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Abstract

Clustering nodes in a graph is a useful general technique
in data mining of large network data sets. In this context,
Newman and Girvan [9] recently proposed an objective func-
tion for graph clustering called the @ function which allows
automatic selection of the number of clusters. Empirically,
higher values of the @) function have been shown to correlate
well with good graph clusterings. In this paper we show how
optimizing the @ function can be reformulated as a spectral
relaxation problem and propose two new spectral clustering
algorithms that seek to maximize ). Experimental results
indicate that the new algorithms are efficient and effective
at finding both good clusterings and the appropriate number
of clusters across a variety of real-world graph data sets. In
addition, the spectral algorithms are much faster for large
sparse graphs, scaling roughly linearly with the number of

nodes n in the graph, compared to O(nz) for previous clus-
tering algorithms using the @) function.

1 Introduction

Large complex graphs representing relationships among
sets of entities are an increasingly common focus of
scientific inquiry. Examples include social networks,
Web graphs, telecommunication networks, semantic
networks, and biological networks. Omne of the key
questions in understanding such data is “How many
communities are there and what are the community
memberships”?

Algorithms for finding such communities, or auto-
matically grouping nodes in a graph into clusters, have
been developed in a variety of different areas, includ-
ing VLSI design, parallel computing, computer vision,
social networks, and more recently in machine learn-
ing. Good algorithms for graph clustering hinge on the
quality of the objective function being used. A vari-
ety of different objective functions and clustering algo-
rithms have been proposed for this problem, ranging
from hierarchical clustering to max-flow/min-cut meth-
ods to methods based on truncating the eigenspace of a
suitably-defined matrix. In recent years, much attention
has been paid to spectral clustering algorithms (e.g.,
[11],[12],[14]) that, explicitly or implicitly, attempt to
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globally optimize cost functions such as the Normalized
Cut measure [12]. The majority of these approaches at-
tempt to balance the size of the clusters while minimiz-
ing the interaction between dissimilar nodes. However,
for the types of complex heterogeneous networks that
arise naturally in many domains, the bias that these ap-
proaches have towards clusters of equal size can be seen
as a drawback. Furthermore, many of these measures,
such as Normalized Cut, can not be used directly for
selecting the number of clusters, k, since they increase
(or decrease) monotonically as k is varied.

Recently, a new approach was developed by New-
man and Girvan [9] to overcome limitations of previ-
ous measures for measuring community structure. They
proposed the “modularity function” @, which directly
measures the quality of a particular clustering of nodes
in a graph. It can also be used to automatically select
the optimal number of clusters k, by finding the value
of k for which @ is maximized, in contrast to most other
objective functions used for graph clustering.

Let G(V, E, W) be an undirected graph consisting of
the set of nodes V, the set of edges E, and a symmetric
weight matrix W € R"*" where n is the number of
vertices. The weights w;; = wj;; = [W],; are positive
if there is an edge between vertices v; and v;, and 0
otherwise. The modularity function () can be defined
as
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where Py, is a partition of the vertices into k groups and
where A(V', V") =3y jeyn w(i, j). Thus, A(Ve, Vo)
measures the within-cluster sum of weights, A(V.,V)
measures the sum of weights over all edges attached
to nodes in cluster ¢, and A(V,V) measures the sum
of all edge weights in the graph. Considering binary

A(Ve,Ve) -

weights for simplicity, the term is the empirical

A(V,V)
probability p.. that both ends of a randomly selected
edge from G lie in cluster c¢. Similarly, ﬁ((\&%) is the

empirical probability p. that a specific end of an edge
(either one), for a randomly selected edge, lies in cluster
c.  Thus, under an independence model, ) can be
interpreted as a measure of the deviation between (a)
the observed edge-cluster probabilities p. . and (b) what
one would predict under an independence model: pZ.
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Figure 1: A toy graph showing @ values for different numbers of clusters.

Newman [10] and Newman and Girvan [9] showed
across a wide variety of simulated and real-world graphs
that larger @) values are correlated with better graph
clusterings. In addition, they found that real-world
unweighted networks with high community structure
generally have @) values within a range from 0.3 to 0.7.
Figure 1 shows an example of a simple toy graph with
binary weights, where the structure of the graph visually
suggests 3 clusters. Also shown are the maximum values
of the @ function for different numbers of clusters k, and
indeed @ is maximized for k = 3.

As pointed out in [10], if no edges exist that connect
vertices across clusters then () = 1, and conversely
if the number of inter-cluster edges is no better than
random then @ = 0. We have found empirically that
the Q measure works well in practice in terms of both
(a) finding good clusterings of nodes in graphs where
community structure is evident, and (b) indicating what
the appropriate number of clusters k is for such a graph.

In this paper we show how Newman’s () measure
can be related to the broader family of spectral cluster-
ing methods. Specifically:

e We show how the problem of maximizing the
modularity measure () can be reformulated as an
eigenvector problem involving a matrix we call the
“Q-Laplacian.” In this manner we link work on
graph clustering using the ) measure to relevant
work on spectral clustering (e.g., [11], [12],[14]).

e We use the eigenvector formulation of maximizing
@ to derive two new spectral graph clustering
algorithms. One of these algorithms directly seeks
a global optimum of the @ function. The other
algorithm is similar to Newman’s agglomerative
clustering algorithm [10], in that it attempts to

maximize @ via local iterative improvement.

e We compare the new algorithms with Newman’s
algorithm on different graph data sets and empiri-
cally illustrate that:

— the spectral approach to maximizing @ pro-
duces results that, in terms of cluster qual-
ity, are comparable or better than results from
Newman’s hierarchical algorithm, and

— the proposed algorithms are linear per itera-
tion in the number of nodes and edges in the
graph, compared to quadratic complexity in
the number of nodes for the original algorithm
proposed by Newman [10].

2 Spectral Approaches to Maximizing the (@
Function

Consider for the moment that the number of clusters,
k, is fixed. We use the following strategy to address the
problem of finding a partitioning that maximizes Q(Py)
as follows:

1. Reformulate the problem of maximizing Newman’s
Q function as a discrete quadratic assignment prob-
lem.

2. Approximate the resulting assignment problem by
relaxing it to a continuous one which can be solved
analytically using eigen-decomposition techniques.

3. Compute the top k& — 1 eigenvectors of this solution
to form a k — 1-dimensional embedding of the graph
into a Euclidean space. Use “hard-assignment”
geometric clustering (the k-means algorithm) on
this embedding to generate a clustering P.



Below we outline each of these steps. In the section
which follows, Section 3, we then describe computa-
tional details for two proposed clustering algorithms
based on this approach.

2.1 Quadratic Assignment We assume G is sim-
ple, i.e., G contains no self-loops nor parallel edges, and
is connected, i.e., there is a path from any vertex to any
other vertex. Let D € R"*™ be a diagonal matrix hav-
ing d; in the ith diagonal entry and 0 everywhere else,
where d; =) ; Wij- We denote the diagonal matrix de-
rived from an n x n matrix X as diag(X) € R™*"™ where
[diag(X)],; = [X],; if i = j and O otherwise. Finally, let
tr(X) = ii [X];; be the trace of matrix X.
To simplify notation, we rewrite ) as follows:

k
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Given a k-partition Py, define a corresponding n x k
assignment matrix X = [xq,..., x| with 2, = 1ifv; €
V., and z;. = 0 otherwise, for 1 < ¢ < k. Observe that
since each vertex can only be in one cluster, X1y = 1,,.
We can reformulate @ in terms of the assignment matrix
X as follows:
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where d € R™*! such that component d; equals the
weighted degree of vertex i and we rewrite A(V,V) as
volg, the volume of graph G. Thus,
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where D = ddT. Since for any matrix A and assignment
matrix X, tr(XTAX) = 25:1 [xT Ax.], we can further
reduce @ as follows:

Q(Pr) volgtr (XTWX) —tr (X"DX)
= tr (X" (volgW — D)X)

= tr (XT(W-D)X)

R

where W = volgW. The problem of maximizing Q can
then be expressed as:

(2.3) max {tr ( XTOW-D)X)} st. XTX =M

where M € R*** is a diagonal matrix with diagonal
entry [M],, = |Vi|, where |V;| is the number of nodes in
cluster V.

2.2 Spectral Relaxation Finding an assignment
matrix X which maximizes (2.3) is NP-complete. To
address this we can attempt to derive a good approxi-
mation by relaxing the discreteness constraints that the
X;; € {0,1}, so that instead the X;; € R'. This trans-
forms the discrete optimization problem into one that
is continuous. To find the optimal relaxed X, take the
derivative of the following expression with respect to X:

(2.4) tr (X7 (W - D)X) + (XTX — M)A

where A € R#¥** is the diagonal matrix of Lagrangian
multipliers. Setting this equal to 0 and rearranging
terms we have:

(2.5) LoX = XA

where Lo = D—W and we refer to this diagonal matrix
as the “Q-Laplacian”. Aside from noting its similarity
in form to the standard Laplacian, we observe that
this is a standard matrix eigenvalue problem which can
be solved using standard eigendecomposition methods.
Furthermore, had we normalized the original matrix W
so that all rows sum to one and had we also added
back in the normalization constant that we took out
from equation (2.2) then we would have the following
eigenvalue equation:

(2.6) LoX = XA

where Lo = 5 E — LW’ where E is a matrix of all
ones and W' is the matrix W normalized so all rows
sum to one. The first term of this equation can be seen
as a damping term that ensures that there are edges
between all of the nodes of very small weight and the
second term is the original weight matrix after scaling
and normalization. As n — oo, the first term will
approach 0 much faster than the second term, and hence
will play a negligible role in determining the eigenspace
of the matrix.

Thus, for even moderately large values of n, it seems
reasonable that W’ will provide a close approximation
to Lg, which we refer to as the “normalized @ Lapla-
cian.”! In this paper, we will adopt the simplest method

TThe minus sign and the constant % do not impact the
resulting eigenspace.



for normalizing a matrix so its rows sum to one, namely,
to left multiply the matrix W by D~!. The advantage
of using W/ = D~'W as an approximation to L is
that it is easy to compute, it is well studied, especially
in relation to Markov chains where it is known as the
transition matrix, and it retains sparsity so we can use
fast methods for eigendecomposing a sparse matrix.

The final step in this framework is to iterate over
different values of k, to search for the best clusterings
(highest Q(Py) scores). For each k, we try to find the
optimal partitioning, i.e., a “hard-assignment” of the
nodes to k clusters, based on clustering the rows of the
matrix X.

3 Two New Graph Clustering Algorithms

In this section, we propose two new algorithms for
clustering graphs that build on insights developed in
the previous section.

3.1 Computing the embedding Assume that we
are seeking up to a maximum of K clusters and that we
have a weight matrix W € R"*". Both of our proposed
algorithms below begin by computing the top K — 1
eigenvectors (ignoring the trivial all-ones eigenvector)
corresponding to Equation 2.6. Specifically:

1. Compute the transition matrix M = D~'W

2. Compute the eigenvector matrix Ug =
[ujuz...ug-1] from M using a sparse eigen-
vector decomposition method such as a variant of
the Lanczos method or subspace iteration.

In the experimental results in this paper we com-
pute the K — 1 eigenvectors using the Implicitly
Restarted Lanczos Method (IRLM) [2]. If one makes
the conservative assumption that there are O(K) ex-
tra Lanczos steps, then the IRLM has worse-case time
complexity of O(mKh + nK?h + K3h) where m is the
number of edges in the graph, and h is the number of it-
erations required until convergence. For sparse graphs,
where m ~ n, and where K < n, we found the IRLM to
be extremely fast, taking near linear time with respect
to the number of nodes n.

In the algorithms below, we initialized k-means
so that the starting centroids were chosen to be as
close to orthogonal as possible. Initializing k-means
in this way does not change the time-complexity but
can significantly help to improve the quality of the
clusterings, as discussed in [11], while at the same
reducing the need for multiple random restarts. In
addition, both algorithms below can be run for any
range of k values between a lower bound ki, and an
upper bound k.. When not stated otherwise, we will

assume in what follows that we have k,,;, = 1 and
kmar = K. In the case where £ = 1,Q = 0 and the
cluster is just all the vertices in the graph.

3.2 Algorithm Spectral-1 This algorithm takes as
input an eigenvector matrix Uk, and consists of the
following steps:

1. For each value of k, 2 < k < K:

(a) Form the matrix Uy from the first k& — 1
columns of Ug.

(b)

Scale the rows of Uy, using the I2-norm so they
all have unit length

(¢) Cluster the row vectors of Uy using k-means
or any other fast vector-based clustering algo-
rithm. For k£ = 1, the cluster is just the graph

itself.

2. Pick the k£ and the corresponding partition that
maximizes Q(Py).

This algorithm is similar in spirit to the one devel-
oped in [11]. Both algorithms embed the input graph
into a Euclidean space by eigendecomposing a suitable
matrix and then cluster the embedding using a geomet-
ric clustering algorithm. We experimentally validated
the claim made in [11] that row-normalizing the matrix
of eigenvectors, so that the row vectors are projected
onto the unit hypersphere, gives much higher quality
results. The Spectral-1 algorithm is different in three
key respects to this earlier work (in addition to the mi-
nor ontological point that our framework is designed to
cluster graphs while theirs is designed to cluster real-
valued points):

1. Whereas in [11] the matrix that is eigendecom-
posed, D_%WD_%, was implicitly chosen to opti-
mize the Normalized Cut, our algorithm is explic-
itly designed to optimize the modularity Q.

2. Our algorithm has a natural method for model-
selection, the @ measure, which is the same ob-
jective function our embedding is based on. Since
Normalized Cut is biased by the size of k, it can
not be used for choosing the best k.

3. Our algorithm does not require an extra step of
model selection to ensure: a) the edge weights are
scaled correctly and b) the graph is sparsified. If
links are not sparsified in the algorithm in [11], the
time complexity is O(n?).



Table 1: Sample clusters found for the WordNet data.

Hard Science Qualities Metabolism Soft Science Systems
taxonomy attribute regulation social relation organism
science drive reproduction profession body
mathematics folly Krebs cycle social science hierarchy
pure mathematics judgment hypostasis law digestive system
applied mathematics estimate nutrition politics infrastructure
statistics trait growth medicine network
information theory personality anabolism theology system
computer science character bodily process opinion water system
information science nature catabolism explanation live body
information theory thoughtfulness gastrulation anthropology sensory system

3.3 Algorithm Spectral-2 The second algorithm
we propose is a faster version of the algorithm in the
previous section (Spectral-1). It uses a greedy strategy
of recursive bisection to search over different values of k.
Because of this strategy it need not find as high quality
a clustering (as high a @ value) as the other approach,
but it will be faster since in going from k clusters to k+1
only a portion of the data needs to be clustered rather
than all of the data. The algorithm again takes as input
the eigenvector matrix Uk as before and consists of the
following steps:

1. Initialize k, the current number of clusters, to k.
Initialize P, the best clustering assignment seen so
far, to the clustering produced by running k-means
with k set to ki clusters. If ki = 1, then simply
initialize P to be one cluster containing all nodes
in the graph.

2. Repeat until £ > K or no more splits are possible:

(a) Set Phew =P
(b) For each cluster V. in P:

i. If not already formed, form the matrix Uy
from the first £ — 1 columns of Uk and
scale the rows using the /2-norm so they
all have unit length

ii. Form the matrix Uy . from U, by keeping
only rows corresponding to nodes in V,

iii. Run k-means with 2 clusters on Uy to
get two new sub-clusters,V, ;1 and V_ 5.

iv. Form a new partition, P’ by setting P’ =
P and replacing the corresponding V,
with ‘/;71 and ‘/;72

v. If Q(P') > Q(P), accept the split by
replacing the corresponding V. in Py
with V.1 and V2, otherwise reject it and
leave Py, unchanged.

vi. Assign k to be the (possibly new) number
of clusters in Py,eq

(¢) Set P = Ppew

The idea behind this algorithm is to start with
kmin clusters and instead of rerunning k-means on the
entire graph for subsequent values of k as we did in the
previous algorithm, we instead try recursively splitting
each cluster into two child clusters if the split produces
a higher value of @. By continuing this procedure
until no more splits are possible or until K clusters
have been found, we end up with a clustering with the
highest value of @ encountered along the way. The
particular algorithm above is order-sensitive in the sense
that cycling through the clusters in a different order
could produce different results—however, we have not
noticed any particular sensitivity to order in the data
sets described later in the paper. Unlike many other
recursive bisection methods, model selection here is
natural and straightforward. We choose to accept a split
if the split results in a higher value of Q). Of course, the
drawback with this algorithm is that we tradeoff speed
with accuracy. The algorithm uses a greedy strategy,
where a split can never be revoked and so one bad
choice negatively affects all other choices further down
the same branch. Thus, the quality of the results are not
necessarily as good as with Spectral-1, although they are
still generally competitive as we will see below. There
is a subtlety in this algorithm in that, if left unchecked,
each cluster for which a split attempt was made but
failed would be retried again the next time through the
loop. For this reason, we only allow a single attempt to
split a given cluster.

3.4 Computational Complexity For the Spectral-
1 algorithm, we run k-means K times, where in each
case the dimensionality is d = k — 1. Standard k-means
with a Euclidean distance metric has time complexity



O(ndke) where n is the number of data points, d is
the dimensionality of each point, and e is the number
of iterations required for k-means to converge. Elkan
[5] proposed a much faster version of k-means. It
produces exactly the same results as standard k-means
but uses various geometric inequalities to significantly
reduce the number of distance computations required.
Elkan found that with his proposed algorithm, the
overall time complexity is roughly O(nke) where e is
the number of iterations. We use this algorithm for
our implementation of k-means in both Spectral-1 and
Spectral-2.

The resulting complexity for clustering in Spectral-
1, using Elkan’s fast k-means algorithm, is roughly
O(nK?2e). For Spectral-2 the computational complexity
is not as easy to estimate. In the worst case (completely
imbalanced clusters where the largest cluster is split
at each iteration) it will have the same complexity as
Spectral-1. However, in practice we have found that
it is considerably faster than Spectral-1 and will show
experimental results later in the paper that illustrate
this.

In addition, for both algorithms there is the addi-
tional complexity of O(mKh + nK2h + K3h) for com-
puting the matrix of eigenvectors Uk, using the IRLM.
Thus, Spectral-1 and Spectral-2 have an overall worst-
case time complexity of O(mKh+nK?h+ K3h+nK?e).
Thus, for sparse graphs, where m ~ n, the algorithms
will scale roughly linearly as a function of the number
of nodes n. This is in contrast to Newman’s algorithm
which has complexity O(n?) even for sparse graphs, and
thus does not scale up as well to large values of n.

4  Experimental Results

4.1 Clustering words from WordNet We first
illustrate how different choices for the graph embedding
can affect the quality of clustering. We use a relatively
small unweighted graph extracted from the WordNet
database of word meanings and semantic relationships
[8]. The reason we chose this data set was because
one can immediately judge the quality of the clusters
since intuitively clusters should contain words that share
common semantic features which are recognizable. We
created an unweighted undirected graph where nodes
represent words and an edge exists between two nodes if
any of the following semantic relationships exist between
them: synonymy, antonymy, hypernymy, hyponomy,
meronymy, troponymy, causality, and entailment. The
entire graph contains 82670 nodes. We extracted a
subgraph comprised of all nodes whose shortest path
distance away from the word “Science” is no more than
3. We also removed all nodes with degree 1 so that the
graph layout would not be too cluttered. Adding this

constraint had little effect on the quality of the clusters.

The resulting subgraph contains 230 nodes and 389
edges. Figure 2 shows the best clustering found by
the Spectral-1 algorithm.? For this clustering there
were 12 clusters and (Q = 0.696. Table 1 shows ten
representative words from five random clusters.

Figure 3 shows how the modularity @ varies with
k when each of the following three types of matrices is
used in step 1 of the first algorithm and the eigenvec-
tors are computed exactly: standard () Laplacian Lg,
normalized @ Laplacian Lo, and the transition matrix
D~1W. We can see that using the transition matrix in
step 1 provides a very good approximation to the nor-
malized ) matrix. We can also see that the standard
@ Laplacian slightly underperforms both of these ma-
trices. This agrees with observations by other authors
that the normalized Laplacian gives better results than
the standard Laplacian (e.g., [12],[14]).

4.2 Clustering American college football teams
Our next example demonstrates the ability of both of
our algorithms to identify known clusters. The un-
weighted network was drawn from the schedule of games
played between 115 NCAA Division I-A American col-
lege football teams in the year 2000. Each node in this
network represents a college football team and each edge
represents the fact that two teams played together. Be-
cause the true conference to which each team belongs
is known a-priori, and because inter-conference games
are played more often than intra-conference games, the
groups of teams that form conferences correspond to
natural clusters that should be identifiable in the graph.
Figure 4 shows that this is indeed the case where the
Spectral-1 algorithm identified the correct number of
clusters and, furthermore, each team assignment to a
cluster made by the algorithm was correct.? Our sec-
ond algorithm, Spectral-2, did almost as well making
very few mistakes. The mistakes were:

1. North Texas was put into the Big 12 conference
instead of Big West.

2. Arkansas State was put in Western Athletic instead
of Big West.

3. EastCarolina was placed in Atlantic Coast instead
of Conference USA

4. BigTen was split into two equal sized clusters:
{Michigan, Ohio State, Wisconsin, Iowa, Illinois,

2Graphs are shown using the Fruchterman-Reingold layout.
3For the group of eight teams that do not belong to any
conference, each was assigned to one of the conferences, e.g., Notre

Dame, Navy, and Florida (Miami) to the Big East Conference.
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Michigan State} and {Northwestern, Purdue, Min-
nesota, Penn State, Indiana}

5. Mountain West, Pacific 10 and Big West were
merged into one cluster

To summarize there were three individual mistakes
where a single team was misplaced in the wrong confer-
ence, as well as one incorrect split and two splits that
should have happened but did not.

Newman [10] proposed a hierarchical agglomerative
clustering method for finding graph clusterings based
on (), with a worst-case time complexity of O(n?).
At each step of the algorithm the two clusters are
merged that result in the largest increase in @, providing
local iterative improvements to the overall ) score.
The number of clusters k can be obtained from the
resulting dendrograms by selecting the level of the tree
for which Q(Py) is highest. Figure 5 shows how the
modularity @ varied with &k for both of our algorithms
as well as Newman’s original greedy algorithm which
uses the modularity () as a distance measure to do
agglomerative clustering. The peak for Spectral-1 was
at k=11, =0.602, which corresponds precisely with the
actual number of conferences in the NCAA Division I-
A American college football league. We can see that
Newman’s algorithm underperforms this algorithm on
this data set. The best clustering found by Newman’s
algorithm was for k=6, @=0.556. As Newman [10]
points out and we see in this example, his algorithm can
miss the best clustering since it makes decisions purely
at a local level whereas @ is inherently a global measure.
The same is true for our faster, greedy algorithm. The
best clustering found by Spectral-2 was k=10,0=0.553.
This is competitive with Newman’s algorithm but as we
will see in the timing experiments this algorithm runs
significantly faster than Newman’s algorithm.

4.3 Clustering authors publishing in NIPS For
our final experiment we extracted a weighted coau-
thorship network from volumes 0-12 of the NIPS con-
ference papers. The raw data contains 2037 authors
and 1740 papers from which we created a coauthorship
graph where nodes represent authors and edges repre-
sent coauthorship between the given pair of authors.
We weighted each edge using the following weighting
scheme: w;; = Zk ﬁ where ny is the number of
coauthors for paper k, and w;; represents the weight
assigned to the edge between nodes i and j for which
there was a coauthor relation. Building a coauthorship
network from this data yields many disconnected com-
ponents so we used only the dominant component which
has 1061 nodes (authors) and 4160 edges (coauthorship
pairs).

We ran both of our algorithms with K=100. Figure
6 shows the best clustering found by Spectral-1 where
k=31 and Q=0.874. In this figure, the original coau-
thorship graph was shrunk so that now each node rep-
resents a cluster and the size of the node roughly in-
dicates the size of each cluster. PageRank with Priors
was used to label each cluster with the three authors
whose importance was highest relative to the cluster to
which they belong [13]. The resulting clusters clearly
reflect various subcommunities of NIPS authors based
on the first 12 years of the conference. Figure 7 shows
how the modularity Q varies with k. We found that on
this data set Newman’s algorithm marginally outper-
formed our Spectral-1 algorithm, although both algo-
rithms were very close in terms of the optimal value of
Q@ found: Q=0.874 and k=31 for Spectral-1 vs. Q=0.876
and k=33 for Newman’s algorithm. Spectral-2 did not
do as well although it still gave competitive results find-
ing a clustering for k=44 and Q=0.861.

This brings up an important point about the dif-
ference between Newman’s algorithm and our faster,
greedy Spectral-2 algorithm. Newman’s algorithm
starts with n clusters, one for each node in the graph,
and continues to merge clusters one at a time whereas
our faster algorithm starts with one cluster, all nodes
in the graph being assigned to it, and continues to split
clusters one at a time. Thus, as we saw in the previous
example with the college football data set, Newman’s
algorithm made some mistakes early on in the merg-
ing process which caused @) to reach a maximum only
after k was already much smaller than the correct so-
lution for & = 11. Our faster algorithm, Spectral-2,
also made mistakes early on, in the splitting process,
causing it to overshoot the more optimal values of @)
found by the other two algorithms in the vicinity of
32 < k < 33 and instead find a maximum value of @
for much larger k, in this case k = 44. Although both
algorithms are able to find clusterings that are quite
competitive with Spectral-1, they both potentially suf-
fer from the problem of overshooting, although each in
opposite directions, because of the potential limitations
of the greedy strategy. Nevertheless, this example also
highlights the fact that there are many graphs for which
a greedy strategy can perform quite well (as also docu-
mented by Newman [10]).

4.4 Timing Experiments In this section, we
present timing results for each of the experiments con-
ducted in the experiments just described. In addition,
we reran Spectral-1 and Spectral-2 for K = 25 on the
“Science” network and for K = 50 on the NIPS coau-
thorship network to highlight how the choice of K af-
fects performance. All algorithms were implemented in
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Matlab and run on a 1.2 GHz Pentium II laptop. We
used the sparse eigendecomposition routine eigs in Mat-
lab to compute the eigenvectors using the IRLM.

Table 2: Timing results for separate components of
Spectral-1 in seconds.

Name n K eigs | Clustering
Football 115 25 | 0.16 2.29
Science 230 25 0.38 3.43
Science 230 50 0.67 12.36

NIPS 1061 50 6.53 40.41

NIPS 1061 100 | 15.49 292.15

Table 2 shows the timings for each of the key
components of the Spectral-1 algorithm. Clustering
takes most of the time, especially as K and n increase.

Table 3: Timing results for separate components of
Spectral-2 in seconds.

Name n K eigs | Clustering
Football 115 25 | 0.16 0.15
Science 230 25 | 0.38 0.23
Science 230 50 | 0.67 0.30

NIPS 1061 50 | 6.53 1.33

NIPS 1061 100 | 15.49 2.01

Table 3 shows the timings for each of the key
components of the Spectral-2 algorithm. For Spectral-
2, as K increases, running eigs becomes an increasingly
large performance bottleneck. The time taken for
clustering is low since we never have to re-run the k-
means algorithm on the entire graph. This includes the
time taken to determine whether or not to accept a split
which involves computing @@ which takes little time since
we don’t recompute @ from scratch but instead update
@ based on the edges that have been reassigned.

Table 4: Overall timing results in seconds.

Name n K | Spec-2 | Spec-1 | Newman
Football 115 25 0.41 3.11 7.74
Science 230 25 0.77 4.23 8.38
Science 230 50 1.06 13.96 8.38

NIPS 1061 50 10.57 51.57 387.15

NIPS 1061 100 | 22.14 | 321.14 | 387.15

Table 4 shows the overall times (in seconds) for
each of the five experiments.* Perhaps most interesting
is to observe how the interaction between K and n
affects the results. Spectral-1 is generally faster than
Newman’s algorithm although for large enough values
of K and small enough values of n, Newman’s algorithm
can be faster. Spectral-2 is generally at least an order
of magnitude faster than the other two algorithms
although as K gets larger the difference in speed is less
pronounced.

5 Discussion

The idea of reducing a combinatorial graph partition-
ing problem to a geometric vector space partitioning
problem using spectral techniques is by no means new.
Some of the earliest breakthroughs can be attributed to
Hall [7] and Fiedler [6]. Alpert and Yao [1] showed that
when the full eigenspace is used, certain graph partion-
ing problems exactly reduce to vector partioning ones.
More recently, Brand and Huang [3] presented theoreti-
cal results precisely characterizing how compacting the
eigenbasis is able to magnify structure in the data. Fur-
thermore, Chung [4] and others have laid much of the
foundational work in spectral graph theory, on which
a large part of the subsequent theoretical analysis of
spectral clustering methods is based.

The key idea in this paper is to reverse engineer
Newman’s ) function into a spectral framework in
which any input graph can be optimally embedded into
Euclidean space. Once the input graph is represented
in a Euclidean space, we can then use fast geometric
clustering algorithms such as k-means to identify the
clusters.  Any algorithmic framework developed in
this way faces a large search problem since both k&
(the number of clusters) and the dimensionality of the
embedding which maximize @ need to be explored.
Both algorithms for fixed k choose the dimensionality of
the embedding to be k-1 (e.g. for k=2, we just use the
top eigenvector). The assumption here is that while it
may be possible, in some cases, to use fewer dimensions
and still find a good clustering for fixed k, while also
making the algorithm even faster, it is better to be
conservative. Experiments have shown that the higher
the dimensionality (the more eigenvectors), the better
the clusterings produced, although we did not find that
having the dimensionality of the embedding exceed k-1
helped in any way.

Both algorithms empirically track the performance
of Newman’s algorithm quite closely. The slower, more

INote that the times for Spectral-1 and Spectral-2 are slightly
larger than the sums of the corresponding times in Tables 2 and
3 due to additional overhead in the algorithms.



accurate algorithm (Spectral-1) can produce higher-
quality clusterings than Newman’s because of the non-
greedy search heuristic. The Spectral-2 algorithm could
be viewed as a top-down divisive search alternative
to Newman’s bottom-up agglomerative search, in a
general hierarchical clustering context, with attendant
advantages and disadvantages to each in terms of the
greedy search strategy, as well as having significant
differences in their computational characteristics.

Other search heuristics approaches are also possible
and may lead to different trade-offs between cluster
quality and computation time. For example, combining
both of our algorithms into a hybrid algorithm may yield
a fruitful trade-off between speed and cluster quality.
For graphs where the number of clusters to search over
is large, Newman’s hierarchical clustering approach may
be the preferred method given that it operates directly
on the graph without any need for embedding the graph
into a Euclidean vector space. Our algorithms, in
contrast, use sparse eigenvector techniques which scale
quadratically with the number of clusters to search over.
However, when the number of clusters to search over is
small, and n the number of nodes increases, the O(n?)
complexity of hierarchical clustering can quickly become
intractable. In contrast, the two algorithms we propose
here will scale relatively well to large graphs.

6 Conclusions

In this paper we have shown how the recently proposed
@ function can be used to find high quality graph clus-
terings. We give a precise analytical expression which
when maximized returns a discrete assignment matrix
X that represents the optimal partitioning of a graph
according to the @ function for fixed k. Because maxi-
mizing this expression is NP-Complete, we show how the
discrete maximization can be approximated as a contin-
uous one that is easily solvable by performing eigenvec-
tor decomposition on a matrix L¢g, which we call the Q-
Laplacian. We present two algorithms which attempt to
search over different values of k to find the best value of
k and the accompanying best clustering. The first algo-
rithm we present searches independently for a best clus-
tering for each value of k. Unlike Newman’s algorithm,
which optimizes @ by local iterative improvement, this
algorithm seeks a direct global maximum of Q. The
second algorithm we present is similar to Newman’s al-
gorithm in that it uses a local greedy search heuristic;
however, it is based on a top-down strategy of splitting
clusters that lead to higher values of @) and is thus much
faster than the other two algorithms for K < n. Em-
pirical results suggest that both methods provide high
quality graph clusterings on a variety of graphs that ex-
hibit community structure, and both methods scale lin-

early in the number of edges, allowing for applications
to large sparse graphs.
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