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Abstract

We investigate the problem of generating fast approximate answers to queries posed to large sparse bi-
nary data sets. We focus in particular on probabilistic model-based approaches to this problem and develop
a number of techniques that are significantly more accurate than a baseline independence model. In par-
ticular, we introduce two techniques for building probabilistic models from frequent itemsets: the itemset
maximum entropy method, and the itemset inclusion-exclusion model. In the maximum entropy method
we treat itemsets as constraints on the distribution of the query variables and use the maximum entropy
principle to build a joint probability model for the query attributes online. In the inclusion-exclusion model
itemsets and their frequencies are stored in a data structure called an ADtree that supports an efficient im-
plementation of the inclusion-exclusion principle in order to answer the query. We empirically compare
these two itemset-based models to direct querying of the original data, querying of samples of the original
data, as well as other probabilistic models such as the independence model, the Chow-Liu tree model, and
the Bernoulli mixture model. These models are able to handle high-dimensionality (hundreds or thousands
of attributes), whereas most other work on this topic has focused on relatively low-dimensional OLAP
problems. Experimental results on both simulated and real-world transaction data sets illustrate various
fundamental tradeoffs between approximation error, model complexity, and the online time required to
compute a query answer.

Index Terms

Binary transaction data, query approximation, probabilistic model, itemsets, ADTree, maximum en-
tropy.



2

I. I NTRODUCTION

Massive data sets containing huge numbers of records are of increasing interest to organizations
that routinely collect such data and to data miners who try to find regularities in them. One class of
such data is transaction data with rows corresponding to transactions and columns corresponding
to particular items or attributes. This class is typically characterized bysparseness, i.e., there may
be hundreds or thousands of binary attributes but a particular record may only have a few of them
set to 1.

An example of a binary transaction data set is a Web log that records page requests for a partic-
ular Web site. The rows (records) in such a data set correspond to various users accessing the site
and columns (attributes) correspond to different pages within the site. Clearly, most of the users
access only a small fraction of pages, making the data set sparse. Within a single day popular Web
sites can produce millions of records.

Query selectivity estimation for such binary data can be defined as follows. LetR = {A1, . . . , Ak}
be a table header withk 0/1 valued attributes (variables) andr be a table ofn rows over header
R. We assume thatk ¿ n, and that the data are sparse i.e., the average number of 1’s per row is
substantially smaller than the number of attributes. By definition, a row of the tabler satisfies a
conjunctive queryQ if and only if the corresponding attributes in the query and in the row have
equal values. We are interested in finding the number of rows in the tabler satisfying a given
conjunctive queryQ defined on a subset of its attributes.

Query selectivity estimation is an important practical problem in the optimization of database
management systems where query profilers and query optimizers routinely rely on fast and rea-
sonably accurate estimates of the query counts [30]. Query selectivity can also be important in
interactive data mining applications and exploratory data analysis, where a data miner may be ex-
ploring various hypotheses in the data and would prefer to get an approximate count to a query in
real-time rather than waiting for an exact count to be generated. From a probabilistic viewpoint
we can pose the problem as that of estimating the true frequency ofQ in the tabler using an
approximate probability modelPM .

Any Boolean query can be answered exactly using a single scan through the data set. While
this approach has linear complexity and works well for small data sets, it can be prohibitively
slow for real-time queries on massive data sets. Consequently, we would like to have approximate
algorithms that allow us to trade accuracy in the estimatePM(Q) with the time and memory taken
to calculate it.

There are two main aspects of this paper:
1) We introduce and analyze two probabilistic modelling techniques that are based on frequent

itemsets ([2], [3]): (1) the itemset maximum entropy method, and (2) the itemset inclusion-
exclusion model. In the maximum entropy method we treat itemsets as constraints on the
distribution of the query variables and use themaximum entropyprinciple to build a joint
probability model for the query attributes online. In the inclusion-exclusion model we store
itemsets and their frequencies in an ADTree data structure. The virtue of the ADtree lies in its
ability to efficiently reconstruct the query count based on the inclusion-exclusion principle.

2) We perform a detailed experimental evaluation of various probabilistic models for query
approximation, including the maximum entropy method, the itemset inclusion-exclusion
model, the independence model as a baseline, the Chow-Liu tree model, and the Bernoulli
mixture model. Our experimental study allows us to draw a variety of conclusions on the
general characteristics of each approach in terms of memory requirements, the online time
taken to answer a query, and the accuracy of the resulting estimate.
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Previous work on this problem has investigated the use of wavelets (see, e.g. [20], [33], [7]),
multidimensional histograms ([23], [30]) and sampling ([16], [1]) for query approximation. The
use of inclusion-exclusion for query approximation has been previously mentioned in [18]. Proba-
bilistic models of various forms have also been investigated in limited contexts. Mixtures of Gaus-
sian independence models were investigated for generating approximate queries on real-valued
data sets in [32]. Bayesian networks for the task of selectivity estimation over multiple tables in a
relational database were considered in [14]. The use of statistical interaction models in dependency
based histograms for query selectivity estimation is described in [12]. However, none of this work
contains a complete and a systematic investigation of differentprobabilisticmodelling techniques
for query approximation. In addition, in all of this prior work the techniques used were only tested
on relatively low-dimensional data cubes (10 or fewer dimensions).

In our earlier work on this topic we have reported initial results on the use of maximum entropy
methods [17], [24], mixture models, and Bayesian networks [26] for online query answering in
sparse binary data sets of high-dimension (50 dimensions and higher). This present paper studies
a new query-answering method based on the inclusion-exclusion principle and provides a system-
atic characterization and empirical evaluation of the performance of a broad set of probabilistic
methods for approximate query answering.

The novelty of the work described in this paper can be summarized as follows:
1) The proposed methods work on high-dimensional binary transaction data rather than being

limited to relatively low-dimensional aggregate data cubes;
2) We explore a variety of probabilistic models (rather than just the independence model or

mixtures). Most of these are not new models (with the exception of the itemset-based maxi-
mum entropy and inclusion-exclusion models), but the application of these models to query
answering is new; and,

3) We provide extensive theoretical and empirical characterizations of the trade-offs among the
different modelling approaches.

The rest of this paper is organized as follows. In Section II we introduce some general notation
and discuss the metrics used to compare different models. Section III defines itemsets and dis-
cusses their main properties. Section IV provides definitions of all the probabilistic models that we
investigate for the query selectivity estimation problem and gives a summary of their worst-case
time and memory requirements. Section V presents empirical results and in Section VI we discuss
the main conclusions.

II. N OTATION AND STATISTICS FORMODEL COMPARISON

We use the following notation in the remainder of the paper. ByP we denote the “true” unknown
distribution that generated the data and byxQ the variables of a conjunctive queryQ, so thatP (xQ)
is the distribution on the query variables andP (Q) is its value for an instantiation of the variables
defined by the query. Note thatP (xQ) is a specific distribution over the subset of variables inQ,
notover all variables in the tableR.

We usePM to denote an estimate ofP from the data (i.e., a probabilistic model),PM(xQ) is the
estimate ofP (xQ), andPM(Q) is the estimate ofP (Q).

We use the following criteria to compare the performance of different models:
Definition II.1: Time. Theoffline time costTP is the time taken to learn the model or to collect

summary information about the data set. Theonline time costtP (Q) is the time taken to answer
the queryQ online using the modelPM .
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The online costtP (Q) depends directly on the query. One general strategy is to have a fast and ac-
curate online answer at the expense of potentially much higher offline computational investments.

Definition II.2: Memory. Memoryis the complexity of the learned modelPM (e.g., its minimum
description length in bits [31]).
We can expect more complex models to generate more accurate answers on the data used to build
the model, but also to be more expensive in terms of online time taken to answer a query.

Definition II.3: Error. Let π(Q) denote thequery distribution1, i.e., the probability that a par-
ticular queryQ is issued. Theerror in answering the queryQ, eP (Q), is defined as the difference
between the query true countCt(Q) on the test data and the count estimated from the modelPM ,
i.e. nPM(Q). The relative expected error with respect toπ(Q) is then

Eπ[|eP (Q)|]/Eπ[Ct(Q)].

We use the relative empirical error defined as

Erel =

∑NQ′s
j=1 |eP (Qj)|

∑NQ′s
j=1 Ct(Qj)

, (1)

whereNQ′s is the number of random query drawings fromπ(Q) andCt(Qj) is the true count of
the queryQj.

III. D EFINITION OF ITEMSETS ANDTHEIR PROPERTIES

Definition III.1: An itemsetassociated with the binary tabler (with headerR) is defined to
be either a single positively initialized attribute or a conjunction of mutually exclusive positively
initialized attributes fromR [2]. We call an itemsetT-frequentif its count in the tabler is at least
T , whereT is some predefined non-negative threshold. Thesizeof an itemset is the number of
conjuncts it is defined on.

Itemsets have several attractive properties for binary transaction data. To provide an error-free
answer to any query expressed as a Boolean expression on the attributes of the binary tabler it is
sufficient to know all 0-frequent itemsets and their counts inr. The proof of this statement follows
directly from the inclusion-exclusion principle and the definition of the itemsets. We discuss this
method in the next section in more detail where we introduce the itemset inclusion-exclusion model
and the ADTree data structure (that efficiently implements the inclusion-exclusion principle). In
what follows we will use the following two theorems:

Theorem 1:All T -frequent itemsets have a hierarchical structure, i.e., if an itemset on a set of
variablesX is T -frequent then any itemset on a subset of variables fromX is T -frequent as well.

Proof: The proof of this assertion follows immediately from the definition of aT -frequent
itemset by contradiction.

Theorem 2:If an itemset on a set of variablesX isT -frequent then any count queryQ (expressed
as an arbitrary Boolean expression) involving variables that are all contained in the setX can be
answered exactly.

Proof: Notice first that if queryQ mentions variables in the setY , and only these variables,
andY ⊂ X, then any itemset on variables fromY is T -frequent due to theorem 1. An arbitrary
Boolean queryQ can be converted to disjunctive normal form (DNF), the probability of which
equals the sum of the probabilities of the individual disjuncts due to their mutual exclusiveness.

1We assume that this distribution is known, but in principle we could learnπ(Q) for a population of individuals.
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Each disjunct is a conjunction of query attributes or their negations whose probability due to the
inclusion-exclusion principle can be expressed as a linear combination of probabilities of con-
junctions of positively initialized attributes fromY . The former probabilities in turn can be read
directly from theT -frequent itemsets (due to theorem 1).

There exist well-known efficient algorithms to compute all itemsets from large binary tables
(e.g., [19], [4]). Provided that the data are sparse, the running times of these algorithms have
been found in experimental analyses to be linear in both the size of the table and in the number of
frequent itemsets. Thus, computing itemsets does not typically incur a high preprocessing cost on
sparse data in practice.

How should one selectT for a given data set, especially if the memory available to store itemsets
is bounded? Assuming the data set is sparse, by settingT originally to half of the number of records
we should expect very few (if any)T -frequent itemsets to be present. We can then repeatedly divide
T by two, noting how much memory is taken by the set of itemsets for each value ofT . We can
stop decreasingT when the extracted itemsets exceed a predefined memory bound. In the results
in this paper we used this simple approach to find a reasonable range forT values.

We also augment the itemsets in this paper with the set of frequency counts of all individual
attributes (i.e., all itemsets on a single attribute are included, whether frequent or not). This simple
idea improves the quality of the model in that the marginal probabilities are known to the model
for all attributes.

One can in theory also use the information that certain itemsets arenotT -frequent. For example
if we know that the itemsetA = 1

∧
B = 1 is not T -frequent, then we know that this joint

probability (or count) is constrained to be less thanT/n. In theory this information could be used
as an inequality constraint (e.g., in the maximum entropy approach described below) in the building
of the probabilistic models for queries involvingA andB. However, the complexity of doing so
would significantly increase the complexity of our proposed methods, so we do not pursue this
idea in this paper. It can also be conjectured that since non-frequent itemsets are relatively rare
by definition, ignoring information about such itemsets is likely to have a relatively small overall
contribution the overall average error rate of a probabilistic model.

From this point forwards the focus of this paper is on how itemsets can be used in probabilistic
modelling, and we implicitly assume that itemset generation has already taken place offline.

IV. PROBABILISTIC MODELS FORQUERY SELECTIVITY ESTIMATION

A. The Training Data Counts (The Linear Scan Method)

Any Boolean queryQ can be answered exactly using a single scan through the data set. For each
data record we need to establish whether it satisfies queryQ or not, keep the count of records that
satisfy the query and report the count at the end of the scan. This can be carried out in time that
is worst-case linear in both the size of the record and the number of literals in the queryQ. This
gives a time complexityO(nQ

∑n
i=1 N1′s(i)), whereN1′s(i) is the size of thei-th record (i.e. the

number of 1’s in it),nQ is the number of literals in the query, andn is the number of data records.
The memory complexity of the method is worst case linear in both the number of records in the
data and the size of the largest data record,O(

∑n
i=1 N1′s(i)), which can be a significant cost for

massive data sets.
Experimental results reported in Section V illustrate how the time performance of the linear scan

method degrades as a function of the number of records. The approximate algorithms discussed in
the following subsections allow us to trade the accuracy of the estimatePM(Q) with the time and
memory taken to calculate it.
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B. Random Samples

In a manner similar to the linear scan method discussed above in Section IV-A one can randomly
sample records from the training data and find the count of the query based on the sample. There
are two types of sampling procedures available: (1) offline sampling, where a sample is extracted
before any queries are posed to the database, and (2) online sampling, where data records are
randomly accessed once the query is posed. In the results reported in this paper we use offline
sampling.

Using a sample of sizenS to answer queries reduces the memory and online time requirements
by approximately a factor ofn/nS compared to using the linear scan method.

C. The Independence Model

Assuming independence of the attributes leads to the simplest possible probabilistic model—the
independence model.

Since the data are binary-valued, we only have to store one parameter per attribute,θi = P (Ai =
1), where the probability is obtained directly from the data as a maximum likelihood estimate,
θi = fi/n, wherefi is the number of 1’s for attributei. The probability of a conjunctive query is
then approximated by the product of the probabilities of the individual attribute-value combinations
occurring in the query, where thei-th factor has the formθAi(1 − θi)

(1−Ai) andAi is the value of
thei-th attribute in the query.

The estimation of allθi’s requires a single scan through the data, during which we just add “1”
to the counts corresponding to the positively initialized attributes of a given record. In contrast
with scanning the training data it is important to emphasize that the estimation ofθi’s can be
performedoffline, i.e., before the actual query is issued by the user. The estimation incurs linear
time complexity in the number of records and in the size of the largest record.

The online time cost isO(nQ) while the memory isO(k) wherek is the number of attributes in
the data set, so that both complexities scale well to large data sets. However, as we show in the
experimental results in Section V, the quality of the approximations produced by the independence
method can be poor. Nonetheless, because of its simplicity, the independence model is widely used
in commercial RDBM systems for query selectivity estimation (e.g. [30]).

D. The Chow-Liu Tree Model

The Chow-Liu tree model (also known as the multivariate tree distribution model) is a model that
assumes that there are only pairwise dependencies between the variables, and that the dependency
graph on the attributes has a tree structure [8]. To fit a distribution using a tree structure it is
sufficient to know the pairwise joint probabilities (or marginals) of all the variables. Finding the
pairwise marginals can be performed by a single scan through the data set during which we just
add “1” to the counts corresponding to all possible pairs of the positively initialized attributes of
a given record. We also need to collect the information about the frequencies of the individual
attributes in the manner described in the Section IV-C. After a single data scan we would have
collected the following statisticsθi = P (Ai = 1) and θij = P (Ai = 1, Aj = 1), which are
sufficient to reconstruct any pairwise marginal using the inclusion-exclusion principle. The time
cost isO(nMr

2), whereMr is the size of the largest record.
The algorithm that fits the tree consists of two more steps, namely, computing the mutual in-

formation between the attributes (complexity isO(k2)) and applying Kruskal’s algorithm [9] to
find the minimum spanning tree of the full graph whose nodes are the attributes and the weights
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on the edges are the mutual information values (complexity isO(k2 log k)). The overall offline
time complexity is upper bounded by eitherO(nMr

2) or O(k2 log k), with the first term likely to
dominate for largen such thatn À k. The memory requirements for the algorithm are associated
with the storage of the pairwise marginals, and are thusO(k2).

Once the tree is learned, for a given queryQ we first use the chain rule:

PM(Q) =
nQ∏

j=1

PM(xj = qj|xj+1 = qj+1, . . . , xnQ
= qnQ

), (2)

and then apply the standard belief propagation algorithm [29] to each of the factors on the right-
hand side of the Equation 2. For the case of binary data the time complexity of a single belief
propagation in a Chow-Liu tree scales linearly in the number of edges in the tree [21], which is
proportional tok. Thus, finding the answer to the query onnQ attributes will scale asO(nQk).

E. Mixtures of Independence (Bernoulli) Models

A probabilistic mixture model can be thought of as a generative model, i.e., a procedure for
generating data under the assumption that it comes fromNc different groups or clusters. A data
record is assumed to be produced by first selecting one of theNc groups or clusters, where the
probability of selecting clusteri equalsPM(Ci), for i = 1, . . . , Nc, and satisfies

∑Nc
i=1 PM(Ci) = 1.

Once clusteri is selected, a vector of attribute values is sampled from the probability distribution
of thei-th cluster,PM(A1, . . . , Ak|Ci).

In the mixture ofindependence(Bernoulli) models there is an additional assumption in each
cluster that the attributes are conditionally independent given the cluster so that

PM(A1, . . . , Ak|Ci) =
k∏

j=1

PM(Aj|Ci). (3)

Thus, the mixture of independence models has the following functional form

PM(A1, . . . , Ak) =
Nc∑

i=1

PM(A1, . . . , Ak|Ci)PM(Ci) =
Nc∑

i=1

( k∏

j=1

PM(Aj|Ci)
)
PM(Ci). (4)

The parameters of the distribution in Equation 4 that need to be estimated from the data are
θij = PM(Aj = 1|Ci) andλi = PM(Ci) for all i = 1, . . . , Nc. Note that the mixture model
avoids the problem of trying to directly specify a full dependence model which would require
O(2k) parameters. Instead it seeks a more parsimonious representation such that within a specific
clusterCi the attributes are conditionally independent. Nonetheless, the attributes have marginal
dependence imposed via the clustersCi. A mixture model withNc conditionally independent
groups is fully specified byO(kNc) parameters. The number of clustersNc is the tuning parameter
of the model which we varied from 5 to 80 in our experiments.

Parameter estimation can be carried out using the Expectation Maximization (EM) algorithm
which is an iterative process for likelihood maximization in the presence of hidden variables (which
is the cluster variable in our case) [11]. The derivation of the EM update equations for the mixture
of independence models follows the steps described in [13]:

θij =

∑n
l=1 PM(Ci|Āl)I(Alj = 1)∑n

l=1 PM(Ci|Āl)
, 1 ≤ j ≤ k;



8

λi =
1

n

n∑

l=1

PM(Ci|Āl), 1 ≤ i ≤ Nc;

PM(Ci|Āl) =
PM(Āl|Ci)λi∑Nc

j=1 PM(Āl|Cj)λj

, 1 ≤ l ≤ n, (5)

wheren is the number of records in the data set andAlj ∈ {0, 1} is the value of thej-th attribute
in thel-th row, Āl is thel-th data record and the value ofPM(Āl|Ci) is obtained from Equation 3:

PM(Āl|Ci) =
k∏

j=1

θ
Alj

ij (1− θij)
1−Alj .

The process starts off from random initial values for thePM(Ci|Āl) (say, randomly) and pro-
ceeds in an iterative fashion by first estimatingλi andθij (the M-step), then calculatingPM(Ci|Āl)
(the E-step), and so on. A nice property of the EM procedure is that it is linear in the dimensions
of the data set and the number of clusters, allowing for a low offline time cost for fitting the model.
The time complexity per iteration isO(Ncnk).

Once the mixture model is learned it is straightforward to calculatePM(Q) for any queryQ. By
using the attribute independence assumption we are able to sum out all but the query variables:

PM(Q) =
∑

x̄Q

PM(xQ, x̄Q) =
∑

x̄Q

Nc∑

i=1

(
PM(xQ|Ci)PM(x̄Q|Ci)λi

)
= (6)

=
Nc∑

i=1

PM(xQ|Ci)
(∑

x̄Q

PM(x̄Q|Ci)
)
λi =

Nc∑

i=1

PM(xQ|Ci)λi =
Nc∑

i=1

( nQ∏

j=1

θ
qj

ij (1− θij)
1−qj

)
λi,

wherex̄Q is the complement to the set of query variables. Thus, online time is linear in the
number of clusters and the size of the query:tP = O(nQNc).

F. The Itemset Inclusion-Exclusion Model Based on ADTrees

In this section we describe how itemsets can be stored in an ADTree and subsequently used to
answer queries via the inclusion-exclusion principle.

The ADTree is a sparse data structure that is useful for a variety of applications involving sym-
bolic attributes, including fast counting, learning belief networks, association rule mining. Further
details can be found in [22], [5], [25]. Ideas of storing the itemsets using tree structures have been
used also in [34], [15].

We first store all itemsets in an array indexed by the size of the itemset. We then cycle thorough
this array starting with itemsets of length 1 and add all the itemsets of the current size and their
counts to an ADTree as follows. Adding an itemset of size 1 consists of adding a child to the root
node of the ADTree whose only variable and the counts are the ones mentioned by the itemset. As
was pointed out in the lemma of Section III an itemsetI of size greater than 1 can only be frequent
if the itemsets on all possible subsets ofI are frequent as well. Thus the only action we need to
take when adding itemsetI is to link it to an appropriate parent-itemset in the tree and record its
count.

Once the ADTree is learned one can use an efficient recursive procedure that implements the
inclusion-exclusion principle to find the count of any conjunctive query:

c(x1 = 0, . . . , xnQ
= qnQ

) = c(x2 = q2, . . . , xnQ
= qnQ

)− c(x1 = 1, . . . , xnQ
= qnQ

), (7)
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wherec(.) denotes the count of the expression in the brackets. In this manner the count of an
arbitrary conjunctive queryQ can be expressed as a signed sum of counts using only subsets
of positively initialized attributes, which is exactly what the ADTree stores. Notice that there is a
possibility that some of the terms in this signed sum may not have been retained since they were not
T -frequent. The approach we follow in this paper is to discard such terms from the computation,
i.e., assuming in effect that they are zero. However, other strategies are possible as well, such as
estimating the values of missing terms. This estimation could be carried out in a variety of ways,
for example, by using an independence model, a Chow-Liu tree model, a mixture model and so
forth. Note, however, that such estimation will increase the time and memory complexity. Given
that the “simple” inclusion-exclusion method described above (that ignores missing terms) turned
out to be quite accurate across the range of simulated and real data sets that we investigated (as
we will see later in the paper), we conjecture that the estimation of the additional terms need not
necessarily increase the accuracy of the method very much. Thus, although more sophisticated
inclusion-exclusion schemes could certainly be investigated, we consider them to be somewhat
beyond the scope of this particular paper.

In the worst case (a query with all attributes initialized to 0’s) the right-hand side of Equation 7
hasO(2nQ) terms (after all terms are expressed in terms ofT -frequent itemsets). Thus, the time
complexity of answering a queryQ is O(2nQ) in the worst-case.

G. The Maximum Entropy Method

In previous work we have investigated the maximum entropy method extensively in the context
of query selectivity estimation ( [17], [24], [25]). To save space we refer the reader to these earlier
papers for complete details on the method and just briefly outline below the salient aspects of this
model.

We assume thatT -frequent itemsets and the associated frequency counts have been estimated
offline (e.g., by the Apriori algorithm), and we view them as specifying constraints on the unknown
distribution for the query variablesPM(xQ). The maximum entropy criterion is then used to select
a unique probability distributionPM(xQ) from the setP of all plausible distributions satisfying
the constraints. If the constraints are consistent then the target distribution exists, is unique [6],
and can be found in an iterative fashion using an algorithm known as iterative scaling [10]. The
constraints generated by itemsets are consistent by definition since the empirical distribution of the
data satisfies them.

Thus, the maximum entropy approach has the following general structure: (1) itemsets are
learned offline, (2) a query is then posed in real-time, and (3) a joint probability distribution for the
query variables is then estimated based on the itemsets alone. The learned distribution defines an
undirectedgraphical model (a Markov random field or MRF) [25].

Inference of an undirected joint distribution on the query variables is performed by the iterative
scaling algorithm. The algorithm has worst-case time complexity exponential in the number of
query variables [29]. In [25] we considered several graph-based algorithms that reduce the time
complexity of iterative scaling to being exponential in theinduced widthw∗ of the graph of the
MRF and we demonstrated thatthe clique tree methodis the most efficient of these algorithms. In
the results reported in this paper we use the clique tree method in our implementation of iterative
scaling.

H. Summary of the Models

To complete this Section we summarize the worst case complexity of various models in the
table I.
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TABLE I

WORST-CASE MEMORY, OFFLINE AND ONLINE TIME COSTS FORVARIOUS MODELS. k IS THE NUMBER OF ATTRIBUTES, n

IS THE NUMBER OF RECORDS, nQ IS THE QUERY SIZE, N IS THE NUMBER OF ITEMSETS, nj IS THE SIZE OF THEj-TH

ITEMSET, Nc IS THE NUMBER OF CLUSTERS IN THE MIXTURE OF INDEPENDENCE MODELS, P.I . STANDS FOR“ PER

ITERATION”.

Group Model Memory Online Time Offline Time
Linear Scan O(

∑n
i=1 N1′s(i)) O(nQ

∑n
i=1 N1′s(i)) O(1)

Sample,t% O(t
∑n

i=1 N1′s(i)) O(tnQ
∑n

i=1 N1′s(i)) O(1)
1 Independence O(k) O(nQ) O(

∑n
i=1 N1′s(i))

Bernoulli Mixture O(kNc) O(nQNc) O(knNc), p.i.
Chow Liu O(k2) O(knQ) O(k2n)

2 ADTrees O(
∑N

j=1 nj + N) O(2nQ) O(N
∑n

i=1 N1′s(i))
Maximum Entropy O(

∑N
j=1 nj + N) O(N22nQ), p.i. O(N

∑n
i=1 N1′s(i))

As shown in the table, there are various tradeoffs in the worst case between the memory required
for a model, the online time cost for querying, and the offline construction time. For example, a
linear scan of the full data is the worst in terms of memory requirements, it takes significant online
time, but it has the least offline time cost (i.e., zero, since no model is created). Note that all
methods fall into one of two groups: (1) those estimated once offline on all of the attributes in the
data set (group 1 in the table), and (2) those based on the itemsets that estimate online a distribution
on the specific variables in a given query (group 2 in the table). In the next section we empirically
investigate the average time and memory performance of each of these approaches, and in addition
evaluate the empirical errors (Equation 1) for each model.

V. EMPIRICAL RESULTS

A. Description of the Data Sets

We conducted experiments on two real-world transaction data sets, as well as on sets of sim-
ulated data. The real-world data sets included the Microsoft Anonymous Web data set (publicly
available at the UCI KDD archive,kdd.ics.uci.edu ) with 32,711 records (Web site visi-
tors) and 294 fields (Web pages), and a large proprietary data set of consumer retail transactions
with 54,887 records (transactions) and 52 fields (categories of items that can be purchased). The
simulated data sets were designed to be much larger than these real-world data sets.

General characteristics of these data sets are provided in the Table II. The retail data set is much
more dense than the Microsoft Web data as indicated by thedensityindex which is defined as the
probability that a 1 appears in any randomly selected cell in the data matrix. The density index for
the retail data is almost 8 times higher than that for the Microsoft data. As data density grows, the
larger itemsets become more frequent and the memory footprints of the itemset-based maximum
entropy and ADTree models will also increase. Furthermore, the graphs underlying the maximum
entropy probability model also become dense, leading to potentially significant increases in the
online estimation time of the maximum entropy approach. We will see empirical examples of
these effects later in this section.

To analyze the structure of the frequent itemsets for each data set we considered different values
of the thresholdT and counted the number ofT -frequent itemsets in the data. Table III gives the
distribution of the number ofT -frequent itemsets of sizes for different values ofs andT . The last
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TABLE II

GENERAL CHARACTERISTICS OF THE DATA SETS: k IS THE NUMBER OF ATTRIBUTES, n IS THE NUMBER OF RECORDS, N1′s

IS THE NUMBER OF1’S IN THE DATA, E(N1′s) = N1′s/n, E(N1′s)/k IS THE DENSITY INDEX, Std(N1′s) IS THE STANDARD

DEVIATION OF THE NUMBER OF1’S IN THE RECORD, AND Max(N1′s) IS THE MAXIMUM NUMBER OF 1’S IN ANY RECORD.

k n N1′s E(N1′s/k) Std(N1′s) Max(N1′s)
MS Web Data Set 294 32711 98654 0.0102 2.5 35

Retail 52 54887 224580 0.0786 3.98 44

row provides a heuristic estimate of the induced widthw∗ of the graphs of the model, using the
maximum cardinality orderingd on all attributes. The largest clique in the triangulated graph of
the retail data set mentions roughly the half of all variables, while the same parameter for the Web
data is only 10% of the number of all variables, despite the order of magnitude difference between
the corresponding thresholdsT . Thus, even for queries on the retail data that mention only 6 to 8
variables, we can expect to get much more dense graphs using the maximum entropy method and
correspondingly higher online query times.

TABLE III

DISTRIBUTION OF THE ITEMSETS FOR THEWEB DATA AND THE RETAIL DATA . THE LAST ROW PROVIDES A HEURISTIC

ESTIMATE OF THE INDUCED WIDTHw∗ IN THE GRAPH FOR ALL ATTRIBUTES.

size MS Web Retail
s T=20 T=30 T=300 T=400
2 183 107 1486 1377
3 1453 1041 175529 131329
4 3102 1891 3904616 1995004
5 3178 1576 17650712 5737579
6 1542 595 24580567 4937654
7 381 134 14180476 1401976
8 56 20 2717947 85906
9 6 1 133387 596
10 0 0 742 1
w∗(d) 30 24 25 23

B. Query Generation

We empirically evaluated the following models
1) the training data;
2) q% samples of the training data for values ofq = 1, 5, 10, 15, 20;
3) the independence model;
4) the Chow-Liu tree model;
5) the mixture of independence models parameterized by the number of clustersNC , taking

values5, 10, 25, 50, 80;
6) the itemset inclusion-exclusion model parameterized by the value of the thresholdT in the

definition ofT -frequent itemsets. This parameter was chosen differently for different data
sets because of the differences in their density. For the Microsoft Web data, we setT to
10, 30, 50, 70, 90 and for the retail data, we set toT to 200, 300, 400, 500, 600;
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7) the maximum entropy method using clique-tree iterative scaling, parameterized by a thresh-
old T in the definition ofT -frequent itemsets. The thresholdT took the same values as
above.

Of special note here is the fact that the number of clustersNC (in the definition of the mixture
models) and the thresholdT (in the definition of itemset-based methods) allow a direct tradeoff
of accuracy for time and memory. In particular, the higher the number of clustersNC , the more
parameters are in the model (linearly as a function ofNC) and the more accurately it can answer
queries on the training data. But asNC increases it also requires more memory. Similarly, as
the thresholdT is reduced, more itemsets becomeT -frequent and are used in the model. Thus,
for smaller values ofT , the itemset-based models use more memory and presumably offer more
accurate estimates than for larger values ofT . In the following sections we verify these conjectures
empirically.

All experiments were performed on a Pentium III, 450 MHz machine with 128 Mb of memory.
We generated 1000 queries from a fixed user query distributionπ(Q), and evaluated different

models with respect to the average memory taken by the model, the average online time taken to
answer a query, and the average empirical error as defined in Equation 1.

The distributionπ(Q) was modelled as follows. We first fixed its sizenQ to 4 or 8. This choice
reflects our assumption that users querying the data are more likely to ask short queries so thatπ(Q)
is peaked at smallnQ’s. Once the value fornQ was chosen,nQ attributes were randomly selected
according to the probability of the attribute taking a value of “1” and a value for each selected
attribute was generated randomly according to its univariate probability distribution. This choice
of a user query distributionπ(Q) is motivated by the fact that zero values for the attributes are
more likely in sparse data sets than positive ones. Using purely random queries (randomly chosen
attributes with randomly chosen values) would result in a preponderance of queries whose count is
zero in the data (since any query consisting of more than one positively instantiated attribute will
often not have occurred in the data).

C. Results on the Microsoft Web Data

The left plots in Figure 1 show the the average relative error versus the memory requirements
for each model, using the Microsoft Web data. The top plots correspond to queries of size 4, the
bottom to queries of size 8. Both axes on each plot are on a logarithmic (base 10) scale. The dotted
line corresponds to a linear scan of the training data—it is error free, so that the logarithm of error
equals minus infinity, and thus, we only show how much memory the training data takes. Note
that all models to the right of this dotted line are effectively impractical since that they are taking
more memory than the full data set. Different points on each curve were obtained by varying the
value of the tradeoff parameter for the respective model plotted by that curve. The values of the
tradeoff parameters for each model, and their influence on the model’s complexity and accuracy,
were summarized in Section V-B. For instance, lower values of the parameterT (for itemset-based
models) result in a larger number of itemsets, larger memory requirements, and (typically) lower
error rates.

The independence model requires the least memory but it is also the most inaccurate model.
Since the Chow-Liu tree model incorporates specific pairwise dependencies between attributes, it
is more complex (taking more memory than the independence model) and exhibits better accuracy
than the independence model. However, the accuracy of the Chow-Liu tree model is not as good as
the mixture, itemset inclusion-exclusion, or maximum entropy models. The query answers from
random samples of various sizes are comparable in accuracy to the independence and Chow-Liu
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models. However, they are less accurate then the other models, although they take similar memory
to the mixtures (for example). As we noted above the larger the number of clustersNC , the more
parameters are in the mixture model (linearly as a function ofNC) and the more accurately it can
answer queries on the training data. This is verified by the Figure 1. The itemset-based inclusion-
exclusion ADtree and maximum entropy models are the most memory-intensive but they are also
the most accurate. The model based on maximum entropy is the most accurate overall for most
values of the thresholdT .

We also measured the average online time taken to generate the estimated query count. Right
plots on Figure 1 illustrate how the error depends on the online time for all of the models answering
queries of length4 (top) and8 (bottom) on the Web data.

The independence model is the fastest but it is also the least accurate of all models. The Chow-
Liu model is slightly more accurate than the independence model but takes roughly an order of
magnitude more time. The most accurate of the itemset inclusion-exclusion models are extremely
fast (about as fast as the independence model). The itemset inclusion-exclusion models are not as
accurate as the models based on maximum entropy on short queries of length 4, but approach the
accuracy of the maximum entropy models on longer queries of length 8. The best mixture models
(NC = 80) are not as accurate as the best itemset models (based on either inclusion-exclusion or
maximum entropy), but are closer in speed to the fast itemset inclusion-exclusion models than to
the relatively slow model based on maximum entropy.

The itemset model based on maximum entropy is more accurate than all other models but takes
orders of magnitude more time to produce estimates. In absolute terms, queries of size 4 are often
being answered in well under a CPU second, but relative to the other models this is quite slow. The
time requirements to answer queries of size 8 are greater than the time to perform a linear scan of
the training data, regardless of the value chosen forT .

As the query size changes, from queries of length 4 (top right plot in Figure 1) to queries of
length 8 (bottom right plot), all of the methods except for maximum entropy appear relatively
insensitive to query length. Maximum entropy is highly sensitive, however, since it builds a graph-
based model for the query variables in real-time. As the query size increases (from top to bottom
in the plots) the average online time for the model using maximum entropy increases dramatically,
as the average induced width in the graphs for the query attributes increases accordingly.

D. Results on the Retail Data

Since this data set is more dense, we increased the thresholdT for the itemset models (inclusion-
exclusion and maximum entropy) as described in Section V-B. All of the remaining models (the
independence, the Chow-Liu, and the mixture models) were constructed in the same fashion as for
the Web data.

The memory sizes of the maximum entropy and itemset inclusion-exclusion methods increased
by about an order of magnitude on this data compared to the Web data (compare left plots on
Figures 1 and 2). The other models (independence, Chow-Liu tree, and mixtures) actually tended
to decreasein memory size compared to the Web data since they are only a function of the number
of variables in the data and not a function of the density.

The accuracy of the various models relative to one another on the retail data was qualitatively
similar to that on the Web data with one significant exception, namely that the mixture model
now outperformed maximum entropy and became the most accurate model overall among models
considered in the experiment (see Figure 2). In theory we could likely find an itemset model using
maximum entropy that would outperform the best mixture model, by lowering the thresholdT
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(i.e., including more itemsets). However, this would incur a very significant computational penalty
in terms of memory and online computation time. For queries of size 8 the average CPU time per
query is already over 1 second, and forT = 200 the memory is over 1MByte. Similarly, for the
itemset inclusion-exclusion models, the accuracy could be improved by allowing the model to take
up more memory. However, for this data set this would again be impractical. Thus, on the more
dense data neither the itemset inclusion-exclusion nor the maximum entropy model can match the
overall performance of the mixture model given reasonable memory constraints.

E. General Observations

From the results on both data sets a number of general observations can be made:
• The independence models are the fastest, have the smallest memory requirements, but are the

least accurate of all models.
• The Chow-Liu tree model provides a modest improvement in accuracy over the independence

model but is slower and requires more memory.
• Random samples are substantially less accurate than the mixture, inclusion-exclusion, and

maximum entropy methods, and in addition they can take significant time and memory re-
sources.

• The itemset inclusion-exclusion models are much faster than all of other models (except for
the independence model). The largest itemset inclusion-exclusion model can be comparable
in accuracy with the best of the other methods. However, on dense data sets the itemset
inclusion-exclusion models require large memory investments in order to be one of the best
models.

• The itemset models based on maximum entropy are among the most accurate models, but
suffer from an exponential increase in online time as the query length grows, and they suffer
the same memory problems as the itemset inclusion-exclusion models.

• The mixture models tend to provide comparable accuracies to those of the itemset inclusion-
exclusion and the maximum entropy methods (beating them on the dense data and losing to
them on the sparse data). However, they are much faster than the models based on maximum
entropy and have a much smaller memory footprint than both types of itemset-based models.
Thus, mixture models offer a quite useful operating point in the memory-speed tradeoff space.

F. Scalability to Large Data Sets

The Microsoft web and retail data sets used in our experiments above are relatively small com-
pared to many real-world transaction databases. The experiments were useful and informative in
that they provided a relative evaluation of different approximation schemes. However, from a prac-
tical viewpoint it is of interest to know how the models scale up to data sets that are much larger.
To investigate this we ran experiments in the following manner. We first learned a mixture model
(Equation 4) with20 clusters on the Web data and then simulated data sets with 30K, 300K and
3000K records from the learned mixture model. The sample of size 30K is roughly equal to the
size of original data, while the other two samples are correspondingly 10 and 100 times larger. For
the maximum entropy method we set the value of the thresholdT to 30, 300 and 3000, for the
30K, 300K, and 3000K sized data sets respectively, and computedT -frequent itemsets for each of
the samples.

Our goal here was to evaluate how speed and memory characteristics of the different methods
changed as the data size was increased. By simulating from a non-trivial model (i.e., not just
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an independence model) built from real data, the resulting simulated data can be expected to be
similar in many respects to a real data set of the same size, e.g., relatively large itemsets can be
generated and/or records with large number of 1’s.

We investigated how the maximum entropy method enhanced with bucket elimination computa-
tion (see [25] for details), the itemset inclusion-exclusion, and the mixture models compared to a
linear scan of the data in terms of both memory and online time when the size of the training data
increased. We ignored accuracy in our experiments since on simulated data it is not particularly
meaningful. The memory for the maximum entropy and itemset inclusion-exclusion models built
for each of three data sets was approximately 0.1Mbit. This compares with 0.43Mbit memory for
storing the whole dataset with 30K records, 4.6Mbits for the data with 300K records, and 46Mbits
for 3000K records. Table IV describes the online timing results. As expected, the time of a linear
scan increased linearly with the size of the data set. Given our choice of the threshold values the
average online times of the maximum entropy and itemset inclusion-exclusion methods, however,
remained roughly constant as the size of the data set increases. For the largest data set with 3
million records, the maximum entropy method was two orders of magnitude faster than a linear
scan for queries of length 4 and similar in speed to a linear scan for queries of length 8. For a given
fixed-size data set, as query length increases, the maximum entropy method will eventually become
slower than a linear scan of data (again a function of the exponential growth in time complexity as
a function of query length for the maximum entropy approach).

The mixture model times was also included for comparison in Table IV. The times were inde-
pendent of the data size (since the model is independent of the data size) and varied linearly with
query length. In absolute terms the mixture model was significantly faster than either the maxi-
mum entropy approach or the linear scan. For large real-world data sets the mixture model or the
itemset inclusion-exclusion model (if memory is plentiful) may well be the techniques of choice
for fast and accurate approximate querying.

TABLE IV

AVERAGE ONLINE TIMES (IN CPU SECONDS) FOR VARIOUS SIMULATED DATA SAMPLES AND QUERY SIZES. THE

FOLLOWING ABBREVIATIONS ARE USED BELOW: ME—THE ITEMSET MODEL USING MAXIMUM ENTROPY, MM–A MIXTURE

MODEL WITH NC = 100 COMPONENTS, IIE IS AN ITEMSET INCLUSION-EXCLUSION MODEL, AND SS–A LINEAR SCAN

THROUGH THE DATA.

Query Size Algorithm Data Size
30K 300K 3000K

ME 0.054 0.051 0.049
4 IIE 0.00014 0.00025 0.00061

MM 0.002 0.002 0.002
SS 0.022 0.236 2.422
ME 2.271 1.534 1.631

8 IIE 0.00071 0.00068 0.00072
MM 0.006 0.006 0.006
SS 0.029 0.281 2.792

VI. CONCLUSIONS

We have investigated the application of general probabilistic models to the problem of query
approximation for binary transaction data sets. We introduced two new methods for building prob-
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ability models from frequent itemsets: a maximum entropy approach and an inclusion-exclusion
approach. Several other probabilistic modelling techniques were also investigated and compared to
the linear scan of the original data and random samples of original data: the independence model
(as a baseline), Chow-Liu tree models that incorporate specific pairwise attribute dependencies,
and mixtures of Bernoulli (independence) models.

In a variety of experiments on real-world and simulated transaction data we found that virtually
all of these models provided gains in accuracy over the simple independence model. However, each
came with an associated cost. The itemset inclusion-exclusion model provides improved accuracy
and very fast online computation times, but at a cost of having quite large memory footprints to
store a large number of itemsets in an ADTree. The itemset model using maximum entropy has
the same memory requirements and is even more accurate than the itemset inclusion-exclusion
model, but on each iteration of the model-fitting procedure it scales exponentially in time as a
function of query length. Mixture models appear to offer a useful practical trade-off by avoiding
both the excessive memory and time requirements of the maximum entropy and itemset inclusion-
exclusion methods, while still providing substantial improvements in accuracy over the baseline
independence model. Generating approximate predictions by scanning random samples of the
original data tends to be too time or memory consuming, or inaccurate, and appears to be less
effective than the model-based approaches.

Which of these methods is best-suited for a particular application is a function of the time and
space resources available for the application as well as the nature of the queries being issued
and the nature of the underlying data. All of the probabilistic models we considered in this paper
(except for independence and Chow-Liu trees) have parameters that can be tuned to satisfy specific
end-user requirements regarding the trading of time and memory for accuracy.

In this context, we have recently investigated the use of model-combining algorithms that can
use a weighted combination of multiple models to answer a query [27]. The relative weights for
different models are chosen in an adaptive and automated manner to optimize accuracy relative
to a given query distribution and a given data set. The algorithm for combining models uses a
straightforward and scalable least-squares optimization procedure. The use of model-combining
in this manner sidesteps the issue of having to select a single “best” model by adaptively using
combinations of models. In fact, on real-world and simulated data sets, the predictions from the
weighted combination of models reduce the prediction error of any single model by factors of up
to 50% [27].

We emphasize that, unlike most previously reported work on approximate querying, our models
are able to handle sparse high dimensional data sets with numbers of attributes on the order of
hundreds or thousands.

A variety of extensions of each of the probabilistic models discussed in this paper are possible.
For example, it is relatively straightforward to extend each of the probability models to answer
queries expressed as arbitrary Boolean functions rather than as simple conjunctions. The methods
can also be extended to arbitrary categorical data (or discretizations of real-valued data) rather
than being restricted to binary data alone. Anytime algorithms for approximate query-answering
are also of significant practical interest. In [28] we present a more detailed description of the
framework and its extensions.
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Fig. 1. Average relative error for 1000 queries of length 4 (top) and 8 (bottom) drawn fromπ(Q) as a function of the average
model complexity (left) and average online time (right) for the Web data.
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Fig. 2. Average relative error for 1000 queries of length 4 (top) and 8 (bottom) drawn fromπ(Q) as a function of the average
model complexity (left) and average online time (right) for the retail data.
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