
Hidden Markov Models for Endpoint Detection in Plasma Etch

Processes

Technical Report UCI-ICS 01-54

Department of Information and Computer Science

University of California, Irvine

Xianping Ge, Padhraic Smyth

Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425

{xge,smyth}@ics.uci.edu

September, 2001

Abstract

We investigate two statistical detection problems in plasma etch endpoint detection: change-point
detection and pattern matching. Our approach is based on a segmental semi-Markov model frame-
work. In the change-point detection problem, the change-point corresponds to state switching in
the model. For pattern matching, the pattern is approximated as a sequence of linear segments
that are modeled as segments (states) in the model. The segmental semi-Markov model is an exten-
sion of the standard hidden Markov model (HMM), from which learning and inference algorithms
are presented to solve the problems of change-point detection and pattern matching in a Bayesian
framework. Results on both simulated data and real data from semiconductor manufacturing illus-
trate the flexibility and accuracy of the proposed framework.

200 210 220 230 240 250 260
4500

5000

5500

6000

6500

7000

Time (s)

In
te

ns
ity

 (a
.u

.)

Figure 1: An illustrative example of a change-point detection problem from plasma etching. Data
are from a commercial LAM 9400 plasma etch machine.

1 Introduction

Plasma etch is a critical process in semiconductor manufacturing. Accurate automatic detection
of the end of the etch process is essential for reliable wafer processing. Figures 1 and 2 show
two techniques for endpoint detection [19, 20, 2, 25] using interferometry sensor data from plasma
etching:

1. Change-point detection: In Figure 1, a “change-point” occurs at the boundary between the
two fitted quadratic curves. Process engineers are interested in detecting this change-point
in real time for the purpose of endpoint detection.

2. Pattern matching : In Figure 2, a signature pattern (enlarged in the box in Figure 2(a))
is visually determined by process engineers to be a good detector of the endpoint. Given
one example pattern (e.g., from a test run of the process), can we find similar patterns in
subsequent runs? (E.g., in Figure 2(b).)

Solving either of these problems in an automated manner is non-trivial due to the inherent
variability in end point signature from run to run. We address both problems in this paper using
the general framework of a segmental semi-Markov model. This framework extends the standard
hidden Markov model (HMM) to allow explicit state duration modeling (the semi-Markov model,
e.g., [10]), and non-constant observations (the segmental model, e.g., [21]).

There has been extensive research into the plasma etch endpoint detection using optical emission
spectroscopy and interferometry signals in recent years [20] [25] [24] [1] [5] [27] [23]. As mentioned

1

0 50 100 150 200 250 300 350 400
200

250

300

350

400

450

500

Time (s)

In
te

ns
ity

 (a
.u

.) Example
Pattern

0 50 100 150 200 250 300 350 400
200

250

300

350

400

450

Time (s)

In
te

ns
ity

 (a
.u

.)

Figure 2: An example of an interferometry sensor data from plasma etching: (a) (top) a waveform
pattern indicating the end of the plasma etch process is indicated with dotted line, (b) (bottom)
another run of the same process where we wish to detect a similar pattern (indicated by dotted
lines).

2

above, experienced process engineers can manually find the endpoint by inspecting the shape of the
time waveform of selected spectral lines, and pattern recognition methods such as neural networks
are then trained on example data for endpoint detection. One limitation with the neural network
approach is that a substantial number of training examples may be needed to build the model. To
remedy this problem Mundt [20] proposed synthesizing training data. To do this, a mathematical
model has to be constructed for the endpoint. This is a nontrivial task to perform since it requires
detailed prior knowledge and may need to be repeated for each new pattern. Another limitation
of the neural network approach is that the learned model is a “black box.” It is hard to interpret
and it is difficult to incorporate expert knowledge of process engineers into the network model.
Other pattern matching techniques have also been explored. Allen et al [2] used the Haar wavelet
representation to model an endpoint pattern over many resolutions. Again, it is difficult to directly
incorporate prior knowledge using this approach.

In this paper, we propose a novel approach to the modeling of the endpoint shape signature,
based on the segmental semi-Markov model. Our approach can directly capture a process engi-
neer’s knowledge about endpoint characteristics, for example, the nature of a change-point between
two polynomial segments, the shape of an example pattern, the expected location in time of the
endpoint, and so forth. The segmental semi-Markov model was originally proposed in the speech
recognition literature [10, 21] but to our knowledge this paper describes the first application to
process sensor data analysis. The remainder of the paper is organized as follows. In Section 2, we
describe the segmental semi-Markov model and the inference algorithms to compute the hidden
states from observed data. In Sections 3 and Sections 4 we apply the model to the problems of
change-point detection and pattern matching. We show how to build the model, apply the infer-
ence algorithms, and describe experimental results on both simulated and actual plasma etch data.
Finally, Section 5 concludes with a discussion of future work.

2 Background on Segmental Hidden Semi-Markov Models

2.1 Hidden Markov Models

We begin with a brief review of the standard discrete-time finite-state Markov model. There are
M states in the model: 1, 2, . . . ,M . The state at time t is denoted st, where t = 1, 2, . . . is the
time index. At time t = 1, the probability distribution over the states is given by π, the initial
state distribution, i.e., p(s1 = i) = πi, for i ≤ i ≤ M . Given the state st at time t, the state st+1

at time t + 1 is given by the conditional probabilities p(st+1|st), and conditionally independent
of st−1, st−2, . . . , s1. The state transition matrix A specifies the conditional probabilities Aij =
p(st+1 = j|st = i), for 1 ≤ i, j ≤M , and

∑

j Aij = 1, for 1 ≤ i ≤M .
A hidden Markov model (HMM) is a Markov model where the states st are not directly ob-

servable [22]. Instead, we can observe another measurement yt (real-valued for the purpose of this
paper) that is related to st by the stationary probability distribution p(yt|st), i.e., yt is a stochastic
function of the unobserved state st. Given the state st, the observation yt is independent of all pre-
vious states s1, . . . , st−1, and all previous observations y1, . . . , yt−1. Let θi be the set of parameters
that specify the observation-state model p(yt|st = i), for 1 ≤ i ≤ M , and where θ = {θ1, . . . , θM}.
The functional form of p(yt|st = i) is often chosen from some relatively simple parametric family,

3

��� ��� ������� �
	

��� �
� ������� �
	

Figure 3: The graphical structure of a hidden Markov model.

e.g., Gaussian for real valued yt, or a multinomial for categorical yt. Note that θi does not depend
on t, i.e., the model parameters do not change with time.

The graphical structure of the hidden Markov model is illustrated in Figure 3. The joint
distribution of the model, based on the assumptions stated above, can be written in factored form
as:

p(s1, . . . , sT , y1, . . . , yT) = p(s1)
T−1
∏

t=1

p(st+1|st)
T
∏

t=1

p(yt|st). (1)

There exists an efficient algorithm, called the Viterbi algorithm, that computes the most likely
state sequence s = s1 . . . sT from a given observation sequence y = y1 . . . yT , given the parameters
λ = {π,A,θ} of the model. Furthermore, given an observed sequence y and fixing M , one can
perform maximum likelihood estimation of the parameters λ of the model using the Expectation-
Maximization (EM) algorithm [22].

We can model the change-point detection problem from Figure 1 with two states: “before
the change-point” (first segment), and “after the change-point” (second segment). The data y =
y1 . . . yT are observed, but the corresponding states s = s1 . . . sT (i.e., segment labels) are hidden.
If we can estimate the state sequence s = s1 . . . sT , the change-point can be estimated by noting
that the change-point is simply the first t such that st = 2.

The pattern matching problem of Figure 2 can also be formulated within the framework of
hidden Markov models. The pattern can be approximated by a piecewise linear representation (see
Figure 4), consisting of a number of linear segments, where the hidden states correspond to the
segment labels. We will elaborate on the details of this model later in the paper.

2.2 Semi-Markov Models

For a finite state Markov model, the state duration di is the number of consecutive time-steps that
the system stays in state i, after entering the state. In the standard Markov model, the distribution
of di is given by

p(di = n) = An−1
ii (1−Aii), n = 1, 2, . . . (2)

where Aii is the self-loop transition probability of state i and n is the number of time-steps spent
in state i. In other words, the state-duration distribution is constrained to be geometric in form.
In reality other kinds of distributions, such as log-normal, may provide a more realistic model for
certain applications. For example, in Figure 1 we have prior knowledge from the physics of the

4

215 220 225 230 235
375

380

385

390

395

Time (s)

In
te

ns
ity

 (a
.u

.)

Original
Example
Pattern

215 220 225 230 235
375

380

385

390

395

Time (s)

In
te

ns
ity

 (a
.u

.)

Piecewise
Linear
Representation

Figure 4: The example waveform pattern of Figure 2(a) and a piecewise linear representation.

plasma etch process that a change is more likely to occur about half-way through the process,
rather than at the beginning or at the end. Thus a geometric duration, monotonically decreasing
from its mode at time 1, is physically implausible.

The problem of modifying the standard Markov model to allow for arbitrary state-durations
can be addressed by the use of semi-Markov models (e.g., [10]). A semi-Markov model has the
following generative description:

• On entering state i a duration time di is drawn from a state-duration distribution p(di).

• The process remains in state i for time di.

• At time di the process transitions to another state according to a transition matrix A, and
the process repeats.

The state-duration distributions, p(di), 1 ≤ i ≤M , can be modeled using parametric distributions
(such as log-normal, Gamma, etc) or non-parametrically by mixtures, histograms, kernel densities,
and so forth. If di is constrained to take only integer values we get a discrete-time semi-Markov
model. The discrete-time model is used throughout this paper since the observed measurements
yt are discrete-time sampled sensor signals. In a change-detection context, by including the state-
duration distributions in the model, we can encode a prior on how long we expect the process to
remain in each state. In applications where we have multiple runs of the same process, the prior can
be adapted to the data over multiple runs, i.e., the parameters for the prior p(di) can be recursively
updated using a Bayesian estimation framework.

5

2.3 Segmental Observation Models

We have not yet described the functional form of the conditional densities p(yt|st) that relate the
observed data to the hidden states. In the standard HMM framework, the observed yt’s depend
only on the state st, not on the time t. This effectively models the data y as being piecewise
constant with additive noise, as yt will be governed by a constant mean over time within each
state. There are many examples of real-world time-series where this piecewise-constant model is
inappropriate, e.g., the data in Figure 1. A natural generalization of the piecewise-constant model
is to allow each state to generate data in the form of a regression curve [21], i.e.,

yt = fi(t|θi) + et (3)

where fi(t|θi) is a deterministic state-dependent regression function with parameters θi and et is
additive independent noise (often assumed Gaussian, but not necessarily so). In the Gaussian noise
case we get that p(yt|st = i) is Gaussian with a time-dependent mean fi(t|θi) and with variance σ2.

This segmental model allows us to directly model the shapes of the segments in the data, for
example, the quadratic curves in the change-point detection problem (Figure 1), and the slopes of
the linear segments in the pattern matching problem (Figures 2 and 4).

2.4 Segmental Semi-Markov Model

The discussion so far has generalized the standard hidden Markov model to the segmental hidden
semi-Markov model, specified by

• π, the initial state distribution,

• A, the state transition matrix,

• p(di), for 1 ≤ i ≤M , the state duration distributions,

• yt = fi(t|θi) + et, for 1 ≤ i ≤M , the stochastic regression functions of the M states.

Let n0 = 0 and nr = T , and let there be r “same-state runs” in the data, where nj , 1 ≤ j ≤ r,
denotes the final time index for each of the r runs, such that s1 = · · · = sn1 , sn1+1 = · · · = sn2 , . . .,
snr−1+1 = · · · = snr . The joint distribution of the model is

p(s1, . . . , sT , y1, . . . , yT) = p(s1)
r−1
∏

j=1

p(sj+1|sj)
r
∏

j=1

[

p(dsnj = nj − nj−1)p(ynj−1+1, . . . , ynj |snj)
]

.

(4)

2.5 A Viterbi-like Algorithm to Compute the Most Likely State Sequence
(MLSS) for a Segmental Semi-Markov Model

To find the most likely state (i.e., segment label) sequence ŝ = s1 . . . sT for a data sequence y =
y1 . . . yT , we have the following recursive Viterbi-like algorithm based on dynamic programming

6

(this is essentially the same algorithm as in [21]). At each time t < T , this algorithm calculates the

quantity p̂
(t)
i for each state i, 1 ≤ i ≤M , where p̂

(t)
i is defined as

p̂
(t)
i = max

s

{p(s|y1 . . . yt)|s = s1 . . . st, st = i, st+1 6= i}. (5)

In other words, p̂
(t)
i is the likelihood of the most likely state sequence that ends with state i, and

yt is the last point of segment i. At time t = T , we define p̂
(T)
i as

p̂
(T)
i = max

s

{p(s|y1 . . . yT)|s = s1 . . . sT , sT = i}. (6)

By definition, the most likely state sequence for the data sequence y1 . . . yT will be the state sequence

s1 . . . sT with likelihood maxi p̂
(T)
i .

The recursive function for calculating p̂
(t)
i is

p̂
(t)
i = max

t′

(

max
j

[

p̂
(t′)
j Aji

]

p(di = t− t′)p(yt′+1 . . . yt|θi)
)

, (7)

for 1 ≤ i ≤ M . In the above equation, t′ is either the last point of the previous segment, or 0. If

t′ = 0, maxj
[

p̂
(t′)
j Aji

]

is replaced with πi. If t = T , p(di = t− t′) is replaced with p(di ≥ T − t′).

The time t′ and the state j that maximize Equation 7 are recorded in a table: PREV (i, t) ←
(j, t′). Let j = argmaxi p

(T)
i . We can trace back from PREV (j, T) through the table PREV to get

the most likely state sequence. Figure 5 summarizes the procedure in pseudo-code.

The space complexity of the MLSS algorithm is O(MT) for storing p̂
(t)
i , PREV (i, t), for 1 ≤

i ≤M , 1 ≤ t ≤ T . Let Di = max di−min di+1 and D =
∑M

i=1 Di. At time t, when yt is available,

the computation time complexity for calculating p̂
(t)
i (Equation 7) is O(DiM), so the total time

complexity (for calculating p̂
(t)
i for all 1 ≤ i ≤M) is O(DM).

2.6 Forward-backward Algorithm

Another inference task is to calculate p(st = i|y1, . . . , yT), the posterior probability that a data
point belongs to state i, given all the observations. In the standard hidden Markov model, this
can be done by using the forward-backward algorithm [22]. Here we extend this algorithm for the
segmental semi-Markov model, again in a manner similar to that described in [21].

Let st1,t2 = i be an abbreviation for

st1−1 6= i, st1 = · · · = st2 = i, st2+1 6= i, (8)

and define

α(i, t1, t2) = p(st1,t2 = i, y1, . . . , yt2), (9)

for 1 ≤ i ≤M,

1 ≤ t1, t2 ≤ T,

p(di = t2 − t1 + 1) > 0,

7

function s1 . . . sT = MLSS(y1 . . . yT)
1. for t=1 to T
2. for i=1 to M

3. Compute p̂
(t)
i , PREV (i, t);

4. end for
5. end for

6. j = argmaxi p̂
(T)
i ;

7. t = T ;
8. [j′, t′] = PREV(j, t);
9. for k = t′ + 1 to t
10. sk = j;
11. end for
12. if (t′ > 0)
13. [j, t] = [j′, t′];
14. goto 8;
15. else
16. return;
17. end if

Figure 5: Pseudo-code for MLSS (finding the most likely state sequence s1 . . . st for data sequence
y1 . . . yt).

and

β(i, t) = p(yt+1, . . . , yT |st = i), (10)

for 1 ≤ i ≤M, 1 ≤ t ≤ T.

The forward pass of the algorithm calculates α’s:

1. Initialization (t1 = 1).

α(i, 1, t2) = πip(di = t2)p(y1, . . . , yt2 |θi), (11)

where p(di = t2) is replaced with p(di ≥ T) when t2 = T .

2. Forward recursion (t1 > 1). For t2 = 2, 3, . . . , T ,

α(i, 1, t2) =
∑

j

(

Aji

∑

t′1

α(j, t′1, t1 − 1)

)

(12)

p(di = t2 − t1 + 1)p(yt1 , . . . , yt2 |θi),

where p(di = t2 − t1 + 1) is replaced with p(di ≥ T − t1 + 1) when t2 = T .

The backward pass calculates β’s:

8

1. Initialization (t = T).
β(i, T) = 1, for 1 ≤ i ≤M. (13)

2. Backward recursion (t < T). For t = T − 1, T − 2, . . . , 1,

β(i, t) =
∑

j

(

Aij

∑

t′

[

β(j, t′) (14)

p(dj = t′ − t)p(yt+1, . . . , yt′ |θj)
]

)

,

where p(dj = t′ − t) is replaced with p(dj ≥ T − t) when t′ = T .
Let y = y1, . . . , yT . Now we have

p(st1,t2 = i,y) = p(st1,t2 = i, y1, . . . , yt2 , yt2+1, . . . , yT)

= p(st1,t2 = i, y1, . . . , yt2)

p(yt2+1, . . . , yT |st1,t2 = i, y1, . . . , yt2)

= p(st1,t2 = i, y1, . . . , yt2)

p(yt2+1, . . . , yT |st2 = i)

= α(i, t1, t2)β(i, t2). (15)

and

p(st = i,y) =
∑

t1≤t≤t2

p(st1,t2 = i,y), (16)

p(st = i|y) =
p(st = i,y)

p(y)

∝ p(st = i,y)

=
∑

t1≤t≤t2

α(i, t1, t2)β(i, t2). (17)

Let Di = max di−min di+1 and D =
∑M

i=1 Di. The space complexity of the forward-backward
algorithm is O(DT) for storing all the α’s and β’s. At time t, when yt is available, the compu-
tation time complexity is O(DM) + O(DMt) = O(DMt), where O(DM) is the time complexity
of one forward step of calculating α’s, and O(DMt) is the time complexity of t backward steps of
calculating β’s.

3 Change-based Endpoint Detection

In this section, we apply the segmental semi-Markov model to solve the problem of change-point
detection for plasma etch. There is a long history of work on change detection in statistics and
engineering [3, 17]. Of direct relevance to the type of data in Figure 1 is the prior work on piecewise
regression [13, 12], also called segmented regression [18, 9], or multi-phase regression [14]. When

9

the number of segments is known a priori, these techniques can be viewed simply as trying to
minimize the sum of squared errors (SSE) when fitting regression functions to the segments. This
SSE approach is quite similar to the semi-Markov model approach with the important exception
that it does not use any prior information on where the change is expected to occur. The SSE
based method will be compared with our new method which is based on the segmental semi-Markov
model. We will denote the former by “SSE,” the latter by “SEGHMM.” Details of the SSE method
are provided in Appendix A.

3.1 Change-point Detection Algorithms

For the problem of change-point detection, we propose a 2-state segmental semi-Markov model:

• State 1: before the change point (first segment),

• State 2: after the change point (second segment).

As the process will start with state 1 and transition to state 2, the initial state distribution is

π =

[

1
0

]

, (18)

and the state transition matrix is

A =

[

0 1
0 0

]

. (19)

The state duration distribution of state 1 is set to reflect prior knowledge about when the change-
point will occur. For example, if we expect that the change will occur approximately at time
µc ± 20%, we can use a truncated normal distribution

p(d1) ∝











1√
2πσ2

c

e
−

(d1−µc)
2

2σ2
c , µc − 3σc ≤ d1 ≤ µc + 3σc

0, otherwise,

(20)

where 3σc = µc × 20%. As we are not interested in the duration of state 2, we set its distribution
to be

p(d2) ∝ 1, for d2 ≥ 0. (21)

3.2 Estimating the Regression Parameters by the EM Algorithm

If the regression parameters of the segments are not known a priori, they can be learned from data
by the Expectation-Maximization (EM) algorithm [6], which is a powerful framework for parameter
estimation from incomplete data. For our change-point detection problem, if we knew which data
points belong to state 1, and which data points belong to state 2, we could directly estimate the
regression parameters. Conversely, if we knew the regression parameters, we could calculate for
each data point the probabilities that it belongs to state 1 and state 2. The EM algorithm solves
this “chicken-and-egg” problem as follows:

10

• Start with θ̂, an initial “guess” of the regression parameters.

• Iterate over the two steps below until convergence:

1. Calculate p(st = i|y, θ̂), for i = 1, 2, t = 1, 2, . . ., using the forward-backward algorithm
in Section 2.6.

2. Re-estimate θ̂. Weighted linear regression [7] is used to estimate the regression param-

eters for each segment. For example, the weights used for segment 1 are p(st = 1|y, θ̂),
for t = 1, 2,

It can be shown that EM converges to at least a local maximum of the likelihood function in the
parameter space [6].

3.3 Estimating the Change-Point

After the regression parameters for the two segments are estimated via EM, our model is fully
specified, and we can apply the algorithm in Section 2.5 to find the most likely state sequence
(MLSS) from the observed data y = y1 . . . yt The change-point will be the smallest t such that
st = 2. We denote this variant of the SEGHMM method as “MLSS.”

For a given sequence of observed data y = y1 . . . yT , there are, in theory, T − 1 possible state
sequences:

s1 s2 s3 · · · st−1 st st+1 · · · sT−1 sT
s(2) : 1 2 2 · · · 2 2 2 · · · 2 2

s(3) : 1 1 2 · · · 2 2 2 · · · 2 2
· · ·

s(t) : 1 1 1 · · · 1 2 2 · · · 2 2
· · ·

s(T) : 1 1 1 · · · 1 1 1 · · · 1 2

Each state sequence provides an estimate of the location of the change-point. For example, in s(t)

the location of change-point is t. Instead of relying solely on the decision of the single most likely
state sequence, we can pool together the decisions of all the possible state sequences s, weighted
by their posterior probabilities p(s|y). The estimated change time is the weighted average

t̂c =
T
∑

t=2

t× p(s(t)|y). (22)

Note that

p(st = 1|y) =
T
∑

t′=t+1

p(s(t′)|y), (23)

and similarly,

p(st−1 = 1|y) =
T
∑

t′=t

p(s(t′)|y) (24)

11

200 210 220 230 240 250 260
4500

5000

5500

6000

6500

7000

Time (s)

In
te

ns
ity

 (a
.u

.)

Change Time Detected
by SEGHMM and
SSE methods

Figure 6: Detected change-points by SEGHMM and SSE methods for plasma etch data.

= p(s(t)|y) +
T
∑

t′=t+1

p(s(t′)|y) (25)

= p(s(t)|y) + p(st = 1|y), (26)

so we have
p(s(t)|y) = p(st−1 = 1|y)− p(st = 1|y), (27)

where p(st−1 = 1|y) and p(st = 1|y) can be computed efficiently by the forward-backward algorithm
in Section 2.6. Substituting the above equation into Equation 22, we have

t̂c =
T
∑

t=1

(

t×
[

p(st−1 = 1|y)− p(st = 1|y)
]

)

. (28)

We denote this variant of the SEGHMM method as “weighted.”

3.4 Experimental Results on Change-based Endpoint Detection

We applied the SSE method, and both the MLSS and weighted variants of the SEGHMM methods
to interferometry sensor data from an etch run on a LAM 9400 plasma etch machine (Figure 1).
For the SEGHMM methods, the prior on the location of the change-point (i.e., the duration of the
first state) is set to be flat (p(d1) ∝ 1). All three methods estimated the change-point to be at 233,
close to the manually marked time of 231.

To systematically compare the SEGHMM and SSE methods, they were also tested on simulated
data in the following manner:

12

0 10 20 30 40 50 60 70 80 90 100
−50

0

50

100

150

200

250

300

Time (s)

In
te

ns
ity

 (a
.u

.)

Figure 7: Synthetic data with 2 linear segments. The slopes are k1 = 1, k2 = 2. The noise σy = 10.

• Data were simulated from a waveform of 100 points consisting of the two linear segments
with additive Gaussian noise (zero mean and variance σ2). The slopes of the two segments
are k1 = 1, k2 = 4, respectively. See Figure 7 for an example of the simulated data.

• The true change-point from one segment to the other is sampled from a truncated normal
distribution with mean 50 and standard deviation 5. This distribution was used as the prior
in the segmental semi-Markov model. To test the sensitivity of the SEGHMM method to
specification of the prior, we also looked at the case when no information on prior is available,
in which case we used the flat prior, i.e., all points are equally likely to be a change point.
Depending on whether the prior is used, and whether the “MLSS” or “weighted” approach is
used to find the change point, we have four different variations of the SEGHMM method.

• 10000 random realizations of the process were generated and detections were made by the
SSE method and the four variations of the SEGHMM method.

• The experiment was repeated for three different noise levels: σ = 5, σ = 10, σ = 15.

Figure 8 shows a histogram of the errors of the detected change time for each of the SSE method
and the SEGHMM method (with prior, “weighted”) for σ = 5. The SEGHMM method is clearly
superior in that the errors tend to be much smaller. Figure 9 shows the mean absolute errors. As
the noise level increases the relative improvement from using the SEGHMM method also increases.
This is as we might expect, since as the ambiguity in the data increases a probabilistic model will
be better able to deal with the ambiguities in the data compared to a non-probabilistic approach.

13

−15 −10 −5 0 5 10
0

500

1000

1500

2000

Estimation Error

C
ou

nt
s

−15 −10 −5 0 5 10
0

500

1000

1500

2000

Estimation Error

C
ou

nt
s

Figure 8: Histograms of the detection time errors for the SSE method (top) and the SEGHMM
method (with prior, “weighted”) (bottom), σ = 10.

Conversely, for low-noise situations, the detection problem will be relatively easy and we can expect
relatively little difference between the two methods.

Additionally, we can see from the figure that the “weighted” variations of the SEGHMMmethod
are much better than the “MLSS” variations, and that, not surprisingly, “with prior” is better
than “without prior.” So the knowledge about the prior improves the performance, but it is not
essential: without it, the performance is still much better than the SSE method and relatively close
to performance with the prior. The main advantage of the “weighted” SEGHMM method appears
to come from the fact that it averages out the uncertainty over the location of the change-point
rather than picking the single best segmentation (MLSS and SSE methods).

For the results above, we have applied the SEGHMM method in an off-line manner; that is, at
time T after all yt measurements are available. In this case, the SEGHMM method has been shown
to be very effective in accurately pinpointing the location of the change point. We also tested the
SEGHMM method in an on-line manner, but found it to not significantly superior than the SSE
method, in part due to the trade-off between the false alarm rate and detection delays.

4 Pattern-Based End-point Detection

4.1 Building A Segmental Semi-Markov Model From An Example Pattern

For certain sensor and endpoint problems, the endpoint is indicated by a distinctive pattern or
waveform, rather than a simple change-point (e.g., see Figure 2). From the interferometry data in
Figure 2(a), an engineer can manually detect the endpoint by marking the pattern (enclosed in the

14

5 10 15
0

1

2

3

4

5

6

SSE

with prior, weighted

with prior, MLSS

without prior, weighted

without prior, MLSS

Sigma of Additive Noise

M
ea

n
Ab

so
lu

te
 E

rro
r o

f D
et

ec
te

d
C

ha
ng

e
Ti

m
e

Figure 9: Comparison of the SSE method and the four variations of the SEGHMM method (with
or without prior, “weighted” or MLSS), in terms of the mean absolute errors of detected change
times.

dotted rectangle). The problem is to automatically detect similar patterns in the interferometry
data of future runs, e.g., Figure 2(b).

To build a segmental semi-Markov model from the example pattern, we first approximate the
example pattern as a sequence of linear segments. This process is called piecewise linear segmen-
tation, for which there exist many algorithms, e.g., [15], [28]. For simplicity, we are using a simple
recursive algorithm (similar to the algorithm of [8]; see also [16], p. 364), which takes as input a
sequence of points (x1, y1), (x2, y2), . . . , (xT , yT) and the error tolerance ε, and output a sequence
of linear segments:

1. Connect the end points A, B. Let the equation for the line AB be y = kx+ b.

2. Find the point C between A, B with the maximum error |yC − (kxC + b)|.

3. If |yC− (kxC+b)| > ε, break the line AB into two segments AC, CB, and repeat this process
on these two segments.

The error tolerance ε can be set manually, or estimated in a robust manner from the data by median
filtering as follows:

1. Run the waveform y1 . . . yn through a median filter, and let the resulting smooth signal be
z1 . . . zn.

2. Let di = |zi − yi|, for i = 1, . . . , n.

15

3. ε is set to be the third quartile of {d1, . . . , dn}.

Let M be the number of segments in the piecewise linear representation of the example pat-
tern. We build an M -state segmental semi-Markov model. The initial state distribution is π =
[1, 0, . . . , 0]. The transition matrix A is defined as

Aij =

{

1, if i = j + 1
0, otherwise.

(29)

Let li be the length of the ith linear segment in the piecewise linear representation. The duration
distribution of the ith segment is modeled as a truncated normal distribution with mean µdi = li,
and standard deviation σdi = li × 20%/3, similar to Equation 20.

The regression function of the ith segment is a linear function

yt = kit+ bi + et, (30)

where ki, bi are the slope and the intercept, repsectively, and et is the additive Gaussian noise.
The slope ki is set to that of the ith linear segment in the piecewise linear representation. We let
the intercept bi to float freely in our model as it depends on the starting point of the segment.
Furthermore, we assume that the noise variances of all the segments are the same: σ2, which is
estimated as the noise in the training example, given its piecewise linear representation.

4.2 Pattern-matching Algorithm

To detect such a waveform inside a (much longer) time series y1 . . . yt . . ., an obvious approach would
be to match the model against every subwindow yiyi+1 . . . yj , find the most likely state sequence
sisi+1 . . . sj , and declare “found” if the likelihood is above a certain threshold. The problems with
this approach are (1) how to set the likelihood threshold and (2) the redundant computation from
the fact that the computation for every subwindow will need to be completely redone, even if a
subwindow overlaps with another subwindow.

To deal with these problems, we augment the model with two extra “background” states: a
pre-pattern background state (state 0) to model the data before the pattern, and a post-pattern
background state (state K +1) for the data after the pattern. This augmented model may be seen
as a “global” model that can be matched directly against the whole time series (instead of the
subwindows). Similar ideas have been used in speech recognition to detect specific words within
long speech sequences [26]. With this augmented model, we run the MLSS algorithm of Section 2.5
on-line as new data points y1 . . . yt . . . are coming in. If, at time t, the most likely state sequence
ends with st = K, where K is the last segment in the waveform, we declare that the waveform is
detected with end time at yt. See Figure 10 for pseudo-code.

4.3 Experimental Results on Pattern-Based End-point Detection

To test the above algorithm, a segmental semi-Markov model was fitted to the example pattern
in Figure 2(a), using piecewise linear segmentation and duration parameters as described in Sec-
tion 4.1, and the pattern matching algorithm was run on the data in Figure 2(b). The algorithm

16

procedure DETECT-PATTERN(y1 . . . yt . . .)
1. t = 1;
2. s1 . . . st = MLSS(y1 . . . yt);
3. if (st == K)
4. declare ‘found’;
5. stop;
6. else
7. t = t + 1;
8. goto 2;
9. end if

Figure 10: Pseudo-code for DETECT-PATTERN (on-line detection of waveform).

correctly found the matched pattern between time 230 and 252. See Figure 11 for another ex-
ample of applying the pattern matching algorithm, again using the same methodology for pattern
modeling and detection.

4.4 Comparison with Squared-errors Based Methods

It is informative to compare our pattern matching method with a baseline squared-error based
method that defines the distance or dissimilarity between two patterns as the root mean squared
error, i.e., template matching or cross-correlation. To apply such method in an on-line manner,
we need to set a threshold on the squared error distance measure. If the distance is lower than
the threshold, we can declare that two patterns are similar to each other. But the setting of such
a threshold must often be done in ad hoc manner. Also, in our problems, similar patterns may
have different dynamic ranges, so the data require preprocessing to allow shifting and scaling in
amplitude. It is difficult to appropriately incorporate domain knowledge into this kind of prepro-
cessing. To allow more flexible matching of patterns, dynamic time warping (DTW) can be used
to allow warping of the time axis (see Appendix B). In other words, time can be compressed or
stretched, so that two patterns can align together [4]. However, it is also difficult to incorporate
domain knowledge into the definition of the distance function for time warping. (See [11] for further
discussion.)

The results of running the squared-error based method and dynamic time warping on the same
data used in Section 4.3 are shown in Figure 12 and Figure 13. In both cases, the patterns are
mean-shifted (i.e., to make the means 0) when they are compared. See Appendix C for details.
The global minima in the two resulting error curves do not correspond to the best match, i.e.,
both minima correspond to false alarms around time t = 90 seconds. Similarly, for the data in
Figure 11, the global minima of the squared-error based method and dynamic time warping are at
times t = 327 seconds and t = 381 seconds, respectively, neither of which corresponds to the best
match.

17

0 50 100 150 200 250 300 350 400
0

50

100

150

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

Figure 11: Another example of applying our pattern matching algorithm to plasma etching endpoint
detection.

0 50 100 150 200 250 300 350 400
200

300

400

500

Time (s)

In
te

ns
ity

 (a
.u

.)

Example
Pattern

0 50 100 150 200 250 300 350 400
200

300

400

500

Time (s)

In
te

ns
ity

 (a
.u

.)

0 50 100 150 200 250 300 350 400
0

50

100

Time (s)

R
M

SE

Figure 12: Results of applying a simple template matching technique to the data in Figure 2.

18

0 50 100 150 200 250 300 350 400
200

300

400

500

Time (s)

In
te

ns
ity

 (a
.u

.)

Example
Pattern

0 50 100 150 200 250 300 350 400
200

300

400

500

Time (s)

In
te

ns
ity

 (a
.u

.)

0 50 100 150 200 250 300 350 400
0

20

40

60

Time (s)

Av
er

ag
e

Er
ro

r

Figure 13: Results of applying dynamic time-warping to the data in Figure 2.

5 Conclusion and Future Work

In this paper, we applied segmental hidden semi-Markov models to the problems of plasma etch
endpoint detection. The models provide a useful, flexible, and accurate framework for change-point
detection and pattern matching. By modeling the problem within a generative model framework
(including notions of state and time explicitly) one can incorporate prior knowledge in a princi-
pled manner and use the tools of probabilistic inference to infer change-points and pattern in an
optimal manner. The proposed techniques were shown to be more accurate than non-probabilistic
alternatives such as dynamic time-warping on both real and simulated plasma etch data.

Acknowledgments

We would like to thank Wenli Collison, Tom Ni, and David Hemker of LAM Research for providing
the plasma etch data and for discussions on change-point detection in plasma etch processes.

References

[1] R. L. Allen, R. Moore, and M. Whelan. Multiresolution pattern detector networks for control-
ling plasma etch reactors. In Proceedings of the SPIE - The International Society for Optical
Engineering, vol.2637, pages 19–30, October 1995.

19

[2] R. L. Allen, R. Moore, and M. Whelan. Application of neural networks to plasma etch end
point detection. Journal of Vacuum Science & Technology B (Microelectronics and Nanometer
Structures), 14:498–503, 1996.

[3] Michèle Basseville and Igor V. Nikiforov. Detection of Abrupt Changes: Theory and Applica-
tion. Prentice-Hall, Inc., Englewood Cliffs, N.J., April 1993.

[4] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In
KDD-94: AAAI Workshop on Knowledge Discovery in Databases, pages 359–370, July 1994.

[5] P. Biolsi, D. Morvay, L. Drachnik, and S. Ellinger. An advanced endpoint detection solution
for < 1% open areas. Solid State Technology, 39(12):59,61,62,64,67, December 1996.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39:1–38,
1977.

[7] N. R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, Inc, 1998.

[8] R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. John Wiley, 1973.

[9] S. R. Esterby and A. H. El-Shaarawi. Inference about the point of change in a regression
model. Applied Statistics, 30(3):277–285, 1981.

[10] J. D. Ferguson. Variable duration models for speech. In Proc. Symposium on the Application
of Hidden Markov Models to Text and Speech, pages 143–179, October 1980.

[11] X. Ge and P. Smyth. Deformable Markov model templates for time-series pattern matching.
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 81–90, August 20-23, 2000.

[12] Fredrik Gustafsson. Adaptive Filtering and Change Detection. John Wiley & Sons, Ltd, 2000.

[13] D. M. Hawkins. Point estimation of the parameters of piecewise regression models. Applied
Statistics, 25(1):51–57, 1976.

[14] D. V. Hinkley. Inference in two-phase regression. Journal of the American Statistical Associ-
ation, 66:736–743, December 1971.

[15] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function.
Journal of Information Processing, 9(3):159–162, 1986.

[16] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

[17] T. L. Lai. Sequential changepoint detection in quality control and dynamical systems. Journal
of the Royal Statistical Society, Series B (Methodological), 57(4):613–658, 1995.

[18] P. M. Lerman. Fitting segmented regression models by grid search. Applied Statistics, 29(1):77–
84, 1980.

20

[19] H. Maynard, E. Rietman, J. T. C. Lee, and D. Ibbotson. Plasma etching endpointing by
monitoring RF power systems with an artificial neural network. In M. Meyyapan, D. J.
Economou, and S. W. Butler, editors, Proceedings of the Symposium on Process Control,
Diagnostics, and Modeling in Semiconductor Manufacturing Proceedings of Process Control
Diagnostics, and Modeling in Semiconductor Manufacturing, pages 189–207, Pennington, NJ,
USA, May 1995. Electrochem. Soc.

[20] R. Mundt. Model based training of a neural network endpoint detector for plasma etch ap-
plications. In M. Meyyapan, D. J. Economou, and S. W. Butler, editors, Proceedings of the
Symposium on Process Control, Diagnostics, and Modeling in Semiconductor Manufacturing
Proceedings of Process Control Diagnostics, and Modeling in Semiconductor Manufacturing,
pages 178–188, Pennington, NJ, USA, May 1995. Electrochem. Soc.

[21] M. Ostendorf, V. V. Digalakis, and O. A. Kimball. From HMM’s to segment models: a unified
view of stochastic modeling for speech recognition. IEEE Transactions on Speech and Audio
Processing, 4(5):360–378, September 1996.

[22] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–286, February 1989.

[23] S. Rangan, C. Spanos, and K. Poolla. Modeling and filtering of optical emission spectroscopy
data for plasma etching systems. In 1997 IEEE International Symposium on Semiconductor
Manufacturing Conference Proceedings, pages B41–4, New York, NY, USA, October 1997.
Semiconduct. Equipment and Mater. Int, IEEE.

[24] E. A. Rietman, R. C. Frye, E. R. Lory, and T. R. Harry. Active neural network control
of wafer attributes in a plasma etch process. Journal of Vacuum Science & Technology B
(Microelectronics Processing and Phenomena), 11(4):1314–1316, 1993.

[25] D. A. White, B. E. Goodlin, A. E. Gower, D. S. Boning, H. Chen, H. H. Sawin, and T. J. Dalton.
Low open-area endpoint detection using a PCA-based T 2 statistic and Q statistic on optical
emission spectroscopy measurements. IEEE Transactions on Semiconductor Manufacturing,
13(2):193–207, May 2000.

[26] J. G. Wilpon, L. R. Rabiner, C.-H. Lee, and E. R. Goldman. Automatic recognition of keywords
in unconstrained speech using hidden markov models. IEEE Transactions on Acoustics, Speech
and Signal Processing, 38(11):1870–1878, November 1990.

[27] K. Wong, A. D. S. Boning, B. H. H. Sawin, S. W. Butler, and E. M. Sachs. Endpoint prediction
for polysilicon plasma etch via optical emission interferometry. Journal of Vacuum Science &
Technology A (Vacuum, Surfaces, and Films), 15(3):1403–1408, 1997.

[28] Y. Zhu and L. D. Seneviratne. Optimal polygonal approximation of digitized curves. IEE
proceedings. Vision, image, and signal processing, 144(1):8–14, February 1997.

21

Figure 14: Matching two time series patterns of different lengths by dynamic time warping (DTW).

A SSE Method of Change-point Detection

When there is one change-point in a given data sequence y = y1 . . . yT , the SSE method of change-
point detection tries to minimize the sum of squared errors (SSE) when fitting regression functions
to the two segments. In other words, the change-point is

argmint {SSE(y1 . . . yt) + SSE(yt+1 . . . yT)} , (31)

where SSE(yi . . . yj) is the minimum sum of squared errors when fitting a regression function on
yi . . . yj .

B Dynamic Time Warping

Dynamic time warping (Figure 14) is a method of matching two time series patterns of different
lengths. Let x1, x2, . . ., xm be the first pattern, and y1, y2, . . ., yn be the second pattern. Let a
matching be such that the matched pairs are (xi1 , yj1), . . ., (xik , yjk), . . ., (xiK , yjK), where i1 = 1,
j1 = 1, iK = m, jK = n. The cost of the matching is

C(m,n) =
K
∑

k=1

(xik − yjk)
2 . (32)

22

Dynamic time warping minimizes C(m,n) by dynamic programming:

C(i, j) = (xi − yj)
2 +min











C(i− 1, j)
C(i, j − 1)
C(i− 1, j − 1)

(33)

where we define C(0, 0) = 0, C(i, 0) =∞, C(0, j) =∞, for i, j > 0.

C Searching for Similar Patterns Using Template Matching and
Dynamic Time Warping

To search a time series y1y2 . . . yT for a pattern similar to a given example pattern x1x2 . . . xP
using template matching (i.e., with root mean squared error as the distance function), we calcu-
late, at each t >= P , the distance between the example pattern x1x2 . . . xP and the subsequence
yt−P+1 . . . yt with the means of both patterns shifted to 0:

RMSE(t) =

√

√

√

√

1

P

P
∑

i=1

(x̂i − ŷt−P+i)2, (34)

where x̂i = xi −mean(x1 . . . xP), and ŷt−P+i = yt−P+i −mean(yt−P+1 . . . yt).
We can calculate the distance function using dynamic time warping in a similar manner. In-

stead of comparing the example pattern with just one subsequence of length P ending at t, any
subsequence of length Q, where (1 − 20%)P ≤ Q ≤ (1 + 20%)P , and ending at t, is a candidate
pattern. We pick the subsequence with the lowest cost C(P,Q), and define

AverageError(t) =

√

1

K
C(P,Q). (35)

These distance functions were used to get the error curves in Figure 12 and Figure 13.

23

	Introduction
	Background on Segmental Hidden Semi-Markov Models
	Hidden Markov Models
	Semi-Markov Models
	Segmental Observation Models
	Segmental Semi-Markov Model
	A Viterbi-like Algorithm to Compute the Most Likely State Sequence (MLSS) for a Segmental Semi-Markov Model
	Forward-backward Algorithm

	Change-based Endpoint Detection
	Change-point Detection Algorithms
	Estimating the Regression Parameters by the EM Algorithm
	Estimating the Change-Point
	Experimental Results on Change-based Endpoint Detection

	Pattern-Based End-point Detection
	Building A Segmental Semi-Markov Model From An Example Pattern
	Pattern-matching Algorithm
	Experimental Results on Pattern-Based End-point Detection
	Comparison with Squared-errors Based Methods

	Conclusion and Future Work
	SSE Method of Change-point Detection
	Dynamic Time Warping
	Searching for Similar Patterns Using Template Matching and Dynamic Time Warping

