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Abstract

In earlier work we have introduced and explored a
variety of different probabilistic models for the problem
of answering selectivity queries posed to large sparse
binary data sets. These models can be directly scaled
to hundreds or thousands of dimensions, in contrast
to other approximate querying techniques (such as
histograms or wavelets) that are inherently limited
to relatively small numbers of dimensions. In this
paper, we extend this work by applying probabilistic
model-averaging to the problem of query answering, a
scheme that allows the query-answering algorithm to
automatically and optimally adapt to both the specific
nature of the data and the distribution of queries being
issued any specific user. We demonstrate that on real-
world and simulated data sets that model-averaging
can reduce the prediction error of any single model
by factors of up to 50%. Learning the combining
weights is a straightforward and scalable optimization
problem that can be easily automated, providing a
practical framework for approximate query answering
with massive data sets.

Keywords: Binary transaction data, query ap-
proximation, probabilistic model, itemsets, ADTree,
maximum entropy.

1 Introduction and Previous Work

Consider a data set with N rows and d columns (at-
tributes or fields). Assume the attributes are binary
or categorical for simplicity. A very common opera-
tion in interactive querying and in data mining is de-
termining the number of rows in the data that satisfy a
particular conjunctive query, e.g., how many rows sat-
isfy A = 1, F = 0, Z = 1 where A, F , and Z are bi-

nary attributes for example. The straightforward way
to answer such a query is by directly scanning the data
(known as a linear scan) to count how many times the
condition A = 1, F = 0, Z = 1 matches a row. For
very large data sets the time taken to conduct a lin-
ear scan may be impractically large. For example, with
current technology the rate at which data can be read
from disk is about 2 Mbytes/second, and the rate at
which data can be scanned in main memory is about 10
Mbytes/second. Thus, with a 1 gigabyte data set (for
example) it will take about 10 minutes to load the data
from disk and perform a linear scan.

In this context the ability to quickly generate ap-
proximate answers to queries on large data sets is of
importance across a range of data analysis applications,
ranging from query selectivity estimation in relational
database management to interactive ad hoc exploration
of massive data sets.

We focus in this paper on approximate query an-
swering algorithms for sparse high-dimensional binary
data sets. Examples of such data sets abound in data
mining applications, e.g., where the columns are Web
pages and the rows are different visitors to the site, or
where the columns are products and the rows are retail
customers. Generalizations to sparse categorical data
(where each non-zero entry could a count or a rating)
can also be developed [17] but are not discussed in this
paper.

In terms of the content of the queries we focus on
simple conjunctions in this paper, noting that in past
work we have demonstrated that it is straightforward
to generalize the methods to handle arbitrary Boolean
queries [14] — in essence, once one can approximate
counts of conjunctions accurately one can then approx-
imate functions of counts, etc. We also assume that the



database consists of one table and our task is to esti-
mate counts only, i.e. we do not need, for example, to
perform JOINs or return the actual records satisfying
the query.

Prior work in the database community on this
problem has focused primarily on selectivity or count
queries. These are queries that are posed to a historical
training data set, so that the perfect answer to a query
can always be obtained by a full scan of the data at hand
(e.g., how many people visited Web pages A, B, and C
last week). In this paper we also consider generalization
or predictive queries where the goal is to go beyond the
historical data at hand and to forecast the count for a
particular query on future data (e.g., how many people
will visit Web pages A, B, and C in the next week).
In general we have found that the techniques that
work well for count queries tend to also work well for
generalization queries. From a statistical viewpoint this
requires generalization beyond the available historical
data whereas count queries (selectivity estimation) in
effect can be viewed as a form of data compression.

For count queries, the count of the query, if divided
by the total number of records in the data, is the
empirical probability of the query. For predictive
queries, the goal is to estimate the probability that
a randomly selected row in a future data set will
satisfy the query, Thus, in this paper we will treat the
problem of estimating counts as a problem in estimating
probabilities, and will focus on the use of different
probabilistic models of the data as the basis for a
number of different query answering algorithms. The
general idea is that we can build a probabilistic model of
the data (or gather some form of cached store of counts)
in an offline (cost-free) manner, and then answer queries
relatively quickly using a probabilistic model in real-
time, without having to access the raw data.

While there is a large body of work on estimat-
ing probability distributions from a generalization view-
point in the statistical and machine learning literatures,
there has been relatively little work on learning distri-
butions for the specific purpose of query answering. One
exception is [8] which looked at Bayesian network learn-
ing for queries, but with somewhat different goals and
different techniques to those of this paper.

Ideally we would like our probabilistic models to
be (a) accurate, (b) relatively fast compared to a linear
scan, (c) scalable in terms of both speed and accuracy to
large numbers of records and high dimensional data, and
(d) flexible in that the method can trade-off accuracy
with time and memory if necessary.

The independence model is the simplest probabilis-
tic model we can imagine for this purpose, and it
has been widely used in commercial database systems

for query selectivity estimation, primarily because of
its simplicity and very low time and memory require-
ments [18]. However, the independence model is often
too simple to adequately model the complexities of real-
world data sets [5]. Furthermore, it is not flexible in the
sense of allowing any tradeoffs between accuracy and
time or memory, in the sense that there is no parameter
in the model that we can vary to achieve more accurate
answers at the cost of waiting longer.

A variety of more sophisticated techniques for ap-
proximate query answering, that in general do allow
such flexibility, have been proposed in recent years,
such as wavelet models [12, 4] and multidimensional
histograms [18, 13]. A limitation of these approaches,
however, is that they do not scale well to high dimen-
sions due to the “curse of dimensionality” and, thus,
tend to only work reliably on relatively low-dimensional
problems (e.g., problems with 10 or fewer dimensions).

The relatively simple technique of answering the
query based on a random sample [10, 1] does satisfy
our flexibility requirement in that we can always in-
crease the size of the random sample (at least offline)
to gain accuracy. However, we have shown in earlier
work that simple random sampling can be quite inferior
in terms of time-accuracy and memory-accuracy trade-
offs when compared to more sophisticated probabilistic
models [16, 17, 15].

A variety of flexible probabilistic models such as
mixture models [19], Bayesian networks [7, 11], and re-
lated dependency models [6] have also been proposed
with the goal of finding accurate, fast, and flexible mod-
els. However, all of the work reported in these pa-
pers is either not scalable to high dimensions, or was
only evaluated on relatively low-dimensional problems
(say, 10 or fewer dimensions). For example, learning
a Bayesian network model offline on 1000-dimensional
binary data is quite feasible with current learning al-
gorithms and computational technology. However, if
we have a query involving (say) 4 attributes, this re-
quires the marginalization (“summing out”) over all of
the other 996 variables whose values are not fixed in
the model to obtain the probability of interest. The
structure of the graph can of course be leveraged to
make this sum tractable, but we have found that on
real-world binary data sets that the graph underlying
the Bayesian network can have relatively large cliques
making exact inference intractable [16, 17]. Approxi-
mate inference could be carried out using Gibbs sam-
pling but is not particularly well-suited to generating
approximate query answers in real-time given its rela-
tively slow convergence (especially for queries involving
small probabilities).

In our prior work on approximate query answer-



ing [16, 17, 15] we have proposed and investigated the
accuracy, speed, scalability, and flexibility properties
of a variety of probabilistic models, including mixture
models, maximum entropy models, models based on
inclusion-exclusion, and Bayesian networks. We have
shown, for example, how to scale up to high dimen-
sions, reporting results on query approximation with on
the order of 500 attributes, which is 2 orders of magni-
tude greater than with previous techniques — here the
“trick” is to learn a model in real-time on the variables
in the query using cached counts (frequent itemsets)
and sidestep completely the issue of building a full joint
probability distribution on all d attributes.

We also demonstrated that there are several funda-
mental trade-offs between accuracy of the answer, and
time and memory taken to generate the answer [17].
For example, models with very low time and memory
complexity (such as the independence model) generally
tend to be relatively inaccurate. A further complicating
factor is that the performance of the model can be sig-
nificantly affected by the nature of the underlying data
set (e.g., the sparsity of the data for a binary data set)
and the distribution of queries being issued (e.g., the
average number of attributes contained in queries).

One clear conclusion from this earlier work that
there is no single model or technique that is universally
superior across all data sets and query distributions.
Equivalently, it is impossible to predict ahead of time
which particular technique will provide the best perfor-
mance on a particular data set and with a particular
query distribution.

This paper addresses this question specifically. If
different models have different strengths and weaknesses
depending on the nature of both the data distribution
and the types of queries being asked of the data, is there
a way to guarantee that we can automatically achieve
the best performance (at least on average)? We use
the technique of model-combining (specifically “stack-
ing”) and show that it provides a practical “insurance
policy” that systematically outperforms any technique
that relies on individual models for query approxima-
tion. Stacking has been used for regression, classifica-
tion, and density estimation in past work and here we
extend its applicability to query approximation. In par-
ticular it automatically adapts to the query distribution
to generate predictions from weighted combinations of
models. Empirical results demonstrate that the differ-
ence in accuracy between the combined model and the
best individual model can be substantial.

The two primary novel contributions of this paper
are (1) the introduction of the statistical notion of
model averaging in the context of query approximation,
and (2) the empirical demonstration that this approach

provides systematically lower error rates than any single
model on the data sets used in this paper.

2 Notation and Statistics for Model

Comparison

We use the following notation in the remainder of the
paper. We assume that we are given a data set with k
binary attributes, n records and a sample S of queries
coming from query distribution π(Q). By P we denote
the true unknown joint probability distribution on the k
attributes. We use PM to denote an estimate of P from
the data, based on a probabilistic model M ; PM (Q) is
then an estimate of the value of P (Q).

We use the following criteria to compare the perfor-
mance of different models:

• Time: the online time cost is the time taken to
answer the query Q online using the model PM .

• Memory: the complexity of the learned model PM

(in practice, the number of bytes required to store
the model).

• Error: the error is defined as
∑

Q∈S |P ∗(Q) −
PM (Q)|, where P ∗(Q) is the observed empirical
probability of the query Q in the training or the
test data depending on whether Q is a count or a
generalization query. In practice, we normalize the
error as follows:

Erel =
∑

Q∈S

[|P ∗(Q) − PM (Q)|]/
∑

Q∈S

P ∗(Q).(2.1)

In this paper our primary focus is on the accuracy of
different query approximation schemes, or equivalently,
the error in answering queries as defined above. The
online time tP taken to compute the answer and the
memory footprint are of interest only to a secondary
degree, and the offline time cost of building the proba-
bilistic models is not explicitly considered below (since
it is viewed as a “one-time” resource investment, not of
primary interest).

3 Probabilistic Models for Query

Approximation

We evaluate the performance of several different classes
of probabilistic models for query approximation. The
algorithms for constructing and querying each of these
models are described in detail in [17]. These models
can be loosely categorized into three general classes:
empirical data models, probabilistic models that are
built offline, and probabilistic models that are built
online when the query is posed.



Empirical data models considered include (1) a lin-
ear scan of the training data and (2) q% random sam-
ples of the training data for values of q = 1, 5, 10, 15, 20.
For count queries the linear scan method produces ex-
act answers and for generalization queries it effectively
assumes that the future data counts will be exactly the
same as those seen in the past for the query.

The class of offline probabilistic models consists of
relatively simple probabilistic models where a full joint
distribution on all k attributes is estimated once and
for all “offline” before any queries are issued. The
models in this class include the independence model,
the Chow-Liu tree model, and mixtures of conditional
independence Bernoulli models parameterized by the
number of clusters NC , taking values 5, 10, 25, 50, 80.

Finally, the probabilistic models in the third class
are considerably more complex in form, including
Bayesian networks (BN) and maximum entropy (ME)
models. For these models a full k-dimensional distri-
bution is often not tractable to work with from either
a time or memory viewpoint. Consequently, for this
class, summary statistics in the form of itemsets (de-
fined in the Appendix) are computed offline and when a
query Q is issued, a joint distribution is constructed in
real-time on the variables in Q. These methods never
construct a full joint distribution on all k attributes but
instead construct joint distributions on the query vari-
ables “on the fly” in real-time. Specifically we investi-
gate the inclusion-exclusion model (IIE model), the BN
model and the ME model based on itemsets, parameter-
ized by the value of the threshold T in the definition of
T -frequent itemsets. This parameter was chosen accord-
ing to the algorithm described in [17]. For the Microsoft
Web data we set T to 10, 30, 50, 70, 90 and for the Quest
data, we set to T to 20, 40, 60, 80, 100 (both data sets
are described below).

4 Query Approximation Performance of

Individual Models

Since the primary focus of this paper is on model
combining, we limit our discussion of the performance of
individual models to a subset of the overall experimental
results, sufficient to illustrate the main features of the
individual models for query answering.

4.1 Description of Experimental Data Sets We
conducted experiments on two real-world transaction
data sets. The real-world data sets included the Mi-
crosoft Anonymous Web data set (publicly available at
the UCI KDD archive, kdd.ics.uci.edu), and a sim-
ulated transaction data set from the IBM Quest data

simulator1. The general characteristics of these data
sets are provided in the Table 1.

4.2 Experimental Results We generated 1000
queries from a query distribution π(Q), and evaluated
different models with respect to the average memory
taken by the model, the average online time taken to
answer a query, and the average empirical error as de-
fined in Equation 2.1. All experiments were performed
on a Pentium III, 450 MHz machine with 128 Mb of
memory.

The distribution π(Q) was modeled as follows:

• fix the query lengths to nQ = 4 or nQ = 8;

• randomly select nQ attributes according to the
empirical probability of the attribute taking a value
of “1”;

• randomly select a value for each selected attribute
according to its univariate probability distribution.

This choice of a query distribution π(Q) is moti-
vated by the fact that zero values for the attributes are
more likely in sparse data sets than positive ones (e.g.,
see Table 1). Using purely random queries (randomly
chosen attributes with randomly chosen values) would
result in a preponderance of queries whose count is zero
in the data (since any query consisting of more than
one positively instantiated attribute will often not have
occurred in the data).

Here we show the results for count queries on the
Web data to illustrate the basic tradeoffs—qualitatively
similar and consistent results have been found for gener-
alization queries and for other data sets (further details
can be found in [17]).

The plots in Figure 1 show the the average relative
error versus the memory requirements for each model.
The left plot corresponds to queries of size 4, the right
plot to queries of size 8. Both axes on each plot are on a
logarithmic (base 10) scale. The dotted line corresponds
to a linear scan of the training data—it is error free for
count queries, so that the logarithm of the error equals
minus infinity. Thus, we only show how much memory
the training data takes. Note that all models to the
right of this dotted line are effectively impractical since
that they are taking more memory than the full data
set.

Different points on each curve were obtained by
varying the value of the tradeoff parameter for the
respective model corresponding to that curve. Of note
is the fact that the number of clusters NC (in the
definition of the mixture models) and the threshold T

1www.almaden.ibm.com/cs/quest/syndata.html
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Figure 1: Error versus Memory: average relative error for 1000 queries of length 4 (left) and 8 (right) drawn from
π(Q) as a function of the average model complexity for the Web data, both on a log scale.
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Figure 2: Error versus Online Query Time: average relative error for 1000 queries of length 4 (left) and 8 (right)
drawn from π(Q) as a function of the average online time for the Web data, both a log scale.



Table 1: General characteristics of the data sets: k is the number of attributes, n is the number of records, N1′s

is the number of 1’s in the data, E(N1′s) = N1′s/n, E(N1′s)/k is the density index, Std(N1′s) is the standard
deviation of the number of 1’s in the record, and Max(N1′s) is the maximum number of 1’s in any record.

k n N1′s E(N1′s/k) Std(N1′s) Max(N1′s)
MS Web Data Set 294 32711 98654 0.0102 2.5 35

Quest 300 78148 281626 0.0120 1.77 12

(in the definition of itemset-based methods) provide a
mechanism for a direct tradeoff of accuracy with time
and memory. In particular, the higher the number of
clusters NC , the more parameters are in the mixture
model (linearly as a function of NC) and the more
accurately it can answer count queries on the training
data. But as NC increases it also requires more memory.
Similarly, as the threshold T is reduced, more itemsets
become T -frequent and are used in the models based
on itemsets. Thus, for smaller values of T , the itemset-
based models use more memory and presumably offer
more accurate estimates than for larger values of T .

Figure 2 illustrates how the error varies as a func-
tion of the online time for each of the models, answering
queries of length 4 (left) and 8 (right) on the Web data.

The primary points of interest from both graphs can
be summarized as follows:

• There is significant variability among different
models in terms of accuracy, memory footprint, and
online query time.

• The independence models are the fastest, have the
smallest memory requirements, but are the least
accurate of all models. The Chow-Liu tree model
provides a modest improvement in accuracy over
the independence model but is also substantially
less accurate than the more complex models.

• Random samples are also substantially less accu-
rate than the more complex probabilistic models,
yet can consume significant time and memory re-
sources.

• The itemset inclusion-exclusion models are much
faster than all of other models (with the exception
of the independence model). The most complex
itemset inclusion-exclusion model is comparable in
accuracy with the best of the other methods.

• The maximum entropy models, constructed online
from itemsets, are often the most accurate mod-
els, but take the most time (apart from the train-
ing data). They suffer from an exponential in-
crease in online time as the query length grows,
a consequence of the fact that inference in such

models scales exponentially with the size of the
largest clique in the underlying Markov random
field graph.

• Bayesian networks, also constructed online from
itemsets, are also among the most accurate mod-
els and take time intermediate between inclusion-
exclusion and maximum entropy models. Because
the models are built from itemsets, they also “in-
herit” the memory problems of itemset-based meth-
ods.

• The mixture models can provide comparable accu-
racies in the general range of the more accurate of
the models, while providing reasonable and time
and memory performance points.

Based on the experiments above (and other similar
results not shown here due to space limitations) mixture
models and the models based on itemsets (inclusion-
exclusion models, Bayesian networks, and maximum
entropy models) tend to be the most effective in general.
However they can vary significantly (relative to each
other) in terms of time and memory. An important
point is none of these models alone dominates the others
over all possible data sets and query distributions.
Detailed examples illustrating this statement can be
found in [17].

Since the choice of the model is dependent on
the data distribution there is motivation to explore
techniques that can adapt the model being used to
both (a) the nature of the data at hand, and (b) the
nature of the queries being issued (in the next section we
illustrate how model performance can vary as a function
of different queries, for the same data set).

5 Model Combining Using Stacking

In this Section we show that the model averaging
technique of stacking can be used to combine models,
such that the predictions from the combined model tend
to perform better on average than any single model over
a variety of data sets and query distributions.

5.1 A General Description of Model Averaging

Consider the general situation where we have a set of



models M = {M1, M2, . . . , MK} that are all candidate
models for a true unknown probability distribution P .
Instead of relying on any one of these models (i.e.
conditioning on a specific model to make a prediction) a
more appropriate approach from a statistical viewpoint
is to average our predictions over all of the models (a
technique known as called Bayesian Model Averaging
(BMA) [9]):

P (Q|r) =

K
∑

k=1

PMk
(Q|r)P (Mk |r),(5.2)

where the term PMk
(Q|r) is a prediction for the query

probability provided by model Mk. The second term,
P (Mk|r), is the probability that model Mk is the correct
model, given the data r, or in effect, a Bayesian weight
for the prediction from model Mk.

The calculation of the model weights is almost al-
ways intractable except for trivial problems, since it
involves very high-dimensional integrals in parameter
space. In current statistical practice Monte Carlo sam-
pling techniques are widely used to generate approxi-
mate solutions to such equations. However, these meth-
ods are rather computationally intensive and not well-
suited to the type of online real-time query answering
problem being considered here.

5.2 A Data Driven Alternative to the BMA

Equations An alternative to Bayesian estimation of
the weighting coefficients P (Mk|r) is to simply treat
the weights as arbitrary unknown parameters and to
estimate them in a data-driven manner to minimize an
empirical loss function (see below). Let αk represent
the weight for model Mk, so that the prediction of our
combined model is written as

P (Q|α1, . . . , αK , r) =

K
∑

k=1

αkPMk
(Q|r).(5.3)

We can try to directly find the set of weights αk that
minimize the average difference between the prediction
and the true probability for Q, e.g., minimize the
expectation of the squared error:

Eemp(α1, . . . , αK) =
∑

Q∈S

(

∑

k

αkPMk
(Q|r) − P (Q)

)2

(5.4)
as a function of the α’s. Note that the averaging here is
with respect to the sample from the query distribution
π(Q) with which queries are issued. Furthermore, the
set of α’s that minimize this expression will be optimal
with respect to both the distribution of the data (as
reflected by the true probability p(Q)) and also optimal
with respect to the distribution of the queries π(Q).

The resulting optimization problem of minimizing
Eemp(α1, . . . , αK) reduces to a straightforward exercise
in solving a set of linear algebraic equations (i.e., linear
regression), since the derivative of Equation 5.4 can be
written as a linear equation in the α1, . . . , αK weights
with all other terms known. The time complexity of
solving this equation is O(K3 + K2NQ). Since K, the
number of models, is relatively small this means that the
stacking weights can be determined quite quickly. If we
constrain the α’s to sum to one, or to be non-negative,
we get a constrained convex quadratic programming
problem, which can still be solved in polynomial time.
In our experiments below we use non-negative coeffi-
cients constrained to sum to 1. Experimental results
on using different types of coefficients (not shown here)
indicate that using unconstrained coefficients produces
almost identical estimates in practice to the constrained
case (agreeing with the results reported in [3] for regres-
sion).

This general approach of learning model weights on
a validation data set is known as “stacking” in the ma-
chine learning and statistics literature [21] and has been
demonstrated to provide substantially improved predic-
tive power over individual models for both regression [3]
and density estimation [20].

Our adaptation of stacking to the query approxima-
tion problem has one main difference relative to prior
work on model combining (e.g., [20]), namely, in opti-
mization of the coefficients with respect to the query dis-
tribution π(Q). In previous work the model coefficients
were selected relative to the overall data distribution
(e.g., minimizing with respect to the distribution P (Q)
for density estimation) whereas here we explicitly mini-
mize with respect to query distribution π(Q). This has
important practical implications: the models selected
for prediction (i.e., those given significant weight in the
combined model) will be precisely those models that
predict well for queries Q that are “well represented” in
the population of queries being generated by π(Q). If
we have a set of distributions π(Q), each for different
users or different sets of users, and we estimate weights
for each query distribution in this set, we can get very
different weight-vector solutions in principle, each tuned
to different individual query distributions.

6 Experimental Evaluation of Stacking

6.1 Stacking Compared to Individual Models

In this section we compare the performance of the
best of the individual models with the performance of
stacking, for both the Web and Quest data sets and
for both count and generalization queries. We omit
both the maximum entropy model and the training data
methods from consideration in these experiments since
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Figure 3: Comparing individual models with stacking on the Web (top plots) and Quest (bottom plots) data sets,
plotting mean percentage error (relative to mean count size) as a function of query size for (a) count queries (left
plots) and (b) generalization queries (right plots).



they are too slow in practice for large data sets to be
of practical consideration. In all experiments below we
use all of the other models described earlier. For the
mixture models the number of components NC was fixed
at 80 and for random sampling a sample size of 20% of
the original data was used. For itemset-based models
the threshold T was set to 10 on the Web data and to
20 on the Quest data. This corresponds to selecting the
most accurate model (or equivalently, the most complex
model) for each of these models, at least for count
queries. The query distribution π(Q) was modeled as
described in Section 4.2. The query sizes were set to 4,
8, 12, and 16.

Each of the data sets was randomly partitioned into
3 roughly equal disjoint subsets of rows: a training
set, a validation set, and a test set. The training
set was used to estimate parameters for each of the
models, the validation set was used for estimation of
the stacking parameters, and the test set was used as an
independent test data set. Two sets of NQ = 500 queries
were randomly generated from π(Q) for the purposes
of estimation of stacking weights and evaluation of the
models on test data. For count queries, the query
answers provided by each model were scored against
the training data. For generalization queries, the query
answers provided by each model were scored against the
test data. The process of partitioning the data, training
the models, and generating and evaluating query results
was repeated 25 times, and the average error recorded.

In Figure 3 we show the resulting average errors for
both data sets and for both count and generalization
queries, as a function of query size. For clarity only
the results from the most accurate models are plotted.
For example, the independence model is typically so
inaccurate that it skews the graphs considerably when
included.

There are a number of important points to be
gained from the graphs:

• Accuracy decreases as queries become longer: this
is a simple consequence of the increasing difficulty
of estimating probabilities as dimensionality in-
creases.

• Errors on generalization queries are higher than for
count queries: this is to be expected as prediction
is harder than memorization.

• The identity of the single model with the lowest
error changes as a function of data set and query
size. For example, in Figure 3, for count queries on
the Web data set, the itemset inclusion-exclusion
model has the lowest error of any individual model
for query sizes of 4 and 8, but it has the second-
highest error for query sizes of 16.

• The average error for mixtures and random sam-
pling appears to increase roughly linearly as a func-
tion of query size, but the error for itemset-based
methods increases non-linearly. This suggests that
the itemset-based methods are quite sensitive to
the nature of the queries being issued.

• Stacking has the lowest average error rate in all
experiments: for both count and generalization
queries, over all query sizes, and for both data sets.

6.2 Stacking Compared to the “Best” Single

Model An obvious competitor to stacking is to select
the single individual model that performs best on the
validation data set. Note that the best model on
the validation data set is not necessarily the model
that will perform best on future test data: in fact,
this “noise” in model selection is precisely one of the
reasons why selecting a single model will on average not
perform as well as model averaging. For the same set
of experiments described in Section 6, the individual
model that had the lowest error rate on the validation
data set was identified in each of the 25 runs (for both
count and generalization queries and for each of the data
sets). The average accuracy of the predictions of this
“best single model” on the 500 test queries were then
recorded on the test data set (for each of the 25 runs)
and compared to the predictions of a stacking model
that was trained and tested on the same data.

Figures 4 and 5 show the results obtained where
the average percentage decrease in error obtained by
using stacking (rather than a single best model) are
shown. The percentage improvement in error ranges
in size from about 1% (typically on short queries)
to up to 50% (typically on longer queries). This
phenomenon is well-known in statistics and machine
learning, namely, that the selection process itself is
noisy, and averaging will systematically outperform
virtually any algorithm that uses the data to select
a single model for prediction [21, 3, 20]. In fact,
stacking also outperforms the single best model chosen
on the test data set (results not shown), the so-called
“cheating” method, validating similar results found
earlier in the context of regression [3] and density
estimation [20].

6.3 Online Adaptability of Stacking to a User

Query Distribution Stacking also allows us to adapt
a model to a user’s queries in an online fashion. To
illustrate this we ran the following experiment. We
generated a sequence of queries, where queries were
simulated as coming from a mixture of distributions for
length 4 and length 16 queries, where for each length the
queries are generated in the manner described earlier. A
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Figure 4: The mean percentage decrease in error obtained by stacking relative to selecting a single model, for the
Web data, as a function of query size for (a) count queries (left plot) and (b) generalization queries (right).
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Figure 5: The mean percentage decrease in error obtained by stacking relative to selecting a single model, for the
Quest simulated data, as a function of query size for (a) count queries (left plot) and (b) generalization queries
(right).
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fixed size training data set, validation data set, and test
data set were generated in roughly equal proportions
for the Web data set. Thus, we are simulating the
practical situation of having a substantial amount of
raw data on which to build and test models, but having
a limited amount of queries available from which to
estimate π(Q). We trained the individual models and
the stacking algorithms on the full-sized training data
set in the same manner as described in the earlier
sections. For each set of queries Q1, . . . , Qt, for t =
1, . . . , 500, we simulated the effect of having to select a
single “best” model from the validation set, and having
to train a stacking model, based on only t queries seen
so far. For each value of t, the selected “best” model and
the stacked model made predictions and were scored on
the test data set (this provides a fair estimate of their
overall accuracy: one could also have gotten a somewhat
noisier estimate of their accuracy by simply doing “one-
step ahead” prediction on query Qt+1 for each t).

The left plot on the Figure 6 shows how the gener-
alization error achieved by stacking and the single-best
models depends on the number of observed queries. The
stacking model quickly adapts to the query distribu-
tion even with only 40 or so queries. It also converges
to a significantly lower asymptotic error rate than the
single-model method. The right plot for Figure 6 illus-
trates how the individual model weights αk estimated
via the stacking procedure change as the number of ob-
served queries increases. The weights quickly converge
to placing most of the weight on the mixture and the
itemset inclusion-exclusion model. This is not surpris-
ing since according to Figure 3 the mixture model is the
best single model on queries of size 16, and the itemset
inclusion-exclusion is the best single model on queries of
size 4. Once again the weights become relatively stable
quite quickly (i.e., only a small number of queries are
needed to converge to the optimal weights).

7 Conclusions

We introduced a new model averaging technique for
query approximation that is accurate, computationally
efficient, and optimal in the sense that the combined
model uses weighting coefficients designed to perform
optimally in terms of prediction, relative to the specific
data set being queried and the distribution of queries
being issued. We demonstrated that model averaging
can provide more accurate query answers than a vari-
ety of individual probabilistic models over a range of
data sets and query distributions. Model averaging also
significantly outperforms the method of selecting the
single best model on a validation data set, being up to
50% more accurate for the data sets and queries in this
paper. The methodology for generating the model com-

bining weights is scalable, involving a straightforward
optimization problem. The method is quite suitable
for online implementation and can be straightforwardly
generalized to a constrained optimization problem when
memory and time resource constraints are present.
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A Appendix: Definition of Itemsets and Their

Properties

For a given data set, an itemset is defined to be either a
single positively initialized attribute or a conjunction of
mutually exclusive positively initialized attributes. An
itemset is called T-frequent if its count in the data is
at least T , where T is some predefined non-negative
threshold. The size of an itemset is the number of
conjuncts it is defined on.

Itemsets have several attractive properties for query
answering in binary transaction data sets:

Theorem A.1. To provide an error-free answer to any
selectivity (count) query expressed as a Boolean expres-
sion on the attributes of the binary table r it is sufficient

to know all 0-frequent itemsets and their counts in r.

Theorem A.2. If an itemset on a set of variables X
is T -frequent then any count query Q (expressed as an
arbitrary Boolean expression) involving variables that
are all contained in the set X can be answered exactly
using only T -frequent itemsets.

Proofs can be found, for example, in [16].
There exist well-known efficient algorithms to com-

pute all the itemsets from large binary tables, e.g., [2].
Provided that the data are sparse, the running times of
these algorithms have been found in experimental anal-
yses to be linear in both the size of the table and the
number of frequent itemsets.

We view itemsets as providing summary informa-
tion about the original data and use them as a basis for
model learning. The quality of both (a) the summary in-
formation represented by the set of all T -frequent item-
sets and (b) the probabilistic model learned from these
itemsets, varies as a function of the value of the thresh-
old T . Lower values of T mean more information stored
about the data, and higher quality models in principle,
but at the cost of extra memory and (potentially) longer
online time to query the model.


