 1 and 0. This effect is particularly noticeable with curve

clustering since each “individual” consists of many different points that share mem-

bership along the curve. This tendency eases the difficulty in estimating the mem-

berships. The algorithm is not likely to be negatively affected by using approximate

membership probabilities unless the error is relatively large.

Figure 8.3 shows an example that depicts the evolution of the approximation ac-

curacy of the membership probabilities during a run of EM. The data was generated

from a three-cluster time-translation model. Each of the clusters was represented by

a polynomial of order one (i.e., linear). For such a model, an exact calculation of

the E-step (and the membership probabilities in particular) is possible.

Each of the 12 “boxes” in the figure contains two different plots separated by

a thick horizontal axis line. The upper plot graphs the approximate and the exact

values of wik on the y-axis for each of the curves along the x-axis (the approximate

curve cannot be seen for the most part since it tracks the exact value so closely).
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The lower plot graphs the error of the approximation on the y-axis for each of the

same curves along the x-axis (this is used as a proxy for not being able to distinguish

between the approximate and exact curves in the upper plot). Although the x-axis

is discrete (i.e., there is a curve 1 and a curve 2, but no curve 1.5), the graph is

displayed as if it was continuous.

The boxes are organized by cluster and iteration. For example, all the boxes

related to cluster 1 are given in the first column. If we scan down this column, we

are able to see the time-evolution of the memberships for cluster 1. Initially, after

the E-step in the first iteration, none of the first 23 curves have any membership in

this cluster, while the remaining curves have about 0.5 membership. The approxi-

mation error is almost zero at this point. The second and third iterations show an

increase in the approximation error as the curves move from cluster to cluster. As

the memberships approach 1 or 0, the error dies back down. There were actually

21 iterations for this run of EM. However, the memberships were essentially fixed

beyond iteration 6. The clustering is almost perfect in this case (curve 45 belongs

to cluster 1, but it was put into cluster 2).

A similar picture can be seen in the second column for cluster 2. The approxi-

mation error initially grows and then settles back down. Cluster 3 shows a unique

picture since its memberships were learned immediately in the very first iteration.

It never shows any approximation error at all.

Overall the approximation is quite good. We are not able to see any significant

deviation of the approximate curve from the exact curve. Where we do see deviation

is when the EM algorithm gets “stuck” in bad local maxima. That is, when the

resulting EM solution is not very good. For example, Figure 8.4 shows a particularly

bad iteration for a run of EM on the same exact dataset. The local maximum of the

likelihood surface in which the algorithm is “trapped” does not allow EM to discover
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Figure 8.3: Approximate and true membership probabilities for each cluster at it-
erations 1, 2, 3, and 6. Each of the 12 “boxes” contains two separate, but related
plots. The upper y-axis gives the value of wik, and the lower y-axis gives the error in
the approximation. Both the exact and the approximate values of wik are plotted in
the upper plot; however, the approximate curve can almost never be distinguished
from the exact curve since it tracks the exact value closely. There is a noticeable
tendency for the error to first increase and then die back down over time.
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the true clustering during this run. The approximation is visibly poor in this case.

However, because the resulting EM solution is not high in likelihood, this run will

be discarded anyway.

We can also look at the approximation accuracy of the log-likelihood. The mem-

bership probabilities and the log-likelihood are both functions of the marginal density

pk(yi). Thus, they both stem from the same approximation. The main difference

is that the memberships are put through a normalization process whereas the log-

likelihood can be seen as a sum over the un-normalized memberships.

Figure 8.5 graphs the log-likelihood from the EM run shown in Figure 8.3. Again,

both the approximated values and the exact values are given. In the left plot, we

see that the approximation follows closely with the exact curve. A close-up of the

behavior after the 5th iteration can be seen in the right plot. The variance in

the approximation can be estimated by calculating the differences between the two

curves in this plot. The resulting standard deviation is 4.8 × 10−3.

If there is a need to decrease the approximation error, this can be addressed by

either increasing the number of samples or by using a different sampling scheme

(e.g., acceptance/rejection importance sampling, constrained sampling, etc.; Gentle,

1998). For our purposes, we found that increasing the number of samples was a

useful solution. For example, we set M to about 100 during normal runs of EM.

But when calculating the log-likelihood at the end of EM, or for out-of-sample test

purposes, we used values of M as large as 1500.

8.5 Testing methodology

In this section we address the problem of comparing sets of alignment models to other

sets of both alignment and non-alignment models. Out-of-sample test statistics are
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Figure 8.4: Approximate membership probabilities for each cluster during an EM
run that returns an incorrect solution.
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Figure 8.5: Approximate and true log-likelihood versus iteration. (left) plot over all
iterations, (right) close-up of the tail-end of iterations.
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essential when comparing models with different complexities since a more complex

model (such as a model with 100 clusters) can always provide a better fit to the

training data than a less complex model (such as a single cluster model). We use two

main test statistics for comparing models throughout this thesis: test log-likelihood,

and predicted squared error. In each case, to calculate the out-of-sample scores, we

either generate many training and test datasets (e.g., when running simulated data

experiments) or use cross-validation in a finite dataset setting.

8.5.1 Cross-validation

Cross-validation is a general model-selection technique that attempts to select the

best predictive model from among a set of candidates. Prediction on unseen test

data measures the true predictive power of a model. Cross-validation estimates each

model’s predictive power on a single data set by repeatedly training on one random

subset and testing (or scoring) on another disjoint random subset. The resulting

test scores are averaged across the random subsets, the scores are ranked, and the

model with the best score is chosen.

When this procedure is carried out using v different partitions such that each

point is tested only once, the method is called v-fold cross-validation (v is commonly

chosen as 10). We use both v-fold cross-validation and another variant known as

Monte Carlo cross-validation (MCCV; see Appendix B for details).

The one remaining problem is to choose the score or test statistic that is used

during the testing phase of each run of cross-validation. In the next two sections, we

describe the test log-likelihood as one such measure, and then derive the prediction

SSE score for our alignment models (a useful measure in a curve analysis setting).
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8.5.2 Test log-likelihood

The natural score in a mixture framework is the log-likelihood, or log p(Y ′|Θ), evalu-

ated on an unseen dataset Y ′, where we explicitly list the parameter vector Θ. From

Equation (8.10), we can write the equation for the test log-likelihood of the joint

clustering model that allows for affine transformations in space as

log p(Y ′|Θ) =
∑

i

log
∑
k

αk N (yi|Biβk,Uk + Vk − σ2
kI), (8.32)

where Θ = {αj, βj ,Uj,Vj, σ
2
j }K

j=1. This is a fair and principled measure because

the log-likelihood is an “integrated” measure. In other words, only the observed test

data Y ′ appears on the left of p(Y ′|Θ), and only the fixed parameter set appears on

the right. All other variables are integrated out of the measure.

For example, in Equation (8.32), the hidden membership probabilities have been

integrated out of the mixture likelihood through the use of the sum over k. It

would not be fair if a clustering model was allowed to first calculate the membership

probability for a particular test curve, and then evaluate log pk(yi|θk) as the score

for the test curve yi. The cluster model is not allowed to use the test data to choose

any specific cluster. It must integrate over the clustering instead.

Suppose we want to compare an alignment model (e.g., a space-affine clustering-

alignment model) and a non-alignment model (e.g., a standard PRM). In this case,

we must integrate out the effect of the allowed transformations from the log-likelihood

for the alignment model before comparison. That is, the alignment model is not al-

lowed to calculate an alignment on a test curve before the score is recorded. Indeed,

we see in Equation (8.32) that there are no transformation parameters (i.e., ci, di)

present on the right side. They have been integrated out of the model as is required.

We can view comparison by log-likelihood as a game. Each model is allowed to
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position its finite density throughout the probability space in any way it desires.

An outside expert then presents a number of test examples to a set of competing

models. The model that has positioned its finite density in a way that best coincides

with the test examples is the winner. To say that a model must use an integrated

measure, is to say that the model cannot reposition its density after it sees the test

examples. That would violate the rules of the game.

8.5.3 Prediction squared error

The test log-likelihood is a density modelling measure. It determines how well a

learned density matches a set of new instances. It does not measure one-step-ahead

prediction capability. For example, it does not measure how well a model can predict

the next point in a curve given all of the previous points along the curve. Such a mea-

sure is important in curve analysis problems since curve prediction is a fundamental

question.

We use a prediction SSE (sum-of-squared error) score to measure this ability.

This measure can be used by probabilistic and non-probabilistic methods. We take

the learned model and predict the test curve point ŷij at xij using the learned model

parameters and the partial test curve yi(j−1) (which contains all the points up to

time j − 1). Then we subtract this prediction from the true value yij, square the

result, and sum this across the predictions made along the curve. Adding these

values across all curves in a test set and dividing by the number of predictions gives

us a mean SSE per-point test measure.

We can perform a forward prediction in which we predict the next point given all

previous points, or we can perform a forward-backward prediction (called smoothing

in state-space sequential modelling) in which we predict the current point given all

previous as well as future points.
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In order to use such a measure we need to be able to calculate the expected

value of yij given the initial partial curve up to time j − 1. As an example, we

calculate this prediction for the time-translation alignment model. We begin with

an in-cluster prediction:

E[yij |yi(j−1), zi = k] =
∫

yij pk(yij|yi(j−1)) dyij. (8.33)

We remove the dependence of yij on the partial curve yi(j−1). The dependence is

removed if we introduce the translation parameter bi. For if we know the translation

bi and the model parameters {βk, σ
2
k}, then the prediction is always �xi − bi�βk no

matter what the value of yi(j−1). We remove the dependence by introducing the time

translation bi and then integrating so that we leave the equation undisturbed:

E[yij|yi(j−1), zi = k] =
∫

yij

∫
pk(yij, bi|yi(j−1)) dbi dyij

=
∫

yij

∫
pk(yij|bi) pk(bi|yi(j−1)) dbi dyij. (8.34)

We are left with a likelihood factor pk(yij|bi), which equals N (�xi − bi�βk, σ
2
kI), and

a posterior factor pk(bi|yi(j−1)) for which there is no simpler form (this is because

we are working with a time-alignment model; for the space-alignment models, the

calculation is exact). We cannot compute the integration directly, but we do know

that the value of the integrand will be small for values of bi which are not close to the

posterior mean. In fact, because posteriors are narrowly peaked densities in general,

we can assume that almost all of the area underneath the density is centered around

the posterior mean b̂ik. Therefore, we can make an approximation of the inner-most

integral by replacing it with pk(yij|b̂ik) and writing

E[yij|yi(j−1), zi = k] ≈
∫

yij pk(yij|b̂ik) dyij. (8.35)
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We can also see this as a Monte Carlo integration approximation in which the sample

size is just one, the most likely sample. The remaining integration is straightforward;

it is just the expected value of N (�xi − b̂ik�βk, σ
2
kI). Therefore, we have the final

result:

E[yij|yi(j−1), zi = k] ≈ �xi − b̂ik�βk. (8.36)

The expectation when cluster membership is unknown is

E[yij|yi(j−1)] ≈
∑
k

w′
ik �xi − b̂ik�βk, (8.37)

where w′
ik is just the membership probability computed using the partial curve

yi(j−1).

8.6 Simulation results

In this section we report on systematic experiments with simulated data that show

the effectiveness of our new joint clustering-alignment methodology. We begin in

Section 8.6.1 by demonstrating that the framework itself is viable. We report on 16

experiments that determine whether or not our joint models can identify generated

datasets. The results also validate the testing methodology, i.e., they show that the

test statistics are able to distinguish between models on test data.

In Section 8.6.2 we compare joint alignment-clustering to methods that simply

ignore alignment during clustering. The goal is to show the importance of accounting

for misaligned curves when clustering.

Finally, in Section 8.6.3, we describe experiments that show the ineffectiveness

of the sequential approach to the joint problem. The experiments in this section

compare methods that sequentially cluster and then align (or vice versa) against our
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joint EM algorithms.

8.6.1 Identification tests

In this section we undertake a number of identification tests. The primary goal

is to demonstrate the viability of our new models and to show that the testing

methodology is valid. We do this by generating curve data from one alignment-

clustering model and then show that this model out-performs all other models on

test data. An important factor is to show that the most complex model doesn’t

beat the “true” model. If this were the case, then either the model, the learning

algorithm, or the testing methodology is flawed.

The experiments were carried out as follows. Each of four candidate models

(listed below), in turn, was chosen as the data model. This model was used to

generate 25 different random training and testing sets. Then each of the four models

was trained and tested on each pair of datasets. Their test SSE and log-likelihood

scores were recorded and averaged over all sets.

The averaged test SSE scores are shown in Table 8.2 and the averaged test

log-likelihood scores are given in Table 8.3. The models are denoted using the

abbreviations listed in Table 8.1. The data models are listed down the left column of

each table so that the datasets used in the tests for each row were generated by the

model listed at the far left of that row. For example, in the row labelled PRM TT

of Table 8.2, we see that the lowest averaged SSE score attained on the 25 datasets

generated from the PRM TT was 542.49, which was recorded by the PRM TT itself.

The best score in each row is bolded.

As the bolding indicates, the models, the learning algorithms, and the testing

statistics are able to identify the correct generative models in each of the cases.

The results reveal the common theme in model selection, i.e., a model that is too
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Table 8.2: Polynomial prediction SSE scores of all models trained/tested on data
generated from a specific model. The models which generated the data are listed
along the left column. The lowest score in each row is bolded.

Prediction SSE Scores
Model PRM PRM TM PRM AM PRM TT
PRM 404.42 404.65 407.36 414.43
PRM TM 484.03 481.99 482.99 502.78
PRM AM 869.68 863.74 681.22 875.58
PRM TT 707.15 706.54 718.79 542.49

Table 8.3: Polynomial test log-likelihood scores of all models trained/tested on data
generated from a specific model. The models which generated the data are listed
along the left column. The highest score in each row is bolded.

Test Log-likelihood Scores
Model PRM PRM TM PRM AM PRM TT
PRM -4.5435 -4.5437 -4.5452 -4.5461
PRM TM -4.6130 -4.6115 -4.6135 -4.6193
PRM AM -4.7892 -4.7915 -4.6959 -4.7967
PRM TT -4.8125 -4.7570 -4.7650 -4.6600

complex tends to overfit and thus show worse out-of-sample performance. Another

thing that can be gleaned from the statistics is that the more complex the data

generating model, the larger the disparity in the test score of the “true” model and

the remaining models.

8.6.2 Comparisons with non-alignment methods

In this section we compare joint alignment-clustering to basic clustering that does

not allow for any alignment. The goal is to show the importance of accounting for

misaligned curves when clustering.

The tests were carried out as follows. Twenty-five different training and testing

sets were generated from a three-cluster PRM TT. Then, Gaussian mixtures (Gmix),

K-means (Kmeans), PRM, and PRM TT were evaluated on the datasets and the
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Figure 8.6: Average test scores that compare alignment and non-alignment clustering
methods. The test scores are given on the y-axis and the level of measurement noise
is given on the x-axis. Error bars indicate one standard deviation on each side of
the plotted mean score.

test scores were recorded and averaged. This was repeated at each of four different

levels of measurement noise resulting in the evaluation of 100 different test sets for

each model.

Figure 8.6 graphically depicts the results from these tests. The average scores

are plotted along the y-axis in both graphs, and the noise level is plotted along the

x-axis. Error bars indicate one standard deviation on each side of the plotted mean.

In the left plot, the test log-likelihood scores demonstrate the importance of ac-

counting for alignment in a curve dataset. The overall density modelling performance

of the alignment method PRM TT is well above that of the two non-alignment clus-

tering methods at all levels of noise. In addition, the curve-based clustering model

PRM out-performed the vector-based method of Gaussian mixtures at increasing

levels of noise.

A similar picture can been seen from the SSE scores in the right plot of Figure 8.6.

PRM TT demonstrated significant improvement in prediction power over the non-

alignment methods. The improvement is due to the fact that this model is able
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Figure 8.7: Average test scores that compare joint and sequential clustering methods.
The test scores are given on the y-axis and the level of measurement noise is given
on the x-axis. Error bars indicate one standard deviation on each side of the plotted
mean score.

to accurately predict the alignment of a partial curve before the point-prediction is

made. The non-alignment methods only use the partial curve to predict membership

probabilities. This makes the joint models much more accurate at the prediction

problem.

8.6.3 Comparisons on joint methodology

In this section we compare joint clustering-alignment with that of clustering first

and then aligning second or vice versa. The goal is to show the benefit of the joint

approach.

The experiments were carried out as follows. Twenty-five different training and

testing sets were generated from a three-cluster PRM TT. Then, PRM TT and two

sequential methods (cluster first, align second; and align first, cluster second) were

evaluated on the datasets and the test scores were recorded and averaged. This

was repeated at each of five different levels of measurement noise resulting in the

evaluation of 125 different test sets for each model.
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The results from these experiments are shown in Figure 8.7. The average scores

are plotted along the y-axis in both graphs, and the noise level is plotted along the

x-axis. Error bars indicate one standard deviation on each side of the plotted mean.

The left plot depicts the average test log-likelihood results. The joint approach

clearly outperforms the two sequential methods on the test density modelling task.

As the noise level increases we see the performance gap narrow just as we saw in the

previous section. It appears that for a sequential approach, it is preferable to align

first and then cluster second.

The right plot depicts the average test SSE scores. Again, we see the joint ap-

proach clearly outperforms the two sequential methods on the partial curve predic-

tion task. It appears that the noise level does not dramatically affect the performance

gap in this case. The align-first, cluster-second approach again appears superior to

the alternate sequential method.

8.7 Summary

In this chapter, we introduced a new unified methodology that integrates both align-

ment and clustering, augmenting each individual problem with iterative input from

the other in a joint estimation framework. The novelty of the approach lies in its

self-contained probabilistic formulation in which priors on transformations naturally

provide for clustering models that are transformation-invariant without any extra

specialized constraints or procedures. This joint clustering-alignment problem has

not previously been addressed in curve analysis, and thus this work is seminal.

We derived a useful predictive measure consistent with the framework that al-

lows for fair comparison of dissimilar models based on future expected predictive

capability. We used this measure along with test log-likelihood scores to show the
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effectiveness of our joint methodology in a number of systematic simulation experi-

ments. The main contributions of this chapter can be listed as follows:

• Unification of both alignment and clustering in a joint estimation framework.

• Probabilistic formulation naturally resulting in transformation-invariant clus-
tering models without any added specialized procedures.

• Incorporation of curve models that provide for a joint clustering and alignment
of sets of curves in curve space.

• Experimental results that demonstrate the benefit of treating the joint problem
as opposed to addressing each of the clustering and alignment problems in
isolation.
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Chapter 9

Identification, Tracking, and

Clustering of ETC Cyclones

9.1 Introduction

In this chapter, we describe the application of our clustering models to the problem of

extra-tropical cyclone (ETC) clustering. We develop a methodology for the detection

and tracking of cyclones from mean sea-level pressure (MSLP) data, generated by

a general circulation model (GCM), and then apply our joint clustering-alignment

models to the resulting set of cyclone trajectories.

GCMs are computational models that are used for climate prediction. As such,

the cyclone dataset that is used in this application is technically simulated as op-

posed to observed. However, GCMs are quite complex dynamical models that gen-

erate global weather states consisting of hundreds of meteorological output variables

“observed” at (potentially) every point on the earth. In many ways, the output from

GCM models are thought of as “real” data in the atmospheric sciences. Thus, we can

think of this chapter as describing an application to a “real-world” dataset. In the
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next chapter, we describe an application of our clustering models to an “observed”

cyclone dataset, compiled by the Joint Typhoon Warning Center (JTWC).

This chapter is organized as follows. In Section 9.2, we motivate the importance of

understanding ETCs and how they fit within the global climate picture. Section 9.3

discusses the problem definition and describes the relevant prior work in this area.

Section 9.4 describes the GCM model and the related raw MSLP dataset that were

used for the analyses in this chapter.

In Section 9.5, we introduce our identification and tracking methodology that

was used to produce the set of cyclone trajectories from the GCM data. Section 9.6

discusses the modelling of cyclone trajectories using regression models. This section

justifies the use of relatively simple models for the modelling of highly non-linear

dynamical weather phenomena (i.e., cyclones)

In Section 9.7, the model selection problem is addressed. This section makes up

the bulk of the experimental work with the alignment models for cyclone cluster-

ing. Experimental results are reported that were used to make decisions about the

optimal order of the cyclone regression models, the most suitable type of trajectory

preprocessing, the best predictive alignment model, and the number of clusters that

best describes the cyclone dataset.

Following this, Section 9.8 analyzes the cluster results in detail produced by the

previously selected “best” methodology. This section provides graphical as well as

quantitative analysis of the clustering results. The temporal behavior of the clusters

is briefly discussed in the latter part of this section. Finally, the chapter is concluded

with a summary in Section 9.9.
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9.2 Motivation

Extra-tropical cyclones (ETCs) are important for a number of reasons. They are

responsible for severe and highly damaging winter weather over North America and

Western Europe (Schubert et al., 1998). In the last decade, they were second only

to hurricanes (which are caused by tropical cyclones) in total insurance loss due to

weather.

Atmospheric scientists are interested in the special role ETCs play as interme-

diary between large-scale components of climate and more regional local weather

patterns. For example, it is not well-understood how long-term climate changes

(such as global warming) may influence ETC frequency, strength, and spatial dis-

tribution; and how this, in turn, may influence the regional climate (Murray &

Simmonds, 1991). A better understanding of the behavior of ETCs in the context

of climate variability could have important societal implications.

This chapter is concerned with ETCs over the North Atlantic and Western Eu-

rope. It is common for North Atlantic ETCs to propagate from west to east over

the ocean as they go through their life cycle. It is the tail-end of this life cycle

that is most responsible for the climate variability over Western Europe (Blender

et al., 1997). Analysis of North Atlantic ETCs from GCM simulations (or observed

datasets) may lead to a better understanding of the cyclones themselves and their

associated frontal weather systems. This may also provide clues as to how atmo-

spheric events in distant parts of the world (such as El Nino in the tropical Pacific)

are able to affect regional weather over Europe (Schubert et al., 1998). Such analy-

ses are important since direct study of the atmosphere and its effects is a complex

undertaking.

In the next section, we discuss the problems encountered in cyclone analysis such
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as cyclone identification, tracking, and clustering, and describe the relevant prior

work that addresses these issues.

9.3 Problem definition and prior work

Historically, cyclone data analysis relied upon scientists who performed the tedious

job of manually analyzing weather charts to identify sets of observed cyclone tracks.

The results of these analyses were then used to generate statistics such as cyclone

genesis rate, geographic distribution, cyclone lifetime, track orientation, etc. Often

the cyclones were categorized into groups or clusters based on the shapes of their

tracks (e.g., straight, recurving, noisy; Hodanish & Gray, 1993).

More recently, methods that allow for the automatic identification, tracking, and

clustering of cyclones have received much interest (Hodges, 1998). This is largely due

to the proliferation of general circulation models (GCMs). GCMs are parameterized

computational models used for climate prediction. They can be used to generate a

potentially unlimited amount of simulated meteorological data. It would be infea-

sible to manually chart each cyclone resulting from hundreds of years of simulated

output from a single GCM.

The identification and tracking of cyclones from GCM data is important for a

number of reasons. First, validation of GCMs is of great interest since future pre-

dictions of climate depend upon the accuracy of such models. A common validation

step is to compare particular spatial averages over time to observed averages from

“real” meteorological data (Gates, 1992). However, it can be valuable to compare

smaller-scale transient behavior in the same manner also (Hodges, 1994). In this

case, the existence of cyclones and their derived statistics from GCM output can be

used as comparison measures with those from real data.
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GCMs can also be used to run large-scale experiments that provide clues as to

how global climate change affects local weather patterns such as seasonal rain (which

is dominated by the existence of cyclones and other weather phenomena). For ex-

ample, GCMs can be used to simulate years of normal climate effects, and then

these same years can be simulated again with an increased greenhouse gas concen-

tration (Schubert et al., 1998). After detecting and analyzing the resulting cyclones

in each case, comparisons can be made to determine if cyclones are significantly

affected by increased greenhouse gasses.

There has been much progress in automatic cyclone detection. Identification

methods range from the relatively simple approach of finding minima in surface

pressure fields (König et al., 1993) to more complex approaches such as the use

of image processing and computer vision techniques (Hodges, 1994, 1998). These

algorithms are usually coupled with a tracking scheme to produce a final set of tra-

jectories. Proposed methods for tracking include a number of different schemes; for

example, nearest-neighbor search (Blender et al., 1997; König et al., 1993), numer-

ical prediction schemes with cost minimizing optimizations (Murray & Simmonds,

1991), and image-based feature tracking methods (Hodges, 1994, 1995).

In contrast to cyclone detection, there has not been much work in automatic

categorization or clustering of cyclone trajectories. Blender et al. (1997) introduced

the idea of using K-means to cluster cyclone trajectories of fixed length. To apply K-

means to cyclone trajectory data, one must convert the variable-length trajectories

into fixed-dimensional vectors. To do this, Blender et al. constrain each of their

storm trajectories to be exactly 3 days in length (12 measurements, 6 hours apart)

and then concatenate each of the latitude and longitude measurements to form 24-

dimensional vectors to be used with K-means.

This type of vector-based clustering has limitations when applied directly to cy-
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clones. For example, embedding of the sequence of time and space measurements into

a vector-space loses spatio-temporal smoothness information related to the underly-

ing dynamics of the cyclone process. Furthermore, trajectories of different lengths

do not admit a fixed-dimensional representation unless truncated in some manner,

which results in a potential loss of useful information. For example, Simmons and

Hoskins (1978) identified a cyclone life cycle of about 10 days. This is much longer

than what the truncated trajectories of Blender et al. (1997) allow for; and thus, the

fixed-dimensional setup does not seem natural for this problem

Our goal is to demonstrate the application of our curve clustering models to

cyclone clustering in a GCM setting. This methodology eliminates the problems as-

sociated with K-means type approaches and provides for a joint clustering-alignment,

something that has not previously been attempted in atmospheric science.

This application requires the development of an identification and tracking com-

ponent prior to the clustering. In the following sections, we describe the GCM

dataset that was used in this application, and then go on to describe our identifica-

tion and tracking procedures.

9.4 GCM model and raw dataset

The GCM that was used to generate the raw MSLP dataset used in this chapter was

the National Center for Atmospheric Research Community Climate Model, version

3 (CCM3; Hack et al., 1998). It was run with observed sea surface temperatures

specified at the lower boundary over the 1980–1995 period. The atmospheric pressure

at mean sea level (MSLP) was given on an approximate 2.8◦ × 2.8◦ Gaussian grid

over the globe. The data are available every 6 hours and the subset of data analyzed

in this chapter consisted of measurements for the winter months (1 November to 30
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Figure 9.1: Contour plot showing MSLP in the North Atlantic at a particular date.

April) from 1980 to 1995.

Interest lies on North Atlantic ETCs in the area 30◦N–70◦N and 80◦W–10◦E. In

each winter there are 181 days. Therefore there are 181 × 4 = 724 grids of data for

each winter, where each grid is a 19 × 41 array of MSLP pixel values—we refer to a

single grid of such pixels at a specific time as a frame. A snapshot of the resulting

data can be seen in Figure 9.1.

9.5 Identification and tracking of cyclones

This section introduces our identification and tracking scheme—this is based on

standard methods proposed in the literature (Blender et al., 1997; König et al., 1993)

and requires relatively few parameters to implement. We use the term trajectory to
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Figure 9.2: An example off-grid minimum found using gradient descent. We see
an image of the interpolated MSLP data at one instant in time. The grid lines
represent the location of the actual data grid in our data set. The square shows
the grid-located minimum found using sliding neighborhoods. The ‘x’ shows the
approximate minimum found using gradient descent with bicubic interpolation.

refer to a set of lat-lon (latitude-longitude) tuples corresponding to the path of a

cyclone, defined from a start time t1 contiguously through to an end time t2.

9.5.1 Cyclone identification

Cyclones are characterized by well-defined pressure minima. In order to distinguish

these minima more easily from larger-scale, low-pressure areas, the gridded MSLP

data were prefiltered in space at each time so as to remove the largest planetary-wave

scales (Hoskins & Hodges, 2002; Anderson et al., 2003). This was accomplished by

transforming the data to spherical harmonics, removing the gravest four wavenum-

bers, and transforming back to grid-point space. These spectral transforms are exact

to within roundoff error for a Gaussian grid.

A bicubic interpolation method coupled to an iterative scheme is used to find
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pressure minima using gradient descent. First the frames are scanned over time and

all local minima are found using a simple sliding neighborhood method. A “pixel”

is declared to be at a minimum if its value is less than all eight of its neighbors on

the grid. Then, gradient descent with bicubic interpolation is used to descend to the

point “inside” of the pixel that is at an approximate interpolated minimum. This

point provides an approximate off-grid center of a candidate cyclone. Figure 9.2

shows an example of this procedure.

Spurious minima can arise using this procedure, usually in one of two situations:

(1) in high-pressure regions not associated with cyclonic activity, and (2) within the

outskirts of a single cyclonic system with an already located central minimum. Both

situations can be dealt with by thresholding the MSLP data at a particular pressure

level to form individual low-pressure regions within the data. This results in “pixel

blobs” or contiguous pixel regions, where each blob corresponds to the estimated

spatial extent of a single candidate cyclone at a specific time.

Spurious minima are removed by (1) rejecting minima that are spatially located

outside the low-pressure blobs and (2) rejecting all but only the deepest minimum

within each individual blob. A conservative threshold value of −17 mb is used for

the results in this paper, chosen based on some preliminary experiments. (The

sensitivity of this value to the resulting set of tracked cyclones is discussed below.)

Note that although removal of spurious minima is desirable, it is not critical to the

results since it is rather unlikely for these minima to persist over time and to be

tracked as distinct cyclones. However, removal of the most obvious offenders can

lead to more accurate tracking.
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Figure 9.3: The full set of cyclone trajectories that were tracked using our method-
ology.

9.5.2 Tracking of cyclones

Given candidate cyclone centers determined using the procedure above, the follow-

ing two steps are performed to complete the tracking. The frames are scanned

sequentially from beginning to end and each candidate cyclone center is examined

to determine if it can be associated with a candidate cyclone center from the pre-

vious frame. If there exists a center in the previous frame located within a small

neighborhood region (window) surrounding a center in the current frame, then they

are linked. If there does not exist an associated center within the window then the

candidate center is designated as newly born.

A window size that allows up to 7 degrees of longitude and 5 degrees of latitude

movement over each 6-hour measurement interval is used (this corresponds to an

overall window size of 14×10 degrees, longitude-by-latitude). This allows a maximum

cyclone displacement velocity of approximately 129 km/h in longitude and 92 km/h

in latitude. Empirical results indicate that a typical tracked cyclone from the MSLP

data used in this chapter has an approximate average velocity of 50 km/h, and thus
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Figure 9.4: Summary histograms for the cyclone data set: (a) top, cyclone duration;
(b) bottom-left, average velocity; and (c) bottom-right, minimum intensity (MSLP).

the maximum displacement velocities are rarely ever reached.

In the second step, the set of associated centers (trajectories) over time is taken

and all those that exist for less than 2.5 days are eliminated. This step removes

many small noisy tracks that correspond to local small-scale weather disturbances

not usually considered to be cyclones.

Application of the identification and tracking procedures described above to the

MSLP data produced 614 cyclones of different durations, each with a minimum of 10

observations (i.e., at least 2.5 days long). Figure 9.3 shows the complete set of tracked

cyclones. Figure 9.4 contains three summary histograms describing the statistical
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Table 9.1: Sensitivity of the identification and tracking procedure to small changes
in window size and threshold. N is the number of cyclones tracked, µL is the average
trajectory length, and µI is the average of cyclone minimum intensities.

Window size Threshold N µL µI

14 × 10 −17 614 15.26 −38.1
14 × 10 −18 614 15.26 −38.1
12 × 8 −17 616 14.98 −37.5
12 × 8 −18 590 14.94 −38.0

characteristics of the same set of trajectories. This specific set of trajectories is used

for all further analysis in this chapter.

There are two parameters that primarily affect the set of trajectories detected by

the identification and tracking algorithm and the sensitivity of the results to these

parameters is a potential concern. The first, the threshold value used to remove

spurious minima, can be lowered or raised, decreasing or increasing the number of

candidate cyclone centers. The second, the window size used in the nearest-neighbor

search, can also be reduced or enlarged.

We have found empirically that small changes in either of these parameters do

not lead to large changes in the resulting sets of trajectories. For example, when the

window size is decreased from 14 × 10 to 12 × 8, a slightly smaller set of cyclones

is produced, in which only the fastest (or longest) cyclones are either shortened or

removed. Table 9.1 lists the effect of selected small parameter changes on three

different summary statistics of the tracked cyclones: number of cyclones, average

length, and the average minimum intensity.

9.6 Regression models for cyclone trajectories

The goal of cyclone clustering—and clustering in general—is to capture individual

clusters that exhibit unique characteristics. The most obvious characteristic of cy-
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clones is their shape, or their movement over time through latitude-longitude space

(or lat-lon space). This shape is determined by the ratio of velocities in lat-vs-time

and lon-vs-time space. The slope of the line representing the direction of travel at

any point in time is given by the relative latitude change in position divided by

the relative longitude change in position. Thus, cyclone “shape clustering” can be

carried out by modelling the component velocity profiles over time.

A cyclone trajectory is modelled with two separate polynomial regression models:

one for lat-vs-time and one for lon-vs-time. Since the shape of the velocity profiles

closely resemble those of polynomial functions (see, e.g., Figure 9.5), we do not

pursue the use of spline regression models for cyclone trajectories.

Suppose we have a set of n two-dimensional latitude-longitude cyclone trajec-

tories measured over time. Each trajectory yi is an ni × 2 matrix containing the

sequence of ni latitude-longitude measurements (note that ni may be different for

each trajectory yi). The associated ni × 1 vector of times at which the yi measure-

ments were observed is denoted as xi.

As a simple illustration, consider a hypothetical trajectory with ni = 4 measure-

ments:

yi =




0.5 0.1

1 0.2

2.5 0.4

3.3 0.7




where the longitude measurements are in the first column and the latitude in the
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second column, and

xi =




1

2

3

4




gives the measurement times. Note that this represents a trajectory moving in a

horizontally-dominated direction.

The longitude profile is modelled with an order p polynomial regression model in

which time (xi) is the dependent variable; in a similar manner a regression model is

given for the latitude profile. Both regression equations can be defined succinctly in

terms of the matrix yi. The exact form of the regression equation for yi is

yi = Xiβ + εi, εi ∼ N (0, Σ), (9.1)

where Xi is the standard ni×(p+1) Vandermonde regression matrix associated with

vector xi (see Section 5.3.1), β is a (p + 1) × 2 matrix of regression coefficients (β

contains the longitude coefficients in the first column and the latitude coefficients in

the second column) and εi is an ni × 2 zero-mean matrix multivariate normal error

term with a 2 × 2 covariance matrix Σ (see Appendix C for the definition of the

matrix multivariate normal density).

The covariance matrix Σ contains three covariances: (1) the noise variance σ2
1 for

each longitude measurement, (2) the noise variance σ2
2 for each latitude measurement,

and (3) the covariance between any two longitude and latitude measurements. We

make the simplifying assumption that Σ = diag(σ2
1 , σ2

2) so that the latitude and

longitude dimensions are treated as conditionally independent given the model—

this could be extended to allow for covariate lat-lon dependence if desired.
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The choice of error model (Gaussian) leads to a conditional density model of the

form

p(yi|xi, θ) = f(yi|Xiβ, Σ) (9.2)

for the lat-lon trajectory data from the i-th cyclone. The density f is matrix

multivariate normal with matrix mean Xiβ and covariance matrix Σ (note that

θ = {β, Σ}).
Given this definition, cyclones can be clustered using any of our clustering-

alignment models defined in Chapter 8 by substituting (9.2) into the appropriate

mixture density setting. All that remains is to choose which model best describes

the particular cyclone dataset to be clustered.

9.7 Model selection

In this section, the model selection problem is addressed. This section makes up

the bulk of the experimental work with the alignment models for cyclone cluster-

ing. Experimental results are reported that were used to make decisions about the

optimal order of the cyclone regression models, the most suitable type of trajectory

preprocessing, the best predictive alignment model, and the number of clusters that

best describes the cyclone dataset.

In Section 9.7.1, brief experimental results are reported that choose quadratic

regression models as optimal for the cyclone dataset. In Section 9.7.2 we investigate

the many preprocessing techniques that are common in cyclone analysis. This section

demonstrates how each of these techniques affects the automatic alignment that is

achieved with our alignment models.

Section 9.7.3 investigates the suitability of each joint clustering-alignment model

for cyclone clustering with the GCM cyclone dataset. It is shown that the space-
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Figure 9.5: Second-order polynomial regression models (dotted) fit to three cyclone
trajectories (solid) in latitude-time space.

affine alignment model gives the best performance improvement while keeping model

complexity to a minimum. Finally, Section 9.7.4 details experimental results that

were used to identify nine clusters that best model the cyclone dataset. We refer the

reader to Table 8.1 which lists the abbreviations for the clustering-alignment models

that are used extensively throughout this section.

9.7.1 Choosing the order of regression model

An important point is that polynomial regression models are too simple to capture

the full spatio-temporal dynamics of ETCs. However, we believe that they provide

a useful first-order approximation of the ETC tracks.

In this chapter, the choice to use second-order polynomials for the cyclone re-

gression models (as opposed to other order polynomials) is made for two reasons:

(a) visual inspection leads to this sufficient choice and (b) the objective data-driven

method of cross-validation (Smyth, 2000; Smyth et al., 1999) also confirms second-

order as the optimal order in this case.

Figure 9.5 shows an example of three such second-order polynomial regression
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Table 9.2: Test log-likelihood scores using MCCV on the cyclone data for K-values
1 to 4 with PRM and fitted polynomials of linear to cubic. A quadratic fit achieves
the highest score for all values of K from 1 to 4.

K Linear Quadratic Cubic
1 -3.6024 -3.5902 -3.5929
2 -3.4380 -3.4169 -3.4198
3 -3.3279 -3.3016 -3.3051
4 -3.2355 -3.2120 -3.2170

models (dotted) fit to three cyclone trajectories (solid) in latitude-time space. The

regression models provide a good fit to the cyclone trajectories as can be seen in the

figure.

Table 9.2 lists the test log-likelihood scores obtained with PRM on the ETC

data using cross-validation. The experiments were carried out as follows. A random

sample of 50 cyclones was selected from the complete dataset. PRM was trained on

this dataset using polynomials of linear to cubic, and over the K values from 1 to 4.

These trained models were evaluated on a random hold-out set of 50 cyclones and

test log-likelihood scores were recorded. This procedure was repeated 25 times and

the scores were averaged across the runs.

The table shows that the highest score is achieved with second-order (quadratic)

polynomials across all values of K. Similar results can be seen for each of the other

clustering models. However, due to the complexity of the remaining model selection

problem, we do not continue to train all models and choices on each and every order

of regression model. Instead, we make the choice of using quadratic polynomials for

the remainder of this chapter.
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9.7.2 Preprocessing techniques

In this section, the optimal trajectory preprocessing technique is chosen. We begin

with a discussion of the types of techniques which are commonly used for cyclone

analysis. This is followed by the investigation of the effects of each of these techniques

on the clustering-alignment models. Finally, we present the model selection results

for choosing the best trajectory preprocessing methodology.

In order to enhance the shape aspect of the clustering, it is common to “zero”

all cyclone trajectories before any clustering is carried out. For example, Blender

et al. (1997) subtract the initial position from the trajectory of each cyclone before

cluster analysis. This process attempts to remove initial starting position—that is,

geographic location—as a factor in the clustering.

It is instructive to investigate how this affects the results from the alignment

models. For example, suppose PRM TM (PRM with translations in measurement

space) is run with zeroing and then without zeroing. Since the model is freely

allowed to translate the trajectories in measurement space, it is not clear if the

initial translation (i.e., the zeroing) will affect the model output.

If we think of the zeroing as an initial starting position for PRM TM, it is plau-

sible, it seems, that this zeroing might result in a bad initial position. Thus, leading

to a less desirable solution than what would have originally been output. However,

given that our primary goal is to organize cyclones based on shape, it seems prob-

able that the initial zeroing will give a better starting position than no zeroing at

all. In this way, the initial zeroing can be seen as modifying the prior models for the

translation parameters. For example, in the latitude dimension, if the translation di

has initial prior N (0, v2), then after the initial zeroing, di will now have the prior

N (yi0, v
2), where yi0 is the initial latitude position of the i-th cyclone.

This kind of preprocessing is another form of the curve normalization discussed
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in the introductory section of Chapter 5. Many other types of normalization can be

used. For example, instead of subtracting initial position, the mean of each curve

could be subtracted; after which, the standard deviation of each curve could then

be divided through.

We investigate the effects of five types of normalization on the clustering process.

Each of these methods is given an emphasized name to simplify further discussion:

• zero: subtract initial cyclone position

• mean: subtract the curve mean

• znorm: first zero and then divide by the standard deviation

• norm: first subtract the mean and then divide by the standard deviation

• nozero: leave the trajectory unprocessed

Cyclone shape clustering

Figure 9.6 shows the results of running standard PRM on a random subset of 400

non-zeroed cyclone trajectories with K (the number of clusters) set to 3. The trajec-

tories are plotted as tracks on a map of the North Atlantic at corresponding lat-lon

positions. The circles indicate initial starting positions for the cyclone tracks. Each

of the three maps represents one of the three found clusters.

It is clear that these clusters are dependent on geographic location. There are

clusters for each of the western, central, and eastern North Atlantic regions. Al-

though it may be useful to pursue such a clustering, clusters which are independent

of geographic location are often sought. Clusters which result from a zeroing of the

cyclone trajectories do not exhibit this geographic dependence.

Figure 9.7 shows the results of running standard PRM on this same random

subset in which each trajectory has been zeroed. The geographic dependence is
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Figure 9.6: Clustering results from running PRM on the cyclone data with no pre-
processing. Note the dependence of the clusters on geographic location.
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Figure 9.7: Clustering results from running PRM on the zeroed cyclone data. Note
the dependence of the clusters on geographic location has largely been removed.
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now removed and we are left with clusters based on shape (or based on speed and

direction). These clusters loosely represent the three dominant North Atlantic cy-

clone track-types that have been previously reported (Blender et al., 1997; Gaffney

& Smyth, 1999). These three clusters can be described as consisting of (a) cyclones

moving primarily northward, often ending with a turn to the west, (b) cyclones

moving northeast across the Atlantic, and (c) cyclones that move predominantly

due east, often into Western Europe.

Automatic shape clustering with PRM TM

Suppose the clustering is carried out using the space-translation model PRM TM.

This model automatically learns translations in measurement space as it jointly

clusters the data. What kind of clusters will this model produce if it clusters non-

zeroed data? Will the clusters be dependent on geographic location?

Figure 9.8 shows the results of running PRM TM on non-zeroed cyclone data.

The resulting clusters are similar to those from PRM on zeroed data. However, there

are discernable differences. For example, the vertical (red) cluster from PRM TM

consists mainly of unpredictable, northward meandering cyclones, whereas the corre-

sponding vertical (red) cluster from PRM seems to contain other cyclones that tend

to move in a manner similar to cyclones in the other two clusters. In any case, the

results indicate that PRM TM is inherently invariant to initial geographic starting

position and thus produces clusters based on shape.

The agreement between the two clustering methods can be calculated based on

the number of cyclones grouped in common clusters between the two methods. The

agreement between the two clusterings in this case is only 63%. In other words,

approximately 147 of the 400 cyclones are assigned to different groups between the

two methods.
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Figure 9.8: Clustering results from running PRM TM on the non-zeroed cyclone
data. Notice that PRM TM is naturally invariant to initial geographic starting
position.
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Figure 9.9: Histograms of the initial starting positions subtracted when zeroing the
trajectory data. (left) Longitude positions, and (right) latitude positions.

Effect of prior zeroing on PRM TM

We demonstrate that even though the clusters resulting from PRM TM are invariant

to initial geographic position, the clusters are not invariant to the individual zeroing

of each trajectory prior to the clustering. Note that this zeroing is not the same as a

global shift applied to all of the trajectories which does not change anything except

the overall measurement level.

The difference between running standard PRM on zeroed data (thus, using an

initial static zeroing), and running PRM TM on non-zeroed data (thereby, allowing

for an “automatic” zeroing) can best be seen by looking at the histograms of the

translations in each case. Figure 9.9 contains two histograms that show the distri-

butions of the initial starting positions that are statically subtracted off during the

zeroing process. These histograms give the implicit translations when using PRM on

zeroed data. The left histogram in the figure shows the distribution in the longitude

dimension and the right histogram depicts the distribution in the latitude dimension.

Note these distributions are not Gaussian in nature.

The corresponding histograms for PRM TM on non-zeroed data are given in
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Figure 9.10: Histograms of learned translations with PRM TM on non-zeroed data.
(left) Longitude translations, and (right) latitude translations.
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Figure 9.11: Histograms of learned translations plus the prior zeroed offsets for the
output of PRM TM on zeroed data. (left) Longitude translations and offsets, and
(right) latitude translations and offsets.

Figure 9.10. These figures show the distribution of the learned translations during

the clustering. The distributions appear Gaussian as the prior model on transla-

tions requires. The distributions are not only shaped differently than those for the

zeroed data, but are also located along the axis at different positions (they are lo-

cated around zero since the translation prior has zero mean). In other words, the

alignments in each case are not similar.

210



Table 9.3: Example test log-likelihood scores for PRM and PRM TM used on both
zeroed and non-zeroed cyclone trajectories. The scores were evaluated on a hold-out
set of 214 cyclones not included in a random training set of 400 cyclones. The bolded
score is the best attained.

PRM PRM TM
nozero -3.5698 -2.9365
zero -3.3501 -2.8736

A natural question is what happens if we combine the two methodologies. That

is, what results from running PRM TM on zeroed data. Intuitively, what results is

a Gaussian distribution is overlayed over the location of the initial-starting-position

histograms of Figure 9.9. This is shown in Figure 9.11, which gives the distributions

of the learned translations when PRM TM is run on zeroed data. The x-axis in each

histogram gives the learned translations plus the initial starting positions that were

initially subtracted off so that the complete translation is depicted.

The shape of these distributions is similar to those from PRM TM in the non-

zeroing case, but the locations of the axes are similar to those from PRM in the

zeroing case. The translations here are optimizations or refinements of the ini-

tial “shape-zeroing” translations. Mathematically, the translation priors have been

shifted from N (0, v2) to N (yi0, v
2), where yi0 is the initial position of the i-th cyclone.

As a precursor to the complete results reported below, we show that the best

zeroing methodology can be objectively chosen by evaluating each of the above

methods on a hold-out dataset. For example, Table 9.3 gives the test log-likelihood

scores for both of PRM and PRM TM on zeroed and non-zeroed data. The scores

were evaluated on a hold-out set of 214 cyclones not included in the set of 400

cyclones used to produce the maps in Figure 9.8. The best score is achieved when

zeroed data is applied to PRM TM.
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Choosing the best methodology

As described at the beginning of this section, five forms of preprocessing were con-

sidered for each trajectory in the cyclone dataset. We applied each of these prepro-

cessing techniques to the cyclone data and evaluated out-of-sample scores for all of

the clustering models. The results in this section indicate that there is no overall

best preprocessing technique shared among all of the clustering-alignment models.

Different models perform better with different types of preprocessing. However, we

show that only three of the preprocessing techniques (mean, norm, and znorm) need

further consideration during the subsequent model selection in Section 9.7.3.

The experiments were carried out as follows. A random sample of 150 cyclones

was chosen from the set of 614 (resulting in approximately 4,500 total training

points). Each pair of preprocessing technique and clustering model was then exe-

cuted on this sample. The resulting models were evaluated on a random hold-out set

of 100 cyclones and the test log-likelihood and prediction SSE scores were recorded.

This process was then repeated 10 times with the test scores averaged across the 10

different runs.

Figure 9.12 shows both of the test log-likelihood and prediction SSE scores ob-

tained with the non-alignment method PRM. The figure compares the performance

for each of the zero, mean, and nozero preprocessing methods. The results indicate

that subtracting the mean leads to better performance than zeroing or performing

no preprocessing at all.

The results are somewhat different when transformations are allowed in measure-

ment space. Figure 9.13 shows the test log-likelihood scores for PRM TM (on the

left) and PRM AM (on the right) under the same preprocessing methods of zero,

mean, and nozero. PRM TM allows for translations in measurement space, and so

there is only a slight difference between the zero and mean methods (the nozero
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Figure 9.12: Cross-validation with PRM on mean, zero, and nozero cyclone data:
(left) test log-likelihood, and (right) prediction SSE scores. Error bars denote one
standard deviation on each side of the mean.
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Figure 9.13: Cross-validation with (left) PRM TM and (right) PRM AM on mean,
zero, and nozero data. Test log-likelihood scores are shown in each case.

curve is far behind). This distinction is blurred even more with PRM AM which

allows for scaling as well as translation in measurement space. The results indicate

that there is less importance on the choice of zeroing or subtracting the mean for

these models (the nozero technique still performs poor).

The results for the time-alignment models are similar to those of PRM since, for

the most part, the time-alignment models cannot recover alignments in measurement
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Figure 9.14: Cross-validation with PRM TT (left) and PRM AT (right) on mean,
zero, and nozero data. Test log-likelihood scores are shown in each case.

space (technically, however, some transformations in measurement space can be ac-

counted for by transformations in time). Figure 9.14 shows the results for PRM TT

(on the left) and PRM AT (on the right) for the same preprocessing methods of

mean, zero, and nozero. The results show a large performance gap between each of

the methods; the best method again consists of subtracting the mean.

Models that allow for alignment in both measurement space and in time can also

be employed for cyclone clustering. For example, the test results for PRM TM TT

which jointly allows for translations in measurement space and in time are shown

in Figure 9.15. The same three preprocessing techniques are again compared. The

test log-likelihood and prediction SSE scores are both shown in the figure. The joint

space- and time-alignment model does not seem largely affected by the choice of

preprocessing. In fact, even nozero seems to match the performance of the other

two. The ability to translate in measurement space and in time trumps the choice

of arbitrary initial alignment.

Evaluation of the results leads to the conclusion that mean-subtraction performs

best on average. The results for the norm and znorm preprocessing methods require
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Figure 9.15: Cross-validation with PRM TM TT on mean, zero, and nozero data:
(left) test log-likelihood, and (right) prediction SSE scores.
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Figure 9.16: Cross-validation with PRM AM on norm, mean, and nozero data: (left)
test log-likelihood, and (right) prediction SSE scores. Notice the prior scaling per-
formed in the norm case results in test scores that cannot be compared to the other
methodologies.

special handling. The test scores for norm and znorm aren’t directly comparable to

the other methods. The prior scaling of the cyclone trajectories leads to learned

density models that cannot be fairly compared to the learned density models result-

ing from training on an unscaled dataset. The complexity of the learned mixture

density hampers any attempt at “unscaling” the resulting test scores.
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Figure 9.16 shows the results of this effect from training PRM AM on norm, mean,

and nozero preprocessed cyclone data. Both the test log-likelihood and predicted

SSE scores are given in the figure. Notice the large scale difference that arises

between the score curves for norm and those of the other methods. An objective

comparison between norm and mean cannot be made with these results.

In the next section, the three preprocessing techniques mean, norm, and znorm

are evaluated on each of the alignment models in order to choose a best alignment

model and preprocessing technique.

9.7.3 Choosing an alignment model

In this section, we report on the results that were used in choosing the specific

clustering-alignment model. The experiments reported in this section were carried

out in the same manner as those in the previous section. In particular, a random

sample of 150 cyclones was chosen from the set of 614 (resulting in approximately

4,500 total training points). Each pair of preprocessing technique and clustering

model was then executed on this sample. The resulting models were evaluated on a

random hold-out set of 100 cyclones and the test log-likelihood and prediction SSE

scores were recorded. This process was then repeated 10 times with the test scores

averaged across the 10 different runs.

The model selection is commenced by first eliminating the mean technique in

competition with the norm technique. The norm methodology is then compared to

the best model arising from znorm data, with PRM AM and znorm ultimately chosen

as the best joint methodology.

Figure 9.17 shows a comparison between all four individual space- and time-

alignment models for mean and norm preprocessing. PRM AM performs best for

the mean cyclones while the time-alignment model PRM AT performs best for the
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Figure 9.17: Cross-validation for each of the four individual space- and time-
alignment models on (left) mean and (right) norm data.

norm cyclones. The time-alignment model is out-performed by PRM AM with mean

preprocessing since PRM AT is not capable of handling the large scaling effects in

measurement space. These scaling effects are important with this dataset.

However, once a rough estimate of the trajectory scaling is removed through

the normalizing process, it appears that PRM AT is able to take advantage of its

ability to align in time to gain some performance. Even so, PRM AM exhibits

good performance in both of the mean and norm situations, which suggests that

for this dataset the ability to find automatic time alignments is not as important

as accounting for the transformations in measurement space. Though, with the

measurement transformations roughly accounted for by the normalizing process,

PRM AT results in the best performance between the two competing methodologies.

The joint space- and time-alignment models can also be used for cyclone cluster-

ing. For example, Figure 9.18 reports the test log-likelihood scores on mean and norm

cyclone data for a number of competing clustering models. Although PRM TM TT

edges out the space-alignment model PRM AM on norm data, it does not show

enough potential improvement over PRM AT to warrant the extra complexity in-
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Figure 9.18: Comparison of PRM TM TT with the best individual alignment models
on (left) mean and (right) norm data.

curred with this model. Results for the most complex joint space- and time-alignment

model (PRM AM AT) do show improvement over PRM AT; however, the improve-

ment is not significant enough to justify the selection of the most complex model of

the entire set.

The only remaining task is to compare PRM AT to the best model resulting from

the znorm process. Figure 9.19 highlights the results for the two best competing

models. The left plot gives the test log-likelihood scores for PRM AT on norm data

and PRM AM on znorm data. The log-likelihood results indicate that PRM AT

holds a slight advantage over PRM AM as K increases.

The right plot depicts a different picture for the prediction SSE scores. PRM AM

shows a large performance advantage over PRM AT that narrows as K increases.

The log-likelihood measures the overall density modelling efficiency of the two meth-

ods, while the prediction SSE score measures how well the cyclone trajectories are

represented by the cluster-specific curve models. Higher prediction accuracies lead

to better modelling of each individual curve.

There is no “correct” choice in this case; however, there are several reasons why
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Figure 9.19: Cross-validation for the best competing models on norm and znorm

data. (left) Test log-likelihood, and (right) prediction SSE scores.

PRM AM can be seen as the better choice. First, the models both perform well on

the cyclone dataset; however, PRM AM is a simpler model, and thus it should be

preferred on average. Second, earlier we noted that the most important alignment

factor in this dataset is the scaling in measurement space. Time transformations do

not seem to be particularly important from a modelling aspect with these cyclone

trajectories. Thus, there isn’t a good reason to move up to PRM AT from PRM AM.

Finally, the prediction problem is more innately associated with cyclone analysis.

Thus, PRM AM should be preferred. PRM AM with znorm preprocessing is what

is used for all further analysis in this chapter.

9.7.4 Choosing K

An important question in cyclone clustering—and for clustering in general—is the

selection of the number of cyclone clusters. Previous studies (e.g., Blender et al.,

1997) have found it useful to set the number of clusters to three based on various

meteorological considerations. In this section, we address the issue of choosing the

optimal number of clusters in an objective fashion. Only the chosen alignment model
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Figure 9.20: Cross-validation for PRM AM on znorm cyclone data for various values
of K. The test log-likelihood scores are shown in the left plot. The right plot is
explained in the text. The maximum value attained over the experiment was at
K = 9.

PRM AM from above is considered in this section.

The reported experiments in this section were carried out in the same manner as

in the previous sections. The only difference is that the results are based on twice

as many runs (i.e., twenty different training and test sets were sampled, with the

scores averaged over the twenty runs).

The left plot of Figure 9.20 shows the values of the recorded test log-likelihood

scores for various values of K, from 1 up to 15. The value of K = 9 corresponds to

the maximum log-likelihood point attained along the entire curve.

The right plot attempts to show how much better on average the value of K is over

K −1. The difference in the mean score from the value at K and at K −1 is plotted

(at K) along with the standard deviation in this difference over the experimental

runs. A positive value indicates that the mean value at K is larger (or better in this

case) than the value at K − 1. If the extent of the error bars do not cross below

zero, then the value of K is “always” better than the value of K − 1. Note that

even the “true” value of K (that is, when the true model is included in your model
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space) may test below the value of K − 1 for any particular training and testing set.

Nonetheless, the plot gives a valuable view into the results.

The plot does not show any decrease in performance noticed over any of the

runs until K = 5, though the average value at K = 5 still shows an increase in

performance. The plot shows that the largest sustained drop-off in performance

occurs after K = 9.

The competing value of K = 7 offers an alternative choice since there does not

seem to be dramatic improvement for ensuing values of K. However, the results

show that K = 9 is better on average, with the performance immediately tailing off

after K = 9. Thus, the value of K = 9 is chosen as the “best” number of clusters

for this dataset.

9.8 Clustering analysis

In this section, we analyze the cyclone clusters resulting from the application of

PRM AM to the znorm cyclone data with K set to nine. Both graphical and quan-

titative analysis of the clustering is given. Analysis of the daily temporal behavior

of the cyclone clusters is also given towards the end of this section.

Figures 9.21 to 9.24 geographically depict the cyclones from each of the nine

clusters. The clusters are organized into three main groups (vertical, diagonal, and

horizontal) based on the mean orientation of the tracks within each cluster. A single

highly variable background cluster is placed into its own group.

Names are given (in typewriter font) to each of the clusters that generally

describe the shape of the tracks found in each cluster (two-letter abbreviations used

in later figures are given in parentheses). For example, in Figure 9.21, the three

north- or vertically-oriented clusters are shown. The VertCurveWest cluster consists
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(c) VertBend (VB)

Figure 9.21: Northward moving cyclone clusters.
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of tracks that begin moving northeast and curve towards the northwest. The tracks in

VertCurveNorth begin moving northeast and curve to a final due north orientation.

The remaining north-oriented cluster VertBend consists of tracks that primarily

being moving east and then finish with a bend to the north.

Similarly, in Figure 9.22, the three northeast- or diagonally-oriented clusters are

shown. DiagStraight consists of tracks that begin and end moving in a northeast

direction. Cluster DiagBend consists of tracks that begin moving northeast and then

abruptly bend to the east primarily before they reach the 60th parallel. DiagTurn

consists of tracks which begin moving northeast and undergo some sort of turning

action before they tail off into an east-northeast direction; many of these tracks have

an S-curve shape to them.

The two east- or horizontally-oriented clusters are shown in Figure 9.23. The

HorzWave cluster consists of tracks that resemble the shape of an ocean wave. The

HorzTail cluster consists of tracks that primarily begin moving northeast and then

tail-off in a due east direction. Finally, Figure 9.24 shows the remaining cluster Back

which consists of highly variable tracks that tend to meander in several directions

over time.

9.8.1 Cluster descriptions

In this section, several figures and tables reporting cluster-specific statistics are ini-

tially introduced. This is followed by a number of subsections which provide indi-

vidual analysis of each cluster.

A number of empirically-derived summary statistics for each of the nine clusters

are given in Table 9.4. The values under the columns give cluster-wide means and

deviations of the summary statistics. For example, µ for column VertCurveWest in

Table 9.4 reports the mean of all the minimum intensities attained by the cyclones in
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(c) DiagTurn (DT)

Figure 9.22: Northeastward moving cyclone clusters.
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(b) HorzTail (HT)

Figure 9.23: Eastward moving cyclone clusters.
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(a) Back (BK)

Figure 9.24: Background or noise cluster.

cluster VertCurveWest. The standard deviation for this value is shown under σ for

the same column. Bolded entries denote the largest value among all of the clusters

and underlined entries denote the smallest (for intensity, bolded denotes the most

intense or most negative value). Three of the cyclone-specific statistics require more

detailed explanation.

• The average acceleration of a cyclone is calculated using the absolute rate of
change of velocity for each trajectory since interest lies both in the increase
and the decrease of acceleration.

• The curvature of a cyclone is calculated by taking the average of the instanta-
neous curvature values along the trajectory. Instantaneous curvature is defined
in the standard way as |dϕ/ds| where ϕ is the angle of inclination at a time
point and the derivative is taken with respect to the displacement s. Note that
a straight line has a curvature of 0 and a circle has constant curvature.

• The instability of a cyclone estimates the degree of “erratic” departure from
a smooth path (whether straight or otherwise). Instability in effect is the
standard deviation of instantaneous curvature along a cyclone’s trajectory.

Figure 9.25 shows the distributions for cyclone duration found in each cluster.

The graph shows the number of cyclones in each cluster as a function of cyclone
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Table 9.4: Cluster-wide averaged measures of various cyclone-specific statistics for
the nine clusters. Both means (µ) and standard deviations (σ) are given for each
cluster column. Bolded entries give the largest value among all nine clusters and un-
derlined entries give the smallest. The units are given as follows: minimum intensity
(mb), velocity (km/h), absolute acceleration (km/h2), duration (days), curvature
(radians/km×10−3), and instability (radians/km×10−3)

Cyclone statistics VertCurveWest VertCurveNorth VertBend

µ σ µ σ µ σ
Intensity -41.71 8.82 -39.79 8.88 -37.69 8.41
Velocity 46.32 12.82 47.61 13.43 46.50 11.54
Acceleration 16.01 6.09 15.97 5.74 16.35 5.37
Duration 3.64 0.98 3.49 0.74 4.22 1.14
Curvature 1.78 1.81 1.82 1.83 3.63 5.01
Instability 2.66 3.68 2.89 3.93 6.90 12.31

Cyclone statistics DiagStraight DiagBend DiagTurn

µ σ µ σ µ σ
Intensity -37.07 8.77 -39.30 8.21 -41.70 8.12
Velocity 58.46 16.21 54.24 16.34 50.61 14.18
Acceleration 16.20 6.72 16.44 5.29 15.34 4.26
Duration 4.13 1.32 3.55 0.81 4.43 1.22
Curvature 1.10 1.36 2.31 2.70 1.37 1.43
Instability 1.81 2.32 4.30 5.65 2.24 3.34

Cyclone statistics HorzWave HorzTail Back

µ σ µ σ µ σ
Intensity -33.92 7.75 -35.19 6.90 -36.23 9.05
Velocity 54.21 16.02 42.13 13.73 33.27 11.14
Acceleration 17.96 6.90 19.59 7.57 17.44 7.95
Duration 3.71 1.18 3.70 1.19 3.74 1.23
Curvature 3.01 2.41 5.59 7.00 7.17 9.54
Instability 5.65 5.24 9.42 14.49 11.66 19.45
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Figure 9.25: Number of cyclones in each cluster as a function of cyclone lifetime.
The graph shows the lifetime decay rate for each cluster.

duration. The curves graphically show the the lifetime decay rates for each cluster

(or more specifically, the average lifetime decay rate for the cyclones of each cluster).

At t = 2.5 days, the plotted values reflect the total number of cyclones in each

cluster with a lifetime of at least 2.5 days (the minimum required length for any

tracked cyclone). At t = 4 days, the figure shows that less than 50% of the original

number of cyclones are still active.

There appear to be two main decay rates shared by the clusters. The majority

of the clusters exhibit a large decay rate such as that shown by DiagBend. Two

of the clusters, DiagTurn, and DiagStraight, (and also to some degree VertBend)

show a much lower decay rate. These clusters also demonstrate larger then average

velocities and (lower than average) minimum intensities which could provide a cause

for their low decay rates.
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Below, the nine clusters are discussed in detail using the cluster maps, the table

of data, and the figure as references.

VertCurveWest

The cyclones in this cluster initially begin moving in a northeast direction and then

curve to the northwest. The cluster is highly shape-consistent. It contains the most

intense cyclones (-41.71 mb) of all nine clusters. The genesis region is primarily

south of 47◦ latitude with a mean genesis point of 43◦N by 24◦W. This cluster is one

of the largest (fourth, with 72 cyclones) and consists of below average-length cyclone

tracks.

VertCurveNorth

The cyclones in this cluster begin moving ease-northeast and tail-off to due north.

Closer inspection reveals that they begin moving in a more easterly direction than

those of the previous cluster. This cluster contains the overall shortest duration

cyclones on average, while exhibiting the third most intense group of cyclones. This

cluster has the largest cluster-average cyclone speed among the three vertically-

oriented clusters. The genesis region is a bit more westward than that of

VertCurveWest, with a mean genesis point of 43◦N by 37◦W. This cluster is the

second-largest overall with a total of 76 cyclones. It also exhibits the second-largest

cyclone lifetime decay rate.

VertBend

This cluster consists of cyclones that primarily begin moving along an eastward

direction with an abrupt bend to the north. Unlike VertCurveWest, this cluster is

about average on the shape-consistency scale. These cyclones are the least intense
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of those from the three vertically-oriented clusters. While it is the smallest of all

nine clusters with 44 cyclones, it has the longest duration cyclones, thus giving a

low lifetime decay rate. The mean genesis point is 44◦N by 33◦W, similar to that

of VertCurveNorth.

DiagStraight

The cyclones in this cluster move due northeast for their complete lifetime duration.

This cluster has the lowest curvature and is the most stable among all nine clusters.

The cyclones of this cluster have the largest overall velocity (58.46 km/h), yet they

exhibit below average intensity. This cluster is the third largest overall with 75

cyclones. It’s lifetime decay rate is significantly lower than the other clusters (except

for DiagTurn), resulting in a large number of longer-duration cyclones. The primary

genesis region is south of 45◦N latitude and west of 30◦W longitude with a mean

genesis point of 42◦N by 38◦W.

DiagBend

This cluster consists of cyclones that begin in a similar fashion as those of

DiagStraight but then abruptly bend east, primarily south of 60◦N latitude. These

cyclone are a bit more intense than those of DiagStraight but are somewhat slower

on average also. This cluster is the largest overall with 88 cyclones. Its lifetime

decay rate is the largest among all nine clusters resulting in the cluster having the

second shortest-duration set of cyclones. The genesis region is tightly focused in the

southwest region of the North Atlantic with a mean genesis point of 44◦N by 36◦W.
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DiagTurn

The cyclones in this cluster begin and end moving east-northeast; however, they

exhibit some sort of turning action in the middle lifetime. In fact, many of these

tracks have an S-curve shape to them. In relation to the three other diagonal clusters,

this cluster contains the slowest moving cyclones. Yet, these cyclones are the second-

most intense compared to those in all nine clusters. It also consists of the longest

duration cyclones overall, and it has the overall lowest average lifetime decay rate.

This cluster is the third smallest with 63 cyclones. The genesis region is not well

compacted; the mean genesis point is 42◦N by 32◦W.

HorzWave

This cluster consists of cyclone tracks that trace a horizontal S-curve. These cyclones

are the least intense, yet they move at considerable speed (third overall). This is only

the second largest cluster with 62 cyclones. The curvature and instability measures

are very low, second only to the diagonal cluster DiagStraight. This cluster initially

shows one of the largest lifetime decay rates, but this steadily decreases over time

due to the existence of extremely long duration cyclones that propagate across the

North Atlantic. The genesis region is almost completely north of the 45th parallel

with a mean genesis point of 54◦N by 39◦W.

HorzTail

The cyclones of this cluster mainly begin moving northeast and then tail-off in a

due east direction. The cluster is not very shape-consistent. The cyclones of this

cluster have high curvature and exhibit large instability. They show the largest

absolute acceleration, speeding-up and slowing-down often. Compared to HorzWave,

the cyclones of this cluster are much slower on average (54 km/h to 42 km/h). The
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cluster is of average size, having 69 cyclones. The genesis region is the most eastward

of all nine clusters with a mean genesis point of 51◦N by 23◦W.

Back

The cyclones in this cluster give highly variable, meandering tracks. The cluster

consists of cyclones that are nearly the least intense, the slowest, the most unstable,

and show the largest curvature. The genesis region is almost exactly centered in the

North Atlantic with a mean genesis point of 53◦N by 23◦W. This cluster soaks up

all of those cyclones that don’t fit anywhere else.

9.8.2 Temporal analysis of cyclone clusters

In this section we analyze the daily temporal behavior of ETC clusters. We classify

each day as being in one of ten cluster regimes corresponding to the nine clusters,

or in the tenth case, to none of the clusters. The following heuristic procedure is

used to perform the classification. If only a single cluster is active on a given day,

then we assign that day to the regime corresponding to that cluster. On the other

hand, if no cluster is active then the day is assigned to the quiescent regime. For

days with overlap, the regime corresponding to the cluster with the largest number

of active cyclones on that day is chosen. In the case of a tie between two or more

active clusters, the regime which was most recently selected corresponding to one of

the “tied” clusters is chosen (this can be thought of as a type of “momentum bias”).

When applied to the clustered ETC data, this assignment procedure yields the

daily regime sequences shown in Figure 9.26. The plot in this figure has fifteen rows

depicting the regime classification for each day in each of the fifteen winters (top-

to-bottom) from 1980–1994. The key at the right gives the gray-value-to-regime

mapping. A number of things can be seen from this picture—for example, there is
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Figure 9.26: Daily regime classification for winters (top-to-bottom) 1980–1994. Each
of the fifteen rows depicts the regime classification for each day in a winter. The
key at the right gives the gray-value-to-regime mapping where the two-letter abbre-
viations denote the names of the cluster regimes as defined in Figures 9.21–9.24.
Q represents the quiescent regime.
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Figure 9.27: Histogram of regime activity corresponding to the regime classification
in Figure 9.26.

considerably more regime activity resulting from the vertically oriented clusters in

winters 1984 and 1985 than there is in winters 1980 and 1988.

The distribution of regime activity corresponding to Figure 9.26 is plotted in

Figure 9.27. This plot gives the number of days that each regime is active over all
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Figure 9.28: Distribution of run-lengths for each regime corresponding to the regime
classifications in Figure 9.26.

winters. Of note is the relatively large size of the quiescent regime, accounting for

about 22% of all days.

Another interesting feature of Figure 9.26 is the distribution of regime run-

lengths. Figure 9.28 shows the decay rate (distribution of run-lengths) for each

regime. The run-lengths for the quiescent regime Q decay in an exponential fashion.

The cluster regimes have different persistence with run-length distributions that are

non-geometric in nature: runs of length 1, 2, and 3 days are roughly equally likely—

for run-lengths of 4 days or longer the distribution starts to decay in an exponential

fashion. The diagonal regimes appear to have slightly more persistence (a tendency

for longer runs) than the other regimes.

A couple of considerations arise if we consider the regime sequences as arising

from a stochastic process. First, the regime process appears to demonstrate some
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form of memory. And second, the process does not appear to demonstrate first-order

Markov dependence. If the process were first-order Markov we would expect to see

an approximate geometric distribution of run-lengths for each regime. The non-

geometric distribution of run-lengths can be at least partly attributed to individual

cyclone duration and sparsity of cyclone genesis. Since on average cyclones have

a duration of roughly 4 days and since on average new cyclones are only generated

approximately every 18 days, cyclone duration will play a large role in the run-length

distribution.

9.9 Summary

In this chapter, an application of our joint clustering-alignment methodology to

extra-tropical cyclone trajectories was presented. A methodology was developed

for the detection and tracking of cyclones from mean sea-level pressure (MSLP)

data generated by a general circulation model (GCM). The detection and tracking

procedures applied to the output from the NCAR-CCM3 general circulation model

resulted in a dataset of 614 cyclone trajectories.

A number of experiments were conducted to test the suitability of various tra-

jectory preprocessing methods for application with our clustering-alignment models.

Five different trajectory preprocessing techniques were investigated. Subtracting the

mean was shown to be generally applicable for many of the clustering models. How-

ever, the best model/preprocessing combination was found to be with PRM AM and

znorm preprocessing.

A further set of experiments showed that the optimal number of clusters for

use with PRM AM on the cyclone data was found to be nine. The resulting nine

clusters naturally grouped into four “super-clusters”: vertically-oriented, diagonally-
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oriented, horizontally-oriented, and one background cluster. These clusters were

separately analyzed using various quantitative statistical quantities.

Regime classifications were assigned to each of the days in the winters from

1980 to 1994. The classifications were based on the cluster with the most active

cyclones on each day. The daily regime classifications were plotted and summary

statistics describing the distributions of regimes and their run-lengths were reported.

The distribution of run-lengths suggest a process with some form of memory, not

associated with first-order Markov.
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Chapter 10

Clustering Observed Tropical

Cyclones

10.1 Introduction

In this chapter, we describe the application of our clustering models to an “observed”

tropical cyclone dataset. The application is shown to group cyclones based on iden-

tifiable characteristics such as speed, acceleration, duration, and track-type. The

clusters are also shown to likely correspond to known states of circulation in the at-

mosphere such as that associated with a reverse-oriented monsoon trough (Lander,

1996).

This chapter stands in contrast to the previous chapter in several respects. First,

the dataset analyzed in this chapter consists of actual observed data from the “real-

world”, not data generated from a mathematical GCM model. An interesting ques-

tion is whether the cyclone dataset of the previous chapter that was implicitly gener-

ated during the run of the CCM3 GCM, closely matches data from actual observed

cyclones. Second, the dataset in this chapter does not require the development of
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an identification or tracking methodology since it already consists of the cyclone

trajectories themselves. Finally, the cyclones analyzed in this chapter are tropical

cyclones (as opposed to extra-tropical) that originate in the western North Pacific

Ocean, just east of China and the Philippines.

This chapter is organized as follows. In Section 10.2, the problem definition and

motivation is given along with a discussion of prior work on tropical cyclone analysis.

Section 10.2 describes the JTWC (Joint Typhoon Warning Center) Western North

Pacific Best Track dataset that was used for the results described in this chapter.

In Section 10.4, the model selection problem with the tropical cyclone dataset

is addressed. As in the previous chapter, this section makes up the bulk of the ex-

perimental work with the alignment models. Experimental results are reported that

were used to make decisions about the optimal order of the cyclone regression mod-

els, the most suitable type of trajectory preprocessing, the best predictive alignment

model, and the number of clusters that best describes the tropical cyclone dataset.

In Section 10.5, detailed analysis of the results from the application of the selected

model to the JTWC cyclone dataset is given. Graphical, statistical, and temporal

analysis of the resulting clustering is reported. Finally, the chapter is concluded with

a summary in Section 10.6.

10.2 Problem definition and prior work

Tropical cyclones over the western North Pacific are the cause of much damage in

Southeast Asia. A better understanding of their structure and behavior may lead

to improved track prediction and/or warning indicators, yielding positive impacts

upon society.

Scientists are interested in tropical cyclones as they relate to the large-scale
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circulation of the atmosphere and their effects on regional climate. Changes in

activity, genesis location, and track-type are influenced by the large-scale circulation

present during cyclone lifetime (Hodanish & Gray, 1993).

Harr and Elsberry (1995a) attempted to characterize the variability in the large-

scale circulation by modelling the continuous circulation by a small set of recurrent

patterns or clusters. These clusters were used to establish relationships between the

large-scale circulation and cyclone characteristics. Four cyclone track-types were

identified and contingency tables relating cyclone characteristics (such as track type)

to cluster number were built and analyzed. In particular, the results indicate a

significant relationship between circulation pattern and both track-type and genesis

location.

In a companion paper, Harr and Elsberry (1995b) fit a Markov model to the

transitions of the large-scale circulation among the identified cluster patterns. They

demonstrated that the links between clusters and cyclone characteristics remain in-

tact during transitions between the cluster patterns. This work prompts our analysis

of the temporal behavior of the reported cyclone clusters in this chapter.

Taking the opposite tack, Harr and Elsberry (1991) build composites of wind

data according to the types of cyclones active at any point in time and show that

this leads to informative clusters of large-scale circulation as described by the wind

composites. They show that relatively accurate predictions of track-type can be

made by considering the genesis location and the associated composite clusters.

Hodanish and Gray (1993) provide a detailed study of cyclone track recurvature.

The Joint Typhoon Warning Center (JTWC) classifies tropical cyclone tracks as

either recurving or nonrecurving. The point of recurvature is that point at which

a tropical cyclone changes from a north-northwest heading to a north-northeast

heading. Hodanish and Gray identified four types of cyclones: sharply recurving,
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gradually recurving, left-turning, and nonrecurving. Using observed wind data from

North Pacific rawindsondes, the circumstances that favor each of the four track types

for tropical cyclones are investigated. The quantitative analysis reveals direct links

between synoptic-scale circulation and cyclone track type.

This and other prior work demonstrates a connection between identified cyclone

characteristics (whether clustered or not) and the large-scale circulation (e.g., as

measured by various wind fields). What has not been done is an objective analysis

of the type and number of cyclone clusters that exist in the tropical North Pacific. If

cyclone clusters are required for particular analyses, then most authors usually group

the cyclones based on whether or not they follow a straight or curved path over a

particular area of interest. This grouping may be fine for many types of analyses;

however, an objective out-of-sample analysis of the type and number of clusters in

the tropical North Pacific is pursued in this chapter.

10.3 Best Track dataset

The dataset used in this chapter is a subset of the Best Track data compiled by

the JTWC. The JTWC Western North Pacific Best Track dataset consists of six-

hourly observations for tropical cyclones which occur in the western North Pacific.

The subset reported on in this chapter covers the years from 1950 to 2001 during

the months from June to November. Only tropical cyclones that reach tropical

storm intensity or higher (a minimum wind speed of 33 knots) are included. The

dataset contains 1,198 tropical cyclones of varying duration giving a total of 72,356

observations.

A further filtering processed was employed to reduce the dataset size and remove

the outlier cyclones. All those cyclones that had a duration of less than 2.5 days or
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Figure 10.1: Summary histograms describing the JTWC cyclone dataset.

more than 12.5 days were discarded. This process resulted in a set of 984 cyclones

giving a total of 55,934 observations.

Summary histograms of this dataset are shown in Figure 10.1. The average North

Pacific cyclone in this dataset has a duration of approximately 7 days. This is twice

as long as those of the North Atlantic ETCs in the previous chapter which have an

average duration of only 3.5 days. The average velocity for the tropical cyclones is

about 22 km/h, whereas the ETCs show an average velocity of 48 km/h.

In Figure 10.2, a map of the genesis points for all cyclones is shown; genesis

points are plotted by small circles. Tropical western North Pacific cyclones share a

fairly compact genesis region south of 30◦N and west of 180◦E.

A map showing all observed cyclone tracks from 1990 to 2001 is given in Fig-

ure 10.3. The two major types of cyclone tracks can be seen in the map: (a) pre-

dominantly straight path tracks that approach and make landfall in the Philippines,

Vietnam, and Southern China, and (b) “recurving” tracks that either make landfall

over the Korean Peninsula or Japan, or head back eastward to open ocean.
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Figure 10.2: Map showing the genesis points (plotted by circles) of every cyclone in
our selected subset of the Best Track dataset.
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Figure 10.3: Map of all cyclone tracks from 1990 to 2001.
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10.4 Model selection

In this section, our clustering algorithms are applied to the JTWC cyclone dataset

with the goal of choosing an optimal methodology that is used in all further anal-

ysis. The model selection process can be broken down into four steps. The four

steps involve choosing the order and type of cyclone regression model, the employed

preprocessing method (if any at all), the type of alignment model, and the num-

ber of clusters that best describes the underlying cyclone dataset. These issues are

discussed in the following four subsections.

10.4.1 Choosing the order of regression model

The cyclone regression models of Section 9.6 are again used to model the tropical

cyclones of this chapter. All that remains is to choose the order of the regression

model that best describes the North Pacific tropical cyclones. The order of the

regression model is chosen based on the results of cross-validation experiments. The

experiments reported here were run only with PRM. The results for the other models

are similar.

The experiments were carried out as follows. A random sample of 50 cyclones was

selected from the JTWC dataset. PRM was trained on this dataset using polynomials

of linear to cubic, and over the K values from 1 to 4. These trained models were

evaluated on a random hold-out set of 50 cyclones and test log-likelihood scores were

recorded. This procedure was repeated 10 times and the scores were averaged across

the runs. The results from these experiments are shown in Table 10.1. The highest

score is achieved with quadratic polynomials across all values of K.
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Table 10.1: Test log-likelihood scores from PRM on the cyclone data for K-values 1
to 4 and fitted polynomials of linear to cubic. A quadratic fit achieves the highest
score for all values of K.

K Linear Quadratic Cubic
1 -3.3886 -3.3885 -3.3897
2 -3.1604 -3.1545 -3.1565
3 -3.0847 -3.0788 -3.0814
4 -3.0201 -3.0049 -3.0259

10.4.2 Choosing the alignment model

The effect of various types of preprocessing on the output of the clustering-alignment

models was discussed in detail in Section 9.7.2. Clusters that share similar shape

characteristics are also sought in the tropical cyclone case. The five different types of

trajectory preprocessing defined in Section 9.7.2 are also considered for preprocessing

with the tropical cyclones.

In short, the results reported in this section show much similarity to those gener-

ated with the ETC data. This fact lends support to the validity of GCMs for climate

modelling and prediction. The discussion of the selection of preprocessing method

and alignment model is consolidated in this section, since the individual effects in

each case were discussed in the previous chapter (as noted above).

The results given below were generated in the exact same manner as those in

Section 9.7.2. Namely, a sample of 150 cyclones was chosen at random from the

complete set of cyclones. On average, this results in a training set of roughly 9,000

individual observations. Each pair of preprocessing technique and clustering model

was evaluated on the training sample. The trained models were then scored on

a separate hold-out set of 100 cyclones and the test log-likelihood and prediction

SSE scores were recorded. This process was repeated 10 times with the test scores

averaged across the 10 runs.
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Figure 10.4: Test log-likelihood scores for the best performing mean (left) and
norm (right) alignment models.

Since direct comparison between the normalizing techniques (norm and znorm)

and the subtraction techniques (nozero, zero, and mean) is not possible due to the

scaling effects discussed in Section 9.7.2, the results cannot be presented in a single

graph representing all of the models. Instead, the relevant results are shown over

two figures. The first figure is used to choose the norm-based models over those of

mean, and the second figure is used to choose between the top competing models of

norm and znorm.

The best performing models for both the mean (left) and norm (right) methods

are shown in Figure 10.4. None of the nozero- or zero-based models are shown

since they do not compete with the mean-based models.

PRM AM performs best for the mean cyclones but it is out-performed on the

norm cyclones by the time-alignment model PRM AT. This resembles the situation

reported in Figure 9.17 of Section 9.7.3 for the ETC dataset.

The time-alignment model PRM AT is out-performed by PRM AM under mean

preprocessing since PRM AT is not capable of detecting the large scaling effects

present in measurement space. But just as with the ETC dataset, once a rough

estimate of the trajectory scaling is removed through the normalizing process, it
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Figure 10.5: Test log-likelihood (left) and prediction SSE (right) scores for the best
performing norm and znorm clustering models.

appears that PRM AT is able to take advantage of its ability to align in time to gain

a performance edge.

Comparisons with the joint space- and time-alignment models were not system-

atically carried out for this dataset in the interest of computational and analysis

time. This decision was also based on preliminary results with these joint align-

ment models (on the cyclone dataset) that did not demonstrate enough of a gain in

performance to justify their systematic use.

All that remains is to compare the norm-based PRM AT with the best competing

znorm-based model. Figure 10.5 compares PRM AM znorm with the two best norm

models (PRM AT and PRM AM). Interestingly, these results show the same exact

scenario as that for the ETC data. That is, on the density modelling task, the time-

alignment model performs best, but for the curve modelling and prediction task,

PRM AM out-performs the time alignment model. These two models are the only

two that show this sort of inverse relationship over the two test scores.

Since the curve prediction task is more important in the cyclone domain, and

because for equivalent performance, simpler models should be preferred on average,

the less complex space-alignment model PRM AM is chosen as the best predictive
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model on unseen data.

10.4.3 Choosing K

An objective analysis of the type and number of cyclone clusters that exist in the

tropical North Pacific has not been done in atmospheric science. Previous studies

(e.g., Harr & Elsberry, 1995a, 1995b; Lander, 1996) have found it useful to partition

cyclones into a few clusters mostly based on large-scale shape characteristics. In

this section, we address the issue of choosing the optimal number of clusters in

an objective fashion. Only the chosen alignment model PRM AM from above is

considered in this section.

The reported experiments in this section were carried out in the same manner

as in the previous sections. However, these results are based on twice as many runs

(i.e., twenty different training and test sets were sampled, with the scores averaged

over the twenty runs).

Figure 10.6 shows the plotted values of the test log-likelihood (top) and predic-

tion SSE (bottom) scores for selected values of K. The results do not indicate a

clear choice for the best value of K. Both the log-likelihood and SSE scores steadily

improve as K increases up until the K values of 10 or 11. At this point, the incre-

mental improvement begins to show random fluctuations, sometimes negative, other

times positive. K values as large as 30 exhibit similar behavior.

A close-up view of the SSE score curve is provided in Figure 10.7. At the point

K = 10, the incremental improvement has been reduced to just 3% of the initial

improvement from K = 1 to K = 2. Beyond this K value, the SSE curve does not

show any steady improvement. Based on these observations, 10 is chosen as that

value of K which leads to the best predictive modelling performance with minimum

model complexity. Thus, the model selection is complete with the choice of alignment

247



1 2 3 4 5 6 7 8 9 1011 13 15 17
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

T
es

t L
og
−

lik
el

ih
oo

d

Number of components

1 2 3 4 5 6 7 8 9 1011 13 15 17
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T
es

t S
S

E

Number of components

Figure 10.6: Test log-likelihood (top) and prediction SSE (bottom) scores for
PRM AM applied to znorm cyclone data for various values of K. The value of
K = 10 was chosen as the best compromise selection.
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Figure 10.7: Close-up view of the prediction SSE score curve for PRM AM applied
to znorm cyclone data for various values of K.

model (PRM AM), preprocessing method (znorm), and the number of clusters (10).

10.5 Clustering analysis

In this section, we analyze the resulting tropical cyclone clusters from the application

of PRM AM to the znorm cyclone data. The cluster track-types are analyzed and

various cluster-specific statistics are discussed. The temporal behavior of the cyclone

clusters was investigated and is reported at the end of this section.

Figures 10.8 to 10.11 geographically depict the cyclones from each of the resulting

ten clusters. The clusters are organized into five main groups based on the general

track-type of each cluster’s cyclones: (a) straight-path, (b) north recurving, (c) east

recurving, (d) vertically-oriented, and (d) transient.

Useful names are given (in typewriter font) to each cluster for referential pur-

poses. The names are briefly explained. In Figure 10.8, the three straight-path

clusters are shown. The HorzStraight cluster consists of cyclones that move along
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(c) DiagStraightTail (DT)

Figure 10.8: Straight-path clusters.

250



 15° N 

 150° W 

 45° N 

 60° N 
 120° E   90° E 

 30° N 

 180° E  150° E 

(a) HorzCurveNorth (HN)
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(b) DiagCurveTail (DCT)

Figure 10.9: North recurving clusters

a due west track, mostly making landfall (if at all) south of Hong Kong. The

DiagStraight cluster consists of cyclones that move along a straight path in a west-

northwest direction. The third straight-path cluster DiagStraightTail consists of

cyclones that move along a similar west-northwest track but tail off to the north.

Figure 10.9 shows the two north recurving clusters. The HorzCurveNorth cluster

consists of cyclones that initially begin moving along a due west track and then curve

mostly to the north. The DiagCurveTail cluster primarily consists of cyclones that

begin moving along a northwest track and then curve to the north.

The two east recurving clusters are shown in Figure 10.10. The DiagCurveEast
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(a) DiagCurveEast (DCE)
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(b) DiagBendEast (DBE)

Figure 10.10: East recurving clusters.

cluster consists of cyclones that begin moving along a north-northwest track and then

turn to the northeast. The DiagBendEast cluster consists of cyclones that follow a

west-northwest track that completely bends around without exceeding 45◦N.

The two vertical-path clusters are shown in Figure 10.11, along with the lone

transient cluster. The cyclones of the VertCurveEast cluster primarily move along

an initial north track and then make a hard turn to the east. The cyclones of

the ReverseTrough cluster start-out in many different initial directions but then

primarily resemble a track-type associated with a reverse-oriented (southwest-to-

northeast) monsoon trough in the North Pacific (Lander, 1996). Note that the
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(c) SouthChinaSea (SCS)

Figure 10.11: The two vertical-path and the single transient cluster.
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cyclones of VertCurveEast also resemble tracks which seem to have been influenced

by this effect, which is why they are grouped here together (this is discussed in detail

below).

The final cluster SouthChinaSea largely consists of highly variable tracks not

associated with other track-types. This cluster contains many of the random track-

types commonly associated with the cyclones of the South China Sea.

10.5.1 Cluster descriptions

In this section, a detailed analysis of the above clustering is given. Cyclone charac-

teristics such as velocity, duration, frequency, and genesis region are used to draw

distinctions between the clusters. Several tables and figures are initially introduced

that are used as reference for the ensuing cluster analysis.

Table 10.2 lists a number of empirically-derived cyclone characteristics for each

of the ten tropical cyclone clusters. The values under the columns give cluster-

wide means and deviations of the summary statistics. For example, µ for column

HorzStraight in Table 10.2 reports the mean of all the minimum intensities attained

by the cyclones in cluster HorzStraight. The standard deviation for this value is

shown under σ for the same column. Bolded entries denote the largest value among

all of the clusters and underlined entries denote the smallest. Explicit definitions for

the acceleration, curvature, and instability measures are given in Section 9.8.1.

Figure 10.12 shows the distributions for cyclone duration found in each cluster.

The plotted values at each point of the x-axis report the number of cyclones in each

cluster with a duration greater than or equal to the chosen x point. The curves

generally describe the lifetime decay rate for the cyclones in each cluster.

There appears to be three distinct decay rates: the SouthChinaSea and the

ReverseTrough clusters show a below average rate, DiagStraight registers a larger
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Table 10.2: Cluster-wide averaged measures of various cyclone-specific statistics for
the ten clusters. Both means (µ) and standard deviations (σ) are given for each
cluster column. Bolded entries give the largest value among all ten clusters and
underlined entries give the smallest. The units are given as follows: velocity (km/h),
absolute acceleration (km/h2), duration (days), curvature (radians/km×10−3), and
instability (radians/km×10−3).

Cyclone statistics HorzStraight DiagStraight DiagStraightTail

µ σ µ σ µ σ

Velocity 19.28 6.14 21.87 5.12 20.56 4.69
Acceleration 3.69 2.23 3.60 1.76 3.29 1.65
Duration 6.76 2.93 6.40 2.42 7.32 2.50
Curvature 2.20 3.00 0.90 0.74 1.02 0.81
Instability 3.97 6.90 1.20 1.88 1.50 2.25

Cyclone statistics HorzCurveNorth DiagCurveTail DiagCurveEast DiagBendEast

µ σ µ σ µ σ µ σ

Velocity 21.76 5.98 21.36 9.19 25.85 8.05 25.91 5.95
Acceleration 3.86 1.84 4.61 4.10 5.08 2.34 4.99 2.03
Duration 9.11 2.21 6.29 2.69 6.46 2.16 8.57 1.63
Curvature 1.77 2.07 2.09 1.85 1.77 1.57 1.34 2.01
Instability 3.36 5.24 3.63 4.64 3.12 3.74 2.54 7.12

Cyclone statistics VertCurveEast ReverseTrough SouthChinaSea

µ σ µ σ µ σ

Velocity 25.75 10.06 21.90 6.68 17.25 6.10
Acceleration 5.49 2.99 4.55 1.76 4.02 2.91
Duration 6.76 2.28 8.92 2.26 7.54 2.41
Curvature 1.74 2.71 4.91 3.45 5.06 3.62
Instability 3.05 6.50 11.43 8.94 10.32 9.28
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Figure 10.12: Number of cyclones in each cluster as a function of cyclone duration.
The graph shows the lifetime decay rate for each cluster.

than average decay rate, while the other clusters share a median lifetime decay rate.

Interestingly, the cyclones of the tropical North Pacific appear to have linear decay

rates. This is in contrast to the decay rates from the ETC clusters shown earlier in

Figure 9.25 that clearly demonstrate an exponential decay.

Below, the ten clusters are discussed in detail using the cluster maps, the table

of data, and the figure as references.

HorzStraight

The cyclones in this cluster loosely follow a straight, due west track. The tracks

exhibit large curvature and instability. In fact, only the two most variable clusters

(ReverseTrough, and SouthChinaSea) are able to match the instability of these
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cyclones. All three of the straight-path clusters have low mean acceleration, though

these cyclones seem to demonstrate the largest acceleration of the three.

This is the second largest cluster with 143 cyclones. The genesis region is more

northwest and spread out than the other straight-path clusters, with many genesis

events located in the South China Sea (only the SouthChinaSea cluster itself is

comparable). The mean genesis point is 15◦N by 137◦E.

DiagStraight

This is the largest cluster with 179 cyclones occurring over the 52 years under consid-

eration. The cyclones primarily follow straight west-northwest tracks. This cluster

has an average curvature that is nearly zero (0.0009), the lowest overall, and is the

most stable.

The associated lifetime decay rate is the largest among all clusters leading to the

second-smallest average cyclone duration. The genesis region is the most southern

overall, with almost all events occurring below 15◦N. The mean genesis point is 12◦N

by 138◦E.

DiagStraightTail

This straight-path cluster consists of cyclones that follow a similar track to those

of DiagStraight, but tail off to the North. The associated lifetime decay rate is

much smaller, however, than that of DiagStraight. This results in an increased

average duration. This cluster is of average size with 103 total cyclones and rivals

DiagStraight as the second-most stable cluster.

The genesis region is located a bit more northeast than that of DiagStraight,

but it is still well below 15◦N. The mean genesis point is 13◦N by 140◦E.
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HorzCurveNorth

These cyclones initially begin moving along a due west track and then curve to the

north; some tracks extend all the way to the northeast. These tracks undergo most of

their curvature almost exactly at 23◦N latitude, with only slight curvature occurring

beyond.

This cluster is of below average size with 72 total cyclones, yet it contains the

longest duration cyclones overall. As such, the lifetime decay rate is below average.

The genesis region is the most eastern of all the clusters, most occurring in the

Southeast portion of the overall genesis region. The mean genesis point is 13◦N by

150◦E.

DiagCurveTail

The tracks of this cluster are mostly oriented to the northwest, many times tailing off

to the north. These cyclones are the shortest-duration overall with a mean lifetime

of 6.29 days. Many of these tracks exhibit an S-track type motion which has been

shown to be associated with a reverse monsoon trough (Lander, 1996). However, the

tracks more resemble what you would expect under a normal southeast-to-northwest

circulation as seen by the primarily northwest track orientation. This cluster is

probably best explained as having occurred from a mix (or a transition) between the

two circulation patterns.

The genesis region is quite diffuse and is the most northern of all the clusters

except for that of the ReverseTrough cluster itself. The mean genesis point is 17◦N

by 141◦E.
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DiagCurveEast

The cyclones of this cluster follow northwest or north-northwest tracks that curve to

the northeast. A distinguishing feature of this cluster is that the cyclones undergo

nearly constant curvature throughout their lifetime (unlike the related DiagBendEast

cluster discussed below). These cyclones are the second-fastest cyclones overall with

an average speed of 25.9 km/h, and undergo the second-largest acceleration on av-

erage.

This cluster is larger than average with 114 total cyclones. The genesis region is

nearly identical to that of DiagCurveTail, only more compact. The mean genesis

point is 17◦N by 142◦E.

DiagBendEast

The tracks of this cluster initially point in a west-northwest direction and then

quickly bend around and head in the opposite direction. These cyclones undergo

rapid curvature over a short period of time near 20◦N latitude. These cyclones

are the fastest overall, undergo the second-largest acceleration, and have the third

longest average duration.

This cluster is below average in size with only 67 total cyclones. The genesis

region is a small compact subregion located to the southeast. The mean genesis

point is 13◦N by 149◦E.

VertCurveEast

This is an average size cluster with 98 total cyclones. The cyclones of this cluster

primarily follow north-oriented tracks that curve due east; however, many follow

tracks that start-out in an already eastward heading to begin with. As pointed-

out earlier, these types of tracks are associated with a reverse monsoon trough. In
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contrast to the cyclones of ReverseTrough, the tracks here are much smaller, less

random, and considerable faster. Furthermore, the genesis region is significantly

more compact and localized in the southern region. The mean genesis point is 16◦N

by 139◦E.

ReverseTrough

The cyclones of this cluster are highly indicative of a reverse-oriented monsoon

trough. Track-types associated with this event are unusual since they do not fol-

low the normal climatological tracks (Lander, 1996). Track-types tend to be north-

or even north-eastward-oriented and often exhibit random behavior. Lander demon-

strated that many cyclones associated with a reverse-oriented monsoon trough follow

distinctive S-shaped tracks.

Many of these attributes can be associated with the tracks in this cluster. For

example, this cluster has the least stable tracks (11.43) and the second largest curva-

ture (4.91), which demonstrates highly random behavior. Furthermore, many of the

cyclone tracks in this cluster move in a completely north-eastward heading (rather

unusual under normal circumstances).

This cluster is the smallest in total size with only 48 cyclones, which also gives

support for its association with an unusual event. The genesis region is very dif-

fuse, only matched by the noisy SouthChinaSea cluster. The mean genesis point is

centrally located at 18◦N by 140◦E.

SouthChinaSea

This cluster naturally groups together the well-known South China Sea cyclones (Harr

& Elsberry, 1995a) with other highly variable cyclones that do not fit within any

other cluster. The South China Sea cyclones tend to form and remain within the sea,
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Figure 10.13: Daily regime classification for every five years (top-to-bottom) from
1950–2000. Each of the eleven rows depicts the regime classification for each day in
the associated year. The key at the right gives the gray-value-to-regime mapping
where the two- or three-letter abbreviations denote the names of the cluster regimes
as defined in Figures 10.8–10.11. Q represents the quiescent regime.

mostly meandering in random directions (the South China Sea is located between the

Philippines and Vietnam or China in the bottom-left of the map in Figure 10.11(c)).

The cyclones of this cluster have the slowest velocity, the largest curvature, and

are the second-most unstable. The cluster is the second-smallest with only 50 total

cyclones. The genesis region is concentrated around the South China Sea with

various other random genesis events occurring outside this region. The mean genesis

point is 17◦N by 134◦E.

10.5.2 Temporal analysis of cyclone clusters

In this section we analyze the daily temporal behavior of the tropical cyclone clusters

described above. We classify each day as being in one of eleven cluster regimes

corresponding to the ten clusters, or in the eleventh case, to none of the clusters.

The same heuristic procedure is used to perform the daily classifications as that in

Section 9.8.2.

Applied to the clustered cyclone data, the assignment procedure yields the daily
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Figure 10.14: Histogram of regime activity corresponding to the regime classification
in Figure 10.13.

regime sequences shown in Figure 10.13. The plot in this figure has eleven rows

corresponding to every fifth year from 1950 to 2000. The rows show the regime

classification for each day by color-coded pixels. The key at the right gives the

gray-value-to-regime mapping where the two- or three-letter abbreviations denote

the names of the cluster regimes as defined in Figures 10.8–10.11. Q represents the

quiescent regime, or the regime not associated with any of the ten cyclone clusters.

Some edge effects are to be expected since only cyclones that began on or after 30

May are included in this dataset. Thus, you would expect to see a larger proportion

of white-space at the left of the picture (a similar situation holds for the right side

as well). However, regardless of the edge effects, it is clear that almost all cyclone

generations happen between 1 August and 1 November.

The distribution of regime activity is plotted in Figure 10.14. This plot gives the

number of days that each regime is active over all 52 years from 1950–2001. For the

most part, the largest clusters generate the most active regimes. However, this is

not so in every case. For example, DiagCurveEast (DCE) is the third largest cluster

and yet it shows less regime activity than six other clusters.

An interesting feature of Figure 10.13 is the distribution of regime run-lengths.
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Figure 10.15: Distribution of run-lengths for each regime corresponding to the regime
classifications in Figure 10.13.

Figure 10.15 shows the distribution of run-lengths for each regime. The curves show

the decay rate for each regime.

The cluster regimes show definite persistence with run-length distributions that

are non-geometric in nature. For example, DiagBendEast, HorzCurveNorth, and

ReverseTrough show uniform persistence from 3 to 6 plus days. Other regimes

show linear persistence, for example, DiagStraightTail. It appears that regime

persistence in the tropical North Pacific is decidedly non-geometric, at least until

large values of run-lengths are reached. This suggests a non-first order Markov model

might best describe the temporal regime-like behavior of the tropical North Pacific.
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10.6 Summary

In this chapter, an application of our joint alignment-clustering methodology to

observed North Pacific tropical cyclones was presented. Unlike the GCM derived

ETC tracks of the previous chapter, the JTWC dataset analyzed in this chapter

consists of “real-world” cyclone track observations.

This chapter focused on an objective analysis of the type and number of cyclone

clusters that exist in the tropical North Pacific. All prior cyclone clustering work

with tropical cyclones simply grouped cyclones based on whether or not they followed

a straight or curved path over a particular area of interest. This grouping may be

fine for many types of analyses; however, an objective out-of-sample analysis of the

type and number of clusters in the tropical North Pacific has never been pursued.

Probabilistic model selection procedures based on out-of-sample log-likelihood

and prediction SSE scores were used to select the best predictive modelling method-

ology. This selection process consisted of choosing a specific order cyclone regression

model, a trajectory preprocessing method, a joint clustering-alignment model, and

the number of cyclone clusters that best describes the dataset. The model selection

process applied to the JTWC cyclone dataset resulted in the following methodology:

• Order of polynomial regression model: quadratic

• Trajectory preprocessing: znorm

• Clustering-alignment model: PRM AM

• Number of clusters: 10

The resulting ten clusters were analyzed in detail and shown to group cyclones

based on identifiable characteristics such as speed, acceleration, duration, and track-

type. The clusters were also shown to correspond to known states of circulation in

the atmosphere such as that associated with a reverse-oriented monsoon trough.
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Daily regime classifications were assigned to each day based on the number of

active cyclones during each 24-hour period. The regime classifications were plotted

and summary statistics describing the distributions of regimes and their run-lengths

were reported. The regimes were shown to exhibit ranges of uniform and linear

persistence over time. This suggests a non-first order Markov assumption is necessary

for describing the temporal regime-like behavior in the tropical North Pacific.
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Chapter 11

Conclusion

This dissertation was concerned with the central hypothesis that clustering and

alignment should not be carried out in isolation since significant relationships exist

between the two problems that can be leveraged in a joint formulation. We intro-

duced a novel methodology for the clustering and prediction of sets of smoothly

varying curves while jointly allowing for the learning of sets of continuous curve

transformations.

The methodology was two-fold. First, we introduced new probabilistic alignment

models that employed curve modelling techniques and defined priors over the sets

of allowable curve transformations. This self-contained formulation of the alignment

problem resulted in iterative EM alignment algorithms that resembled generalized

Procrustes-type alignment procedures (Mardia et al., 1979). Experiments with a

“real-world” gene expression dataset showed the effectiveness of the probabilistic

formulation.

Second, we integrated these new alignment models into a model-based curve clus-

tering framework based on mixtures of regression models. The integration was natu-

ral since the definition of the alignment models were also founded in (curve) model-
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based techniques. The resulting clustering algorithms were naturally transformation-

invariant without the need for additional specialized procedures or constraints.

Experiments with simulated data showed that the joint methodology was supe-

rior to the isolated approach. Further experiments with simulated data showed that

the curve-based modelling techniques employed in the clustering-alignment models

effectively handled common problems encountered with curve datasets: (a) incorpo-

ration of variable-length curves, (b) correct accounting of irregular sampled/observed

curve measurements, (c) the handling of randomly missing curve observations, and

(d) the leveraging of inherent smoothness information available in curves.

Two extensive applications of the joint clustering-alignment methodology were

reported. The applications concerned the clustering of cyclone trajectories tracked

over the North Atlantic and the North Pacific. A detailed model selection was

presented for each application that resulted in the selection of an optimal cyclone

regression model, trajectory preprocessing procedure, clustering-alignment model,

and an optimal number of clusters. The resulting optimal clustering in each case

was presented and analyzed in detail. The applications demonstrated the practical

use of the ideas introduced in this dissertation.
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Appendices

A EM algorithm

The EM algorithm is an iterative ML procedure that provides a general and effi-

cient framework for parameter estimation. At a basic level, EM is an approximate

root-finding procedure that is used to seek the root of the likelihood equation. It

iteratively searches for a set of parameters that maximize the probability of the

observed data.

Due to the presence of local maxima on the likelihood surface, the EM solution is

not guaranteed to correspond to a global maximum of the likelihood function. How-

ever, under fairly broad conditions we are guaranteed to find a stationary point of

the likelihood equation corresponding to a local maximum (McLachlan & Krishnan,

1997). Furthermore, by running the EM algorithm multiple times from different

starting points in parameter space and selecting the parameters from the run that

results in the highest likelihood, we increase the chances of finding the global maxi-

mum.

We define the necessary prerequisite EM theory that is needed to understand

the algorithm derivations given in this thesis. The EM algorithm is primarily used

for estimating ML parameters in missing- or hidden-data problems. Parameter es-

timation in hidden-data problems is difficult because the missing data causes the
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likelihood to take on a complex form.

For example, suppose we have data Y , hidden data Z, and parameter vector Φ.

Then the likelihood of Φ given Y can be defined in a general way as

L(Φ|Y ) =
∫

Z
p(Y |Z, Φ)p(Z|Φ) dZ. (A.1)

It is understood in hidden-data problems that this integration cannot be easily cal-

culated. The EM algorithm circumvents this problem by defining another likelihood

function known as the complete-data likelihood that contains the missing data. The

complete-data likelihood Lc is defined as

Lc(Φ|Y, Z) = p(Y, Z|Φ). (A.2)

However, the actual value of Z is unknown. So the EM algorithm “fills-in” values

for the unknown Z by taking the expectation of Lc with respect to the posterior

distribution p(Z|Y, Φ′) for a fixed parameter vector Φ′.

This posterior distribution is known as the hidden-data distribution since it gives

the distribution of the hidden data given the observed data Y and the current set of

parameters Φ′. The expectation is taken as follows:

E[Lc|Y ] = Q(Φ, Φ′) =
∫

p(Y, Z|Φ)p(Z|Y, Φ′) dZ. (A.3)

We refer to this filled-in likelihood as the Q-function. The E-step is concerned with

the procedures required in calculating Q.

The Q-function can be easily maximized since it does not contain any missing

data. All of the missing data has been replaced by the operation of taking the

expectation in the E-step. In the M-step, the Q-function is maximized with respect
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to Φ to arrive at Φ̂:

Φ̂ = arg max
Φ

Q(Φ, Φ′). (A.4)

At the next iteration, Φ′ is replaced by the new Φ̂ in the hidden-data distribution

p(Z|Y, Φ′) and the E-step is commenced again. Dempster et al. (1977) showed that

under fairly general conditions, the likelihood will never decrease during the E- and

M-step iterations.

B Monte Carlo cross-validation

In this appendix, we briefly outline the Monte Carlo cross-validation (MCCV) proce-

dure as used in this thesis. The MCCV procedure (Shao, 1993; Smyth, 2000) consists

of M runs where for each run the available data set is partitioned into a training

and testing subset in which the testing subset is a fraction ν of the complete data

set. The candidate models are then trained and tested on the corresponding subsets

and the test scores are averaged over the M runs. MCCV is related to standard

10-fold cross-validation by setting M = 10, ν = 0.1 and requiring the M test sets to

be disjoint. However, in general the MCCV test subsets are not disjoint but instead

each point has equal chance of being in any test set. Shao (1993) showed that in

a regression context the estimation variability on the test sets can be reduced over

standard cross-validation for relatively large values of ν (e.g., values of ν > 0.1 in

this context). Smyth (2000) found the value of ν = 0.5 to be useful in a mixture

context (for choosing the number of components or clusters). In this thesis, we used

intermediate values of ν from 0.3 to 0.4.
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C Matrix multivariate normal density

The matrix multivariate normal density is a useful rewriting of the standard multi-

variate normal density for multiple data vectors with special covariance. The stan-

dard multivariate normal density defined for d-dimensional data vector x with mean

µx and covariance σ2
xI is

p(x|µx, σ
2
x) = (2πσ2

x)
−d/2 exp

{
− 1

2σ2
x

(x − µ)′(x − µ)

}
. (C.5)

Suppose we now introduce another d-dimensional data vector y distributed normally

with mean µy and covariance σ2
yI in which the covariance between x and y is σ2

xyI.

A parsimonious way to define the joint distribution of x and y is to define their dis-

tribution in terms of the matrix Z = (x, y). The density of Z is matrix multivariate

normal and is written as

p(Z|µ, Σ) = (2π)−dm/2|Σ|−d/2 exp
{
−1

2
tr
(
(Z − µ)Σ−1(Z− µ)′

)}
, (C.6)

with matrix mean µ = (µx, µy) and covariance matrix

Σ =




σ2
x σ2

xy

σ2
xy σ2

y


 .

Note that m = 2 in this case and gives the number of columns of Z in general.
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