
Clustering Markov States into Equivalence Classes using SVD and
Heuristic Search Algorithms

Xianping Ge

Information & Computer Science
University of California, Irvine

Irvine, CA 92697-3430

Sridevi Parise

Information & Computer Science
University of California, Irvine

Irvine, CA 92697-3430

Padhraic Smyth

Information & Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Abstract

This paper investigates the problem of find-
ing a K-state first-order Markov chain that
approximates an M -state first-order Markov
chain, where K is typically much smaller
than M . A variety of greedy heuristic search
algorithms that maximize the data likeli-
hood are investigated and found to work well
empirically. The proposed algorithms are
demonstrated on two applications: learning
user models from traces of Unix commands,
and word segmentation in language model-
ing.

1 Introduction

There are numerous applications where we may to
want to estimate a Markov chain with a very large
number of states M . For example, in modeling of
Web navigation patterns M might be the number of
Web pages on a Web site; in modeling of text data
M could be the number of different words that can
occur. In these applications the number of states M
may be as large as 105 or more. These large values
of M will clearly render impractical the direct estima-
tion of O(M2) transition probability parameters in a
first-order Markov model for the data.

In this paper we investigate the general problem of re-
ducing an M -state first-order Markov chain to an ap-
proximating K-state Markov chain, where K is much
smaller than M . In the reduced chain, each of the
original M states are assigned to one of the K state
clusters, and K2 transition probabilities are estimated
at the cluster level. The general intuition behind such
a reduced-state model is that subsets of the originalM
states can be viewed as belonging to an equivalence
class in terms of their first-order Markov transition
behavior. For example, the probability of a particular
word in the set A coming next in the text, given that

the current word is in some set B, might be the same
for all pairs of words in sets A and B. The focus of this
paper is to propose and evaluate a number of different
learning algorithms that can discover such equivalence
classes from observed data.

We begin by showing that this learning problem can
be related to singular value decomposition (SVD) of a
particular form of block-structured matrix. The SVD
method produces an exact solution under certain ideal
conditions, but requires very large amounts of data to
work effectively in practice. This motivates the pro-
posal of a class of heuristic search algorithms that di-
rectly seek K-state models that maximize the likeli-
hood of the observed data. These algorithms view the
problem as an assignment problem (iteratively assign-
ing each of the M states to K clusters) and appear to
work well in practice even for relatively large values of
M and K.

We illustrate the application of these algorithms using
two different problems with large alphabet sizes M :
(a) learning user models from a set of individuals based
on 6 months of Unix command line data, and (b) auto-
matically constructing a K-state Markov chain at the
word level to segment English text with word bound-
aries removed. The resulting reduced Markov chains
are shown to clearly capture informative structure in
the data.

2 Notation and Model

To avoid confusion about the states in the original M -
state Markov model and the states in the new K-state
model, we will refer to states in the M -state model
as symbols. Let s(y) be the state that symbol y is
assigned to.

P (symbol y|state s) =

{

Py|s, if y ∈ s,

0, otherwise.

To simplify notation we assume that y0=start,



yT+1=stop for any symbol sequence y = y1 . . . yT .
These two imaginary symbols correspond to the imag-
inary states start and stop, respectively.

The set of parameters for the model is

θ = {A, {Py|s(y)}},

where A is the transition matrix. Note that the initial
state distribution π is incorporated intoA as the tran-
sition probabilities from the imaginary state start.

Our task is to estimate θ from a set of symbol se-
quences {y}. The log likelihood is

logP ({y}) =
∑

y

logP (y)

=
∑

y

T (y)+1
∑

t=1

[

logP
(

s(yt)|s(yt−1)
)

+ logP
(

yt|s(yt)
)

]

=





∑

y,y′

ny,y′ logAs(y),s(y′)



+

[

∑

y

ny logPy|s(y)

]

(1)

where

• T (y) is the length of y,

• ny,y′ is transition count of the symbol pair (y, y′),
i.e., the number of times that symbol y is followed
immediately by symbol y′,

• ny =
∑

y′ ny,y′ is count of the symbol y, i.e., the
number of occurrences of symbol y.

Using ny, ny,y′ , we can define the following counts:

• ns =
∑

y∈s ny is the count of state s.

• ns,s′ =
∑

y∈s
y′∈s′

ny,y′ is the transition count from

state s to state s′.

• n =
∑

s ns is the total count.

From Equation 1 we see that the data log likelihood
logP ({y}) can be computed solely from the transi-
tion counts {ny,y′} (i.e., the counts {ny,y′} form a set
of sufficient statistics for this model). The transition
counts {ny,y′} can be stored in an M ×M matrix C,
a matrix that in many applications is highly sparse.

The reduced-state model can be viewed as a con-
strained hidden Markov model (HMM), with the con-
straint that each symbol y can appear in only one state
s(y), i.e., P (y|s) = 0 for all s except s(y). While
the Expectation-Maximization (EM) algorithm can in
principle be used to train this constrained model, it is
in general not a particularly effective approach since

the solutions exist at “corners” of parameter space
(i.e., in our solution we seek many P (y|s) = 0 terms,
but do not know ahead of time which terms are zero
and which are not). We will see later that assignment-
style algorithms, that move symbols from state to state
to maximize the likelihood (or posterior probability in
a maximum a posterior (MAP) framework) are empir-
ically much more effective than EM for this problem.

3 Related Work

Our SVD-based method is based on a block-constant
matrix derived from the symbol transition counts. We
show in the next section that the constrained HMM
model leads to a matrix with block-constant struc-
ture. Once we have the block-structured matrix, we
use spectral methods to find the clusters. This step is
similar in spirit to previous work in image segmenta-
tion that uses the block structure of a pairwise similar-
ity matrix to find clusters (Perona and Freeman, 1998;
Weiss, 1999; Meilă and Shi, 2001).

For example, Meilă and Shi (2001) normalize the pair-
wise similarity matrix into a Markov-chain transition
matrix, where the eigenvectors are piecewise-constant
iff the matrix is “block-stochastic.” In theory, we could
also use theirModified NCut (MNCut) algorithm, since
our normalized symbol transition matrix is also block-
stochastic. But in our model we are dealing with an
actual Markov chain; the symbol transition counts are
not similarities as assumed in the MNCut algorithm.
Furthermore, as we will see in Section 4, our Markov
chain allows the derivation of a much stronger matrix
structure, i.e., a block-constant matrix. This leads to a
more robust algorithm in the face of limited amounts
of training data, as we will show at the end of Sec-
tion 4.

The search-based algorithms that we propose are
closely related to bigram word clustering in language
modeling. With word clustering, each word w belongs
to a category c(w). The bigram model predicts word
wt from the previous word wt−1 as follows:

P
(

wt|wt−1

)

= P
(

c(wt)|c(wt−1)
)

P
(

wt|c(wt)
)

.

Brown et al. (1992) initialize the word clusters with
hierarchical clustering, then cycle through the words,
moving each word to its best class. Martin et al.
(1998) extend this approach to the trigram model;
they initialize the clusters by putting each of the K−1
most frequent words into a separate class, and the re-
maining words into one class.

The greedy algorithm of cycling through the words
and moving each word to its best class corresponds
to the iterative conditional mode (ICM) style heuris-



tic (Besag, 1986) that we later use in our search-based
algorithms. We formulate the problem in the general
framework of searching (namely to search for the best
assignment of M symbols to K states, among all pos-
sible assignments) and investigate the effectiveness of
a number of different heuristic search algorithms from
artificial intelligence (AI) for this problem.

4 An SVD Formulation of the

Problem

The SVD method is based on the M ×M matrix de-
fined by

Hy,y′ ≡ P
(

s(y′)|s(y)
)

/P
(

s(y′)
)

.

The above definition implies that an entry (y, y′) in H
depends only on s(y) and s(y′) and not on the individ-
ual symbols y and y′. When the symbols in the same
state are numbered consecutively, H will be a block-
constant matrix with K × K blocks. For example,
when M = 4, K = 2, s(y = 1, 2) = 1, s(y = 3, 4) = 2,
H will be of the following form:

s 1 1 2 2
1 a a b b
1 a a b b
2 c c d d
2 c c d d.

In general, H will be a permuted block-constant ma-
trix, e.g., when s(y = 1, 4) = 1, s(y = 2, 3) = 2,

s 1 2 2 1
1 a b b a
2 c d d c
2 c d d c
1 a b b a.

Let the SVD (singular-value decomposition) of H be

[u1 u2 . . . uM ] diag(σ1 . . . σK 0 . . . 0) [v1 v2 . . . vM ] ,

where u1, u2, . . ., uM and v1, v2, . . ., vM are the left
and right singular vectors, respectively, and σ1, . . .,
σK , 0, . . ., 0, are the singular values. (Only the first
K singular values are nonzero, as the rank of H is K.)

The elements in a singular vector are constant for the
symbols in the same state. In other words, if s(y) =
s(y′), then ui[y] = ui[y

′], vi[y] = vi[y
′]. We represent

each symbol y by the tuple

(σ1u1[y], . . . , σKuK [y], σ1v1[y], . . . , σKvK [y]), (2)

which is the same for all symbols in a state. By look-
ing at which symbols have the same tuples, we can
correctly assign all the symbols to their states.

To summarize, in the hypothetical case where we know
the exact H, we can run SVD on H, then set the num-
ber of states K to be the number of nonzero singular
values, and assign the symbols with the tuples (as de-
fined by Equation 2) to the same state.

In practice, however, we do not know H exactly (e.g.,
it is estimated from data). Note that

Hy,y′ =P
(

s(y′)|s(y)
)

/P
(

s(y′)
)

=
P
(

s(y′)|s(y)
)

P
(

y′|s(y′)
)

P
(

y′|s(y′)
)

P
(

s(y′)
)

=
P
(

y′|y
)

P
(

y′|s(y′)
)

P
(

s(y′)
)

can be empirically estimated by

By,y′ ≡
ny,y′

ny

1

ny′/ns(y′)

1

ns(y′)/n

=
ny,y′n

nyny′

.

We can in practice still run SVD on B to assign the
symbols to the states. However B will have more than
K singular values. Thus, the tuples for the symbols
in the same state will not be exactly the same. We
can use a clustering algorithm (e.g., K-means) on the
tuples to assign the symbols to the states.

The above algorithm (we call it “SVD-B”) runs SVD
on B. It minimizes the sum of squared errors (SSE)
of the model (i.e., the permuted block-constant matrix
H) with respect to B. This effectively assumes that
By,y′ has a Gaussian distribution with meanHy,y′ , and
a common variance σ2.

We can also run SVD on C. Note that

B = nW−1CW−1

whereW is a diagonal matrix, Wyy = n−1y . If we run

SVD on C first, C = UΣVT , we can still get B:

B = nW−1
(

UΣVT
)

W−1

= n(W−1U)Σ(W−1V)T

= nPΣQT ,

where P = W−1U, and Q = W−1V. The rows of
P, Q are approximately constant for the symbols in
the same states. We replace the singular vectors in
Equation 2 by the columns of P, Q, and then run the
clustering algorithm to put the symbols into states.
We call this version of the algorithm “SVD-C”.

Experimental Results on Simulated Data

To evaluate the above two SVD-based algorithms
(SVD-B and SVD-C), we ran them on simulated data,



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000

A
cc

ur
ac

y

Data Set Size (Number of Sequences)

SVD-C
MNCut
SVD-B

Random

Figure 1: Accuracy of the SVD methods. SVD-C:
SVD on the matrix C of symbol transition counts.
MNCut: Modified NCut algorithm (Meilă and Shi,
2001). SVD-B: SVD on the permuted block-constant
matrix B. Random: random assignment (as a baseline
method).

together with a baseline algorithm that randomly as-
signs the M symbols to the K states.

When generating the simulated data, the number of
symbols was M=100, the number of states was K=10,
and each state hadM/K = 10 symbols. In each exper-
iment, the model parameters θ = {A, {Py|s(y)}} were
set randomly, and N sequences were generated, each
with length between 5 and 10. From the N sequences,
the symbol transition counts were recorded in the ma-
trix C. We then ran the 3 clustering algorithms, and
computed their accuracy against the “true” cluster-
ing. To compute the accuracy of a clustering algo-
rithm, we ran a maximum weight bipartite matching
algorithm (Goldberg and Kennedy, 1995) to find the
best matching between the computed clusters and the
true clusters.

In Figure 1, we show the accuracy of the algorithms on
simulated data. Each point in the plot shows the me-
dian accuracy from 1000 experiments. (Recall that θ is
different for each experiment.) The “Random” points
correspond to a baseline method of randomly assigning
the M symbols to K states. The number of symbol
sequences, N , is varied from 1000 to 100000. When
N=1000, the data are pretty sparse: of the 10000 el-
ements of the matrix C, about 23% are 0, another
22% are 1 or 2, and the median is 3. In this case, the
SVD-B algorithm breaks down (it is even worse than
the baseline random-assignment algorithm), while the
SVD-C algorithm is fairly accurate. With larger N ,
i.e., more data, the accuracy of both SVD-B and SVD-
C increases.

From Figure 1, we can see that SVD-C is consistently
better than SVD-B. This tells us that it is better to
approximate C than B. This should be expected as as
the data log likelihood is directly related to the matrix
C of symbol transition counts.

In Figure 1, we also show the accuracy of running the
Modified NCut (MNCut) algorithm (Meilă and Shi,
2001), which is based on clustering the rows of the
first K eigenvectors ofW−1C. MNCut is not as good
as SVD-C for our clustering problem, although it is
better than SVD-B.

5 Search-based Algorithms

An alternative viewpoint from the SVD approach is
to view the assignment of symbols to states as a com-
binatorial search problem: searching the space of all
possible assignments for the “best” assignment. The
score function being optimized is the data log likeli-
hood in Equation 1.

Heuristic Search Algorithms

We experimented with a number of greedy local search
algorithms, such as variants of GSAT (Selman et al.,
1992) and ICM (Besag, 1986). These algorithms all
start from a (random) initial cluster assignment, and
improve the solution via local search steps, until a local
maximum of the score function is achieved. The algo-
rithms can be re-started at different randomly chosen
starting points a number of times.

The main difference between the various algorithms is
the heuristic used to choose a symbol to move from one
state to another. We experimented with the following
heuristics:

• GSAT: Of the N × (K− 1) possible moves choose
the one that leads to the largest increase in the
log-likelihood.

• Similar to GSAT, but only 10% of the N×(K−1)
possible moves are sampled. The best move is
then executed.

• ICM: Go through the symbols sequentially, mov-
ing each symbol to the state that maximizes the
log likelihood.

• Similar to ICM, except that the order of scanning
the symbols is randomized for different passes.

In addition to the above greedy local search algo-
rithms, we also tried simulated annealing as a global
search algorithm. The temperature T starts at a high
level T0, and then falls gradually as T ← 0.9T . At



Algorithm Accuracy Time/ICM
GSAT 0.889 16.8
GSAT with 10% sampling 0.881 3.3
ICM 0.885 1.0
ICM with randomized
order

0.895 1.1

Simulated Annealing 0.959 316.3
SVD-C 0.681 18.1
Unconstrained HMM 0.43 1464.6
Random Assignment 0.234 -

Table 1: Accuracy and computation times of various
algorithms for assigning symbols to states. with N =
1000 sequences, M = 100, K = 10. “Time/ICM” is
ratio of computation time to that of ICM.

each temperature level T , n_try tries are attempted.
At each try we uniformly sample one possible move
(out of the total of N × (K − 1)). The move is exe-
cuted according the following probability:

P (move) =

{

1 if ∆E < 0,
e−∆E/T if ∆E ≥ 0,

where ∆E is the decrease in data log likelihood.

Efficiently Computing the Change in

Log-likelihood

Each of these algorithms requires the efficient compu-
tation of the change in data log likelihood when mov-
ing a symbol from one state to another. The data log
likelihood can be computed using just the counts:

logP ({y}) =





∑

s,s′

ns,s′ log ns,s′



+

[

∑

y

ny log ny

]

− 2×

[

∑

s

ns log ns

]

. (3)

There is no need to refer to the model parameters
θ = {A, {Py|s(y)}} explicitly. We only need to main-
tain the counts {ns, ns,s′}, and when moving a symbol,
compute the change in Equation 3.

Experimental Results on Simulated Data

To evaluate the various search-based algorithms de-
scribed about we ran the algorithms on simulated data.
The experimental settings are the same as for the
SVD-based algorithms described earlier. In Table 1
we show the accuracy and computation time of the al-
gorithms when the number of sequences is N = 1000.

From the table, we can see that the best accuracy
is achieved by simulated annealing, but it is also the

slowest. The second most accurate algorithm is ICM
(in particular the version with randomized scanning
order.) ICM is also the fastest algorithm. The “10%
sampling” version of GSAT greatly reduces the run-
ning time of GSAT, with relatively little decrease in
accuracy. Note that alternative clustering approaches,
such as an unconstrained HMM trained using EM, are
generally far less effective than the heuristic search
methods, as they do not take advantage of the fact
that each symbol belongs to only one state.

All of the search algorithms are more accurate than
the SVD-C algorithm indicating that it is beneficial to
directly optimize the data likelihood for this problem.

6 Application to User Modeling

To illustrate the applicability of these ideas for real-
world data sets we tested the ICM algorithm on two
applications. In the first application we ran the al-
gorithms on the Purdue UNIX user data, available
from the UCI KDD Archive (Hettich and Bay, 1999)
and originally reported in Lane (1999). The sym-
bols are various UNIX commands such as ‘ls’, ‘cd’,
‘netscape’, ‘gcc’, etc, with approximately M = 400
symbols in total, obtained over several months of
logged command line usage data from 12 different
users. Each sequence is a session (from login to lo-
gout) of a user. Being able to learn a “user model” of
each individual’s sequential behavior has a number of
different potential applications, such as intrusion de-
tection and online prediction and personalization.

We ran the ICM algorithm on each user’s sequences
and found a variety of meaningful patterns. In Fig-
ures 2–3, we show the state diagrams for two users,
USER2, USER3. Only the major state transitions
(corresponding to the top 20% largest entries in the
transition matrix) are shown. For each state, we show
the top 3 symbols (with the largest observation prob-
abilities P (y|s)).

From these figures, we can see that related commands
are often grouped together. For example, state 7 of
USER2 (Figure 2) contains the symbols ‘a.out’, ‘xcc’,
‘dbx’ which are related to compiling, debugging and
running C programs. In the same figure, state 3 is
related to LATEX.

In Figure 3, we find a clique of 3 states: states 9, 3, and
4 represent a typical “edit-compile-execute” pattern.

7 Application to Word Segmentation

In language modeling there are numerous applications
of Markov models where the symbols consist of indi-
vidual words. As an example, in Chinese text, there is



2
lpp

dvips
mail

3
latex
xdvi

bibtex

4
man
im
cc

5
quota
emacs
logout

6
cd

mkdir
rmdir

8
rm

more
cp

7
a.out
xcc
dbx

9
finger

ps
cat

1
volcheck

eject
ff

10
ls

filemgr
s

Figure 2: Major state transitions for USER2.

5
fg
lo

jobs

7
f

josh
date

10
elm

vt100
ender

1
more
rm

mroe

2
ls
s

which

9
vi

man
gdb

8
cd
q

home

3
gcc
g++

make

4
a.out

uuencode
lkajsdflkajsdflakjsdfl,

6
mv
sz
cp

Figure 3: Major state transitions for USER3.

no space between words and word segmentation algo-
rithms are used to segment a sentence into words (e.g.,
for Chinese information retrieval (Nie et al., 2000)).
Word segmentation can also be applied to biological
sequences (Bussemaker et al., 2000) in an attempt to
“parse” protein sequences into component “words”. In
what follows we illustrate the use of Markov models for
word segmentation using English as an example lan-
guage, e.g.,

“Thisisadog”→ “This is a dog”.

We use English since there is in effect an infinite
amount of segmented training data available for al-
gorithm evaluation.

A popular probabilistic model that works reason-
ably well for word segmentation is the “word-
independence” model. Under this model, the prob-
ability of a sentence is simply the product of the prob-
abilities of the words in the sentence:

P (w1w2 . . . wm) =

m
∏

i=1

P (wi),

where the wi’s represent the words. The model param-
eters consist of a list of words and their probabilities.
Given a sentence (as a string of characters), a sentence
is segmented into w1, w2, . . ., wk such that

∏

i P (wi)
is maximized. This can be easily done using dynamic
programming (Ponte and Croft, 1996).

Although the independence model works quite well
for many sentences, it does not correctly parse
certain word combinations where word interdepen-
dence provides vital clues to interpretation, e.g.,
“a dead he at” versus “a dead heat”.

Here we propose to model the words using the type of
constrained HMM defined earlier in the paper. Specif-
ically, we assume that each word belongs to one of
K word classes, and the sequence of word classes in
a sentence forms a Markov chain. Note that build-
ing a Markov chain directly on the words is imprac-
tical, since M is typically O(105). Words correspond
to symbols in the model, word classes to states. The
maximum likelihood segmentation of a sentence into
words can also be done using dynamic programming.

Our experiments were carried out a 92M-byte corpus
of the 227 files in the “Classic” subdirectory of the
Wiretap Online Library (http://wiretap.area.com/
Gopher/Library/). The number of distinct words is
M = 140072.

To estimate the parameters for the word indepen-
dence model, we count the occurrences of each word
in the corpus. To estimate the parameters for the con-
strained HMM, we count the transitions between each



WI: it old john it was you

HMM: i told john it was you

WI: the you that my side corrected me

HMM: the youth at my side corrected me

WI: i a man american

HMM: i am an american

WI: what hotel are you stopping a there

HMM: what hotel are you stopping at here

WI: which ended in a dead he at

HMM: which ended in a dead heat

WI: the eldest being as on

HMM: the eldest being a son

Table 2: Some examples where the constrained HMM
corrects the error of the word independence model. WI:
word independence model. HMM: constrained HMM.

pair of words, then run the clustering algorithm to put
the words into K = 48 word classes.

After both the HMM and independence models are
trained, we run the maximum likelihood word seg-
mentation algorithm on the unsegmented sentences in
the corpus (i.e., spaces in the sentences have been re-
moved).

The error rate (the number of missed words divided by
the total number of words in the corpus) of the word
independence model is 1.55%. The error rate of the
constrained HMM is significantly lower at 0.79%.

In Table 2 we show some examples where the con-
strained HMM makes the correct segmentation while
the word independence model does not. In the
first example, the word independence model segments
“itoldjohn” into “it old john”, as it only consid-
ers the marginal probabilities of the words. The con-
strained HMM avoids this segmentation because it also
considers the transition probabilities among the word
classes. This is illustrated in Figure 4, where we show
the states for the words with the log transition proba-
bilities. For each state, we also list its top words, i.e.,
those with highest P (word|state). We can see that it
is very unlikely to go from “it” to “old”. For another
example, see Figure 5. From these two examples, we
can also see that the word classes found by the cluster-
ing algorithm are quite meaningful. See also Table 3
for some other word classes.

it
there

everything
nobody

other
little
great
first

mr
mrs
sir

miss

PSfrag replacements

it

old

john

−6.1

−4.4

(a)

i
we
dey

thanne

made
came
went
found

mr
mrs
sir

miss

PSfrag replacements

i

told

john

−2.1

−4.4

(b)

Figure 4: State transitions for (a) it old john and

(b) i told john . The numbers are log transition

probabilities.

the
his
my

their

you
thou
ye

anybody

that
which
what
where

the
his
my

their

PSfrag replacements

the

you

that

my

−11.8

−4.5

−2.4

(a)

the
his
my

their

man
time
day
way

in
with
for
at

the
his
my

their

PSfrag replacements

the

youth

at

my

−1.2

−2.4

−1.1

(b)

Figure 5: State transitions for (a) the you that my

and (b) the youth at my . The numbers are log

transition probabilities.



god would said come
life will asked go
night could cried look
death can replied love
course did says use
water should answered help
others must returned live
nature may continued speak
money shall added turn
truth might laughed care
fact cannot exclaimed answer
reason shalt declared talk
him good men place
me long people work
them better things side
us high years light
himself true words part
home dead days power
myself large children end
herself certain feet state
themselves short women matter
thee dark times kind
itself hard friends point
yourself strong hours spirit

Table 3: Some word classes found by the ICM-based
symbol clustering algorithm.

8 Conclusions

Reduced-state Markov chains can provide useful tools
for modeling sequential data with large symbol alpha-
bets. The general idea of equivalence classes of Markov
states has been known and utilized in the language
modeling literature for some time. In this paper we
explored a number of new algorithms in this context,
demonstrated a theoretical link to singular value de-
composition, and illustrated how these ideas can be
applied to applications in user modeling and word seg-
mentation. An interesting direction for future work
lies in learning reduced-state models via Bayesian hi-
erarchical modeling, where (for example) the M sets
of transition rows in the matrix C could be modeled
as noisy observations from a mixture of K Dirichlet
“priors” whose parameters can be learned from the
data.

Acknowledgements

This work was supported by research grants from the
National Science Foundation (awards IRI-9703120 and
IIS-0083489), the Jet Propulsion Laboratory, and Mi-
crosoft Research. Xianping Ge was supported by an
IBM Graduate Fellowship.

References

J. Besag. On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society, Series B
(Methodological), 48(3):259–302, 1986.

P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C.
Lai, and R. L. Mercer. Class-based n-gram models
of natural language. Computational Linguistics, 18
(4):467–479, 1992.

H. J. Bussemaker, H. Li, and E. D. Siggia. Regulatory
element detection using a probabilistic segmentation
model. In Proceedings of the 8th International Con-
ference on Intelligent Systems for Molecular Biology
(ISMB 2000), 2000.

A. V. Goldberg and R. Kennedy. An efficient cost scal-
ing algorithm for the assignment problem. Mathe-
matical Programming, 71:153–177, 1995.

S. Hettich and S. D. Bay. The UCI KDD Archive
[http://kdd.ics.uci.edu], 1999. Irvine, CA: Univer-
sity of California, Department of Information and
Computer Science.

T. Lane. Hidden Markov models for human/computer
interface modeling. In Proceedings of the IJCAI-99
Workshop on Learning about Users, pages 35–44,
1999.

S. Martin, J. Liermann, and H. Ney. Algorithms for
bigram and trigram word clustering. Speech Com-
munications, 24:19–37, 1998.

M. Meilă and J. Shi. A random walks view of spec-
tral segmentation. In Eighth International Work-
shop on Artificial Intelligence and Statistics (AIS-
TATS), 2001.

J.-Y. Nie, J. Gao, J. Zhang, and M. Zhou. On the
use of words and n-grams for Chinese information
retrieval. In Fifth International Workshop on Infor-
mation Retrieval with Asian Languages, Sept. 30–
Oct. 1 2000.

P. Perona and W. T. Freeman. A factorization ap-
proach to grouping. In European Conference on
Computer Vision, 1998.

J. M. Ponte and W. B. Croft. USeg: A retargetable
word segmentation procedure for information re-
trieval. In Symposium on document analysis and
information retrieval (SDAIR ’96), 1996.

B. Selman, H. J. Levesque, and D. Mitchell. A new
method for solving hard satisfiability problems. In
Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 440–446, 1992.

Y. Weiss. Segmentation using eigenvectors: A unifying
view. In Proceedings IEEE International Conference
on Computer Vision, pages 975–982, 1999.


	Introduction
	Notation and Model
	Related Work
	An SVD Formulation of the Problem
	Search-based Algorithms
	Application to User Modeling
	Application to Word Segmentation
	Conclusions

