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Abstract

In this paper we present a family of algorithms that can simultaneously
align and cluster sets of multidimensional curves defined on a discrete time
grid. Our approach assumes that the data are being generated from a finite
mixture of curve models. Each mixture component uses (a) a mean curve
based on a flexible non-parametric representation, (b) additive measurement
noise, (c) randomly selected discrete-valued shifts of each curve with respect to
the independent variable (i.e., typically along the time axis), and (d) random
real-valued offsets of each curve with respect to the observed variable. We show
that the Expectation-Maximization (EM) algorithm can be used to simultane-
ously recover both the curve models for each cluster, and the most likely shifts,
offsets, and cluster memberships for each curve. We demonstrate how Bayesian
estimation methods can improve the results for small sample sizes by enforcing
smoothness in the cluster mean curves. We evaluate the methodology on two
real-world data sets, time-course gene expression data and storm trajectory
data. Experimental results show that models that incorporate curve alignment
systematically provide improvements in predictive power on test data sets. The
proposed approach provides a non-parametric, computationally efficient, and
robust methodology for clustering broad classes of curve data.
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Figure 1: Curves of cyclone intensities from genesis to death.

1 Introduction and Motivation

Clustering is widely used as a general technique for exploring and understanding
large data sets. Curve clustering focuses on the clustering of sets of variable-length
sequences that consist of (possibly multidimensional) measurements observed over an
independent variable such as time. An example we will discuss later in this paper is
trajectories of cyclones, where each trajectory consists of a short 3-dimensional time-
series, the dimensions being x-y spatial coordinates and cyclone intensity. Other
examples of curve data sets include time-course measurements from sets of genes [9],
estimated trajectories of individuals or vehicles from video data [12], and biomedical
measurements of the response of different individuals to drug therapy over time [18].

A practical problem with such data is that the curves tend to be misaligned in
various ways. For example, Figure 1 shows a set of curve data that represents the
intensity of individual cyclones over their respective lifetimes. These curves can be
made more similar by shifting individual curves along the time axis. The lack of
alignment here is both an artifact of the methods used to extract these curves (e.g.,
in detecting and tracking cyclone centers in sea-level pressure data [14]), as well as
being due to natural variability in the underlying dynamic processes generating the
data.

More generally, all manners of (unknown) transformations may have been applied
to observed curve data, such as linear shifting in the time-axis, offsets and scaling
in the observed measurements, or more complex forms of non-linear warping of the
signal. Clustering in this context can be problematic due to the “chicken and egg”
problem: we may not be able to effectively cluster the data without first removing
the transformations, but on the other hand we may not be able to effectively remove
the transformations without first clustering the curves.

One approach is to preprocess or post-process the sets of curves by employing
alignment techniques such as dynamic time-warping before or after clustering [34, 35].
The disadvantage of such an approach is that the discovery of the curve transforma-



tions and curve clustering are decoupled from each other, which can in principle
weaken the ability of a clustering algorithm to detect structure in the data.

In this paper we address this specific problem, namely simultaneously clustering
and “detransforming” sets of curves. The specific class of curve transformations we
address includes discrete-valued shifts along the time (or independent variable) axis
and real-valued additive offsets in each of the measurement (dependent variable) axes.
Extensions to include other forms of transformations such as multiplicative scaling of
the curve measurements or more general nonlinear deformations (such as non-linear
warping of the time axis) can also be handled in principle within the mixture-based
framework we propose but are not specifically addressed in this paper.

The focus of the paper is the development and evaluation of learning algorithms
that can recover both the cluster models as well as the most likely alignments for
each curve, given sets of observed curves that are assumed to be generated from a
particular class of generative models. The learning algorithms we use are in general
based on maximum a posteriori (MAP) approaches that seek model parameters that
maximize the product of (a) the likelihood of the observed curves under the generative
model and (b) parameter priors that enforce smoothing in the mean curve models
(e.g., smoothness over time).

We will assume that we can achieve useful results by restricting attention to shifts
that are “on-grid” in terms of the independent variable, i.e., that shifts are constrained
to occur on the same sampling grid that the data are measured on. This is in direct
contrast to “off-grid” methods that interpolate between the gridded observations,
such as polynomial or spline models. The advantages of the on-grid approach (as we
will see later in the paper) are that (a) we can use a completely non-parametric model
for the mean curves within each cluster by avoiding parametric assumptions on the
interpolating function, and (b) we get a computationally feasible procedure for solving
the joint clustering/transformation problem. Of course for certain applications (for
example when data are very sparse for each curve) the interpolative (or functional
modeling) methods might be more appropriate. In this paper, however, the focus
is on the “on-grid” class of modeling techniques. Experimental results later in the
paper bear out that substantial and systematic improvements in modeling power can
be gained by the “on-grid” approach alone.

The advantages of a probabilistic approach to clustering are well-known and in-
clude the ability to estimate the most likely number of clusters given the data [32] and
the ability to add background clusters to account for outliers in a systematic manner
[10]. For curve clustering with transformations the probabilistic approach to cluster-
ing is particularly valuable since it allows us to directly address the afore-mentioned
“chicken and egg” problem by treating the transformations as hidden information
over which we can learn distributions informed by the observed data. Furthermore,
we can couple the learning of these distributions over hidden transformations to the
problem of learning cluster models.

The paper is organized as follows. Section 2 introduces some basic terminology
for the paper and Section 3 discusses relevant prior work in this area. Section 4
introduces the basic model and parameter estimation methods, and Section 5 then
extends this model to a hierarchical Bayesian approach. Section 6 defines the ex-
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perimental methods that we use to evaluate our proposed clustering methodology,
followed by Section 7 which investigates the performance of the proposed method-
ologies on simulated data. Sections 8 and 9 describe experimental results with real
datasets: time-course gene expression data and trajectories of extra-tropical cyclones
(ETCs). Section 10 summarizes and concludes the paper.

2 Terminology

We will use the term “curve” to denote a variable-length series of data measurements
observed as a function of some independent variable such as time. More generally, each
individual “curve” can consist of set of multi-dimensional (vector) measurements as a
function of the independent variable, rather than a single measurement. In statistics,
such data are sometimes referred to as “functional data” [30], emphasizing the fact
that the observed data are functions of an independent variable.

The term “measurement offset” will be used to refer to a real-valued scalar added
to all of the measurements in a curve—or a vector of reals, one for each measurement
dimension if the curve has multiple measurement dimensions.

For simplicity of notation we will refer to the independent variable as time, al-
though in general it could refer to position or some other sequential ordering. We will
use the term “time-shift” to refer to an integer-valued global shift of the curve mea-
surements (simultaneously in all dimensions) along the time-axis (the independent
variable axis).

“Alignment” (in this paper) refers to the process of finding estimates for either (or
both) measurement offsets and time-shifts for specific curves. Thus, we could refer to
(for example) “alignment with time-shifts” or “alignment with both time-shifts and
measurement offsets”. For example,

Yit)=Yilt+ i)+, 1<i<N

could represent the alignment of curve Y; into a new curve Y; where ¢; is an in-
teger time-shift and ¢; is a real-valued scalar (or a vector of reals if Y is a vector
measurement), and ¢ is an index on curves.

3 Related Work

The primary novel contribution of this paper is the learning of curve clusters and
curve alignments within a single unified framework. While there has been a significant
amount of prior work on each topic in isolation (as we discuss below) there has been
no work that we are aware of that addresses simultaneous clustering and alignment
of curve data.

Clustering of curves of equal length L can be achieved by representing the curves in
a vector space of dimension L and using standard multivariate clustering techniques.
For example, one can use K-means [17] or the model-based clustering approach of
Gaussian mixtures [2]. More general techniques perform curve clustering directly in



the curve space and, thus, can handle curves of variable lengths (for example) in a nat-
ural manner. These techniques have their origins in regression-based mixture models
that focus on the finding of two or more underlying functions (e.g., polynomials) from
which the observed data might have been generated. This methods are often referred
to as regression miztures [7, 19, 12] and they extend the standard fixed-dimensional
unconditional mixture framework to the case where component density models are
replaced with conditional regression density models. More recent work along these
lines focuses on learning individual models for each curve during the clustering. This
can be handled for example, through the integration of linear random effects models
[21] with regression mixtures [14, 22].

Further extensions have been developed that use non-parametric models for the
mean curves, such as the kernel regression models in [12] and the mixtures of splines
in [18]. The clustering component of our proposed approach can be loosely considered
to fall within this class of non-parametric curve clustering techniques—we use a model
that allows for individually varying means at specific time points but where the means
are loosely coupled together via a smoothing prior.

None of the above work on clustering addresses the issue of curve alignment.
However, there is a considerable body of prior work on curve alignment (without
clustering) in various forms under many names: time warping [34], curve registra-
tion [29], structural averaging [20], and image registration or point-set matching as
commonly used for image matching [15].

Generally speaking there are two approaches to curve alignment. The first, called
landmark registration, involves a process in which the time axis of each curve is made
to coincide at selected landmark targets of the dependent variable by selecting from
some space of available transformations on the time axis. Specific instantiations of
this approach are described by Kneip and Gasser [20] and by Ramsay and Li [29]. The
second common approach is to define a global alignment criterion (e.g., squared-error
along curves) that is used to iteratively learn alignments based on the current overall
averaged target curve. At each iteration, each curve is first transformed “towards”
the current target curve so as to minimize the alignment criterion. The averaged
target curve is then updated based on the newly calculated alignments. Ramsay and
Silverman [30], and Ramsay and Li [29] discuss and apply this technique to various
data sets. None of this work on curve alignment is integrated with clustering of
curves.

One area where there has been some success to date in simultaneous registration
and clustering is with image data. Frey and Jojic [11] propose the use of EM to learn
mixtures of images subject to various forms of linear transformations. Chui et al.
[4] use the ideas of transformation invariant distance measures proposed in [16] and
develop deterministic annealing algorithms for simultaneous clustering and matching
of point sets. In some sense these approaches represent a two-dimensional extension
of what we propose here, albeit with somewhat different goals. The novelty of our
approach lies in the application and extension of mixture modeling to the specific
problem of translation-invariant curve-clustering. In addition we demonstrate how
these techniques can be applied to two real-world scientific data analysis problems
involving gene expression data and cyclone trajectory data.



4 Probabilistic Curve Clustering

4.1 A Generative Model

In this section, we describe the proposed generative model for simulating multidimen-
sional curves observed on a subset of a fixed time grid. We implicitly assume that the
grid points (measurement times) on the time-grid are equally spaced. In theory this
assumption could be relaxed by treating data on non equi-spaced grids as observed
samples from an assumed (but hidden) higher-resolution equi-spaced grid and making
inferences accordingly. However, we do not pursue this in this paper, and focus here
on data sets involving equi-spaced measurements along the time axis.

In many situations the curves are univariate, for example, gene expression mea-
surements. In applications like object tracking, however, there can be multiple mea-
surements per time point, e.g., the estimated 2D or 3D location of the object and
possibly other features of the object such as shape, color, mean intensity and so forth.
Our generative model is designed to work with multidimensional curves. Throughout
this paper we will use the term “curve” when referring to a series of D-dimensional
observations of an object on a time grid. The number of D-dimensional observations
(the length of the curve) can be different for different objects. In the approach taken
here we do not explicitly model the lengths of the observed curves—we specify the
model for generating curves conditioned on the curve lengths (this conditioning is
implicit and not explicitly written out in all likelihood expressions below).

We begin with a standard mixture model with K components to allow for hetero-
geneity in the generated curves [25]. The probability of an individual curve Y; given
a set of model parameters © is defined as

P(Yi|®) = > aP (Yi|Z; = k) (1)

k=1

where ay, is the probability of component k and Z; is a random variable indicating
cluster membership for curve Y;. We will denote the vector of measurements over
time in the d" dimension for the i*" observation by Y.

To generate curves with relative time shifts, we introduce a latent variable ¢; that
denotes the amount of shifting on the time grid for observation Y; and takes integer
values from a fixed range [0..M]. Therefore,

P(Y;|©) = ZZak%m (YilZ; =k, pi =m) (2)
k=1m=0

where 7y, is the probability of time shift m in component k: v, = P(p =
m|Z = k).

If the curve Y, is observed on the entire time grid of length 7' (where T' can be
thought of as the maximum length of a curve, e.g., the length of the longest observed
curve plus the maximum allowed time shift), we can represent it as a point in a 7-
dimensional space, and model its distribution as a multivariate Gaussian with mean
i and diagonal covariance matrix Cj. The assumption of a diagonal covariance



structure is equivalent to assuming independence of measurements at different time
points given cluster membership, proper alignment, and parameters of the cluster.
In the next section we extend this model to handle smoothness constraints on the
neighboring means of the Gaussians by employing a hierarchical Bayesian model that
constrains neighboring means to be similar to each other.

We assume that within each component the measurements taken in different di-
mensions are conditionally independent, providing a relatively simple but often effec-
tive way to handle multi-dimensional data:

D
P(Yi’Zm%’) = H P (de‘Zi,%‘) (3)
d=1

Given the cluster membership Z; and time shift ¢; of a partially observed curve
Y, of length L; < T, we can calculate its probability under a T-dimensional Gaussian
distribution by integrating out unobserved measurements. The integration is trivial
due to the diagonal covariance structure, and we obtain an L;-dimensional normal
density.

To allow real-valued offsets in the measurement space (note that this is different
from the time-shifts discussed above), we define a likelihood that is invariant to
translations of the axes. Namely, the conditional probability of curve Y¢ is given by
a Gaussian density with mean p¢ and covariance C¢, evaluated at translated curve
Y?¢ — 64 The value of the offset §¢ is chosen so that the translated curve is best
aligned with the corresponding portion of the mean curve under some norm. Note
that the value of the offset §¢ depends on the particular cluster that we align with,
as well as the assumed time-shift, and thus standard methods of dealing with offset
translations (such as subtracting the mean value) are neither applicable nor optimal
in this context. The likelihood of a single curve in dimension d is defined as

P(Y{|Z: = k,oi = m) ~ N(Y{ = 61(k, m) g, 1) (4)

57 (k,m) = argmin [ Y{ =6 = (@ : am + Li = 1) (5)

where a,, denotes the point on the time grid corresponding to the m'* time-shift. We
use the Euclidean norm in Equation 5, but other notions of similarity could equally
well be used to define the best offset ¢ in the measurement space, perhaps based on
prior knowledge of the process generating the data.

Conditioned on the length of the curve, Equations 1 through 5 provide a generative
model that can be used to simulate spatially offset “snippets” of a variety of curve
prototypes. These snippets start from different initial points in time, have different
lengths, and have arbitrary offsets in the measurement space. The simulation has
four stages:

e sample component k according to ay, k € [1..K];

e sample time shift m according to Vg m, m € [0..M];



e sample curves Y%, d € [1..D], from

N (,uz(am S+ L—1),Cap, : apy + L — 1))
e generate offsets in the measurement space Y¢ = Y+ 57,

4.2 Parameter Estimation

We employ the expectation maximization (EM) algorithm [6] to learn maximum
likelihood estimates of the model parameters from the observed curves, as is usual
for models with latent structure. The algorithm starts from a random initialization
of parameter values and proceeds by alternating the following two steps:

o E-Step: evaluate the distribution of latent variables Z; and ¢; given current
parameter estimates;

e M-Step: adjust free parameters of the model to maximize the expected log-
likelihood of the data with respect to the distribution of latent variables.

The time complexity of a single iteration for this algorithm is linear with respect
to each of the following: the number of curves IV, the size of the time grid T, the
dimensionality of the curves D, the number of clusters K, and the maximum amount
of shifting allowed M, i.e., it is O(NTDKM). This is only a factor of M more ex-
pensive than EM for regular mixture of Gaussians with diagonal covariance matrices.
Note in particular that the O(N?) computation of calculating all pairwise alignments
curves is avoided. The proposed method aligns observed curves only with the current
estimates of the cluster means. Full details of the E-Step and M-Step equations are
provided in Appendix I.

5 Bayesian Smoothing

5.1 Defining the priors

In the models above, the consecutive means (e.g., in time) of the Gaussians are un-
constrained. While this provides the flexibility of non-parametric modelling, it also
ignores physical constraints and reasonable prior expectations about the smoothness
of the mean curves. It is natural to employ Bayesian ideas in this context by introduc-
ing prior distributions on the parameters of the models that favor smooth solutions.

We begin with the conventional factorization of the prior distribution as typically
used in Bayesian analysis of Gaussian mixture models in a standard “non-curve”
setting (e.g., [8] and [31]):

P(©) = P (u) P(C)P(a)P(y) (6)

We use conjugate prior distributions for the Gaussian noise covariance matrices
C, component weights «, and shift probabilities ~.



In standard multivariate mixture modeling it is reasonable to assume that the
means pé(j) are independent from each other. Here, however, we specifically want to
couple the means and to that effect we introduce a prior distribution on the means
of the components that correlates the means at time ¢ + 1 and ¢.

We propose a hierarchical Bayesian model, where the first level of the hierar-
chy introduces dependence between the means at consecutive time points P(u(t +
1)|pu(t), 0?), and the second level controls the degree of smoothness in the means
P(c?). Similar “smoothing priors” have been successfully used in computer tomog-
raphy, medical imaging and image processing in general to enforce smoothness in the
estimated signal (see [27] and [24] and references therein). Specifically, at the first
level we assume a Gibbs prior such that the mean uf(t + 1) at time (¢ + 1) in cluster
k and dimension d is a priori normally distributed around the mean at time ¢ within

. . 2
the same cluster with some variance [of]":

P (it +1)) = N (ui(), [of]) (7)
We have also investigated a more complex Markov random field prior that cou-
ples each point with both neighbors. While we found that this prior often leads to
improvement in prediction performance, it requires more complex parameter estima-
tion techniques and we do not pursue the details of this approach any further in this
paper.
At the second level of the hierarchy, we assume that the parameters [a,f]2 that con-
trol the degree of smoothness are generated from some common distribution, P ([a,‘f]g).

We use a conjugate prior, and model the precision #, denoted by v, as a Gamma
Ok

distribution with parameters (Af, B?):

P ({%2) =P, k=1, K (8)
P(w") =T (A%, BY) (9)

We further define conjugate Gamma priors on the diagonal covariance terms in
the Gaussian mixture components and Dirichlet priors on the mixture component
probabilities and time shift probabilities within the clusters.

P (%) (AL, B) (10)

5.2 Parameter estimation for the Bayesian model

Having specified prior distributions for all parameters of the model, we obtain point
estimates of the parameters and the hyperparameters using a Gibbs sampling ap-
proach. This is commonly done for models with hyperparameters, e.g., as in [28, 23].
The algorithm iterates between updating the parameters of the model (cluster means,
covariance matrices, time shift and component probabilities) given current values of
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the hyperparameters, and then updating the posterior distribution of hyperparam-
eters given all other parameters in the model. Specifically, we iterate through the
following steps:

1. Sample values of hyperparameters [U,‘j]z from the corresponding prior distribu-
tion P(v) = T'(A%, BY);

2. Use the EM algorithm to find maximum a posteriori (MAP) estimates of com-
ponent parameters given current values of hyperparameters P(0|Y, 0?);

3. Update the posterior distribution of the hyperparameters P(v|0,Y) = T'(A,, B,),
which also has a Gamma distribution due to conjugacy;

4. Sample values for the hyperparameters [0,‘3]2 from their posterior distribution;
5. Repeat steps 2 through 4.

MAP estimates of the parameter values result from including log P(©]¢?) in the
M-step of the EM algorithm. Closed-form solutions for the parameter values are no
longer possible in this case, since we have introduced a dependence between consec-
utive means. The maximization can be reduced to iteratively solving a tri-diagonal
linear system of equations, until a fixed point is reached. Finding a single M-step so-
lution usually converges within the first few iterations when the initial approximation
is taken to be maximum likelihood estimates of the parameter values. Full details are
provided in Appendix II.

The parameters A and B of the hyperprior allow us to express belief about the
expected difference between consecutive means and to control the strength of the
prior. The smaller the variance of the hyperprior, the stronger the effect of the prior
in the sense that the model is more constrained to find estimates of the parameters
that agree with the corresponding mean value of o2. Other estimation strategies,
such as empirical Bayes methods, could also be used to set the value of the hyperprior
mean.

6 Experimental Methods

The quality of a clustering algorithm can be characterized empirically for a given data
set using a number of different measures. For example, a particularly useful feature
of the probabilistic clustering approach is that it provides a full density function for
the data, allowing one to objectively compare different models and methods on out-
of-sample data—better models should yield higher probability for unseen data. The
specific measures we use in this paper for evaluation include

e Mean within-cluster variance: this is useful to domain experts comparing
the results of various clustering algorithms. Clearly, as we add additional time-
shift and offset parameters, we expect lower variance clusters; nonetheless, it
is informative to record how much the within-cluster variance is reduced on
specific data sets.
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e Out-of-sample predictive power:

— Cross-validated logP score reflects the expected log-likelihood of a sin-
gle new observation and indicates how well the learned density function
approximates the true distribution [5, 32]. To evaluate the per-point logP
score on a single test data set with N, curves, we sum log probabilities as-
signed by the learned model to individual curves, and divide by the total
number of points in the test set Np:

1
logP = > log P (Y;|0) (11)
pts j=1

— One-step ahead prediction of the next measurement in a curve given
previous measurements, or interpolation of a held-out measurement given
all other prior and subsequent measurements, as measured by out-of-sample
MSE (mean squared-error). Even though we primarily focus on clustering
in this paper, it is also informative to measure time-series predictive power.

e Scientific interpretation of the results: clearly this is quite subjective, but
interpretability of results is often quite important for domain experts.

7 Synthetic Data

We use simulated data problems to demonstrate the benefits of models with time-
shifts and measurement offsets and compare to baseline methods. The baseline meth-
ods are simple K-means clustering and conventional multivariate Gaussian mixture
models. we evaluate the models in terms of classification accuracy, quality of density
estimation (as measured by logP), error in estimated component parameters, and
within-cluster variance.

We create a set of simulated data sets from a two-component version of the gen-
erative mixture model described in Section 4, using randomly generated parameters
(e.g., means, variances, cluster and shift probabilities). The mean function for each
component models is a smooth function of the form f(z) = a; sin(byx) + as cos(byx)
defined on a discrete time grid. The coefficients a, as, by, by are sampled from a uni-
form distribution over a fixed interval [0,1]. Each component in the mixture model
has its own set of randomly generated a and b coefficients. The inverse variance within
each component is sampled from a Gamma prior with parameters (5,5). The mixing
weight for the two-component model is selected from a uniform distribution on [0,1].
Time-shift probabilities are sampled by simulating from a uniform distribution and
normalizing, and measurement offsets for each individual curve are sampled from a
uniform distribution. Figure 2 shows a set of curves simulated in this manner.

We generated a number of different problems with K = 2 by varying the random
coefficients a, b of the mean curve, variance within the clusters, and component and
shift probabilities. The length of the mean curve (number of points on the time
grid) was set to L = 20 and we allowed time shifts of up to M = 4 time points.
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Figure 2: Simulated curves from a 2-component mixture problem with similar com-

ponent means.
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Figure 3: The curves from Figure 2 after alignment by the EM algorithm.

Method Accuracy logP Error in Within-Cluster
cluster mean StDev
True Model 0.97 1.41 0 0.052
Alignment in [Y,T] 0.96 1.29 0.018 0.049
Alignment in [Y] 0.62 0.21 0.048 0.062
Regular MM 0.64 -9.22 0.036 0.100
K-Means 0.64 0.035 0.127

Table 1: Average performance of various clustering methods on simulated data sets

with similar clusters.
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Method Accuracy logP Error in Within-Cluster

Cluster Mean StDev

True Model 1 2.01 0 0.050
Alignment in [Y,T)] 0.99 1.34 0.019 0.048
Alignment in [Y] 0.99 1.52 0.011 0.057
Regular MM 0.89 -7.87 0.171 0.105
K-Means 0.79 — 0.4235 0.129

Table 2: Average performance of various clustering methods on simulated data sets
with distinct clusters.

Note that if two clusters are sufficiently distinct from one another, then small shifts
along the time axes would not make the classification or clustering task much harder.
In this case, we expect all of the algorithms to perform equally well in terms of
classification accuracy, with better density estimates (as indicated by higher out-of-
sample logP scores) provided by models with alignment. As the mean curves get closer
to one another, the problem becomes increasingly difficult and we should expect the
models with alignment to yield significant improvement in terms of both classification
accuracy and density estimation.

We emphasized this distinction between “hard” and “easy” problems by perform-
ing two separate experiments. In the first one (“hard” problems), we generated data
sets such that the coefficients (a, b) of the smooth function fy(x) generating the mean
in cluster 2 are chosen such that v, = 1 4+ 0.2r where ~; is the corresponding co-
efficient for 5 in component 1 and r is a random draw from U(0,1). Thus, the
coefficients in cluster 2 (the ~,’s) tend to be more similar to the coefficients in cluster
1 than in the case where they are independently sampled and, consequently, the two
cluster means tend to be more similar. Figure 2 shows a sample of unaligned data
generated by one such model. Figure 3 shows the same set of curves after alignment
in both measurement space and time by the proposed EM algorithm (clustering not
shown).

We evaluated five different types of models on simulated data sets: (1) the true
data generating model, (2) mixture models with alignment via both shifts in time [T]
and measurement offsets in the [Y] axes, (3) mixture models that only align using
measurement offsets [Y], (4) mixture models where the following (ad hoc) preprocess-
ing is performed: all curves are shifted in time to start at time 0 and the value of the
first measurement in each curve is subtracted from all other measurements, and (5)
the K-means algorithm.

Table 1 shows the results of running the 5 algorithms on 50 different simulated
“hard” problems. In each of the 50 problems a training data set of N = 140 curves
was generated. Table 2 shows the same type of results but for problems that are
typically “easy” with more distinct cluster means (from coefficients that are generated
independently). All of the performance results, with the exception of the within-
cluster standard deviation, reflect out-of-sample performance. We report the average
value (with respect to the 50 different problems) of the performance measures for each
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of the algorithms. Column 1 contains the classification accuracy, column 2 contains
the logP score (the higher the better), column 3 contains the mean relative error
observed in recovered cluster centers as compared to the true data generating cluster
means (the lower the better), and column 4 shows the in-sample standard deviation
of measurements within the clusters (the lower the better).

The results show that the algorithms that use alignment in both the time and
measurement axes provide higher classification accuracy on both the “harder” and
“easier” problems. We achieve better density estimation by properly reducing the
variance within the clusters. As expected, in the set of easier problems with distinct
clusters (Table 2) the alignment in the measurement axes alone yields the same quality
model as full alignment in [Y,T]. In this case, aligning the time axes allows one to
slightly lower the variance within the clusters, but does not yield any improvement
in classification accuracy. However, when the clusters are more similar to each other
(Table 1) it is evident that simultaneous alignment in both axes is required to recover
the correct cluster models.

We have also performed two additional experiments. In the first experiment we
performed alignment on the time axes alone. In the second experiment we performed
clustering with alignment in the measurement axes, followed by alignment in the time
axes within the clusters obtained in the first step (literally separating the alignment
problem from the clustering problem). The results for these two types of methods in
terms of both classification accuracy and density estimation are closer to the perfor-
mance of the standard mixture (no alignment) than the model with proper alignment
in both axes. This suggests that coupling the information contained in both depen-
dent and independent variables significantly increases the power of the model.

8 Gene Expression Clustering

Time-course gene expression data consists of expression levels from a set of genes mea-
sured at different time points—each curve (also sometimes referred to as a “profile”)
consists of the intensity measurements from a specific gene over time. Clustering is
an important tool for analyzing gene expression data since for many expression sets
it is hypothesized that there exists different groups (or clusters) of genes with differ-
ent dynamic behaviors, but where the behavioral characteristics of genes within each
clusters are relatively homogeneous and correlated [9, 36]. Moreover, in certain situa-
tions subsets of genes are hypothesized to exhibit “master-slave” or “leader-follower”
relationships. To a first approximation expression levels of the slave genes can be
reasonably assumed to follow that of their master gene with an unknown time lag.
It is therefore desirable that a clustering algorithm that detects patterns of distinct
behavior in such data is able to ignore the differences in profiles that are explained
by simple shifts of the time axes. Analysis of the genes that resemble each other’s ex-
pression levels may reveal very useful information about regulation mechanisms. For
example, finding sets of genes that exhibit “master-slave” relationships can provide
a starting point for building more realistic models of regulatory behavior.

In this context curve clustering is a useful methodology in the analysis of time-
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Figure 4: Time-course curves from the gene expression data set.

course genomic data, from exploratory data analysis to model-building of regula-
tory networks. Previous work on gene expression clustering has focused on non-
probabilistic techniques such as hierarchical clustering methods [9]. It is both com-
putationally infeasible and conceptually difficult to try to integrate curve alignment
techniques (such as dynamic time-warping) with a technique such as hierarchical
clustering—thus, alignment (via techniques such as dynamic time-warping tends to
be applied separately from any clustering of the data [1]. Standard mixture models
have been applied to gene expression clustering with some success, but without any
integration of curve alignment [36, 26]. In the results presented in this section we
integrate alignment and clustering of expression data using the methods presented
earlier in the paper. We might speculate that the goal of producing clusters that
are invariant to time-shifts is somewhat different from conventional clustering in that
the two methodologies enable us to answer slightly different scientific questions about
the data. For example, traditional clustering (no time-shifts) allows one to identify
groups of genes that peak at the same interval, while shift-invariant clustering recov-
ers groups of genes that participate in similar regulatory patterns that unfold along
the time axis.

For our experiments we used normalized gene expression measurements (log-
ratios) of the activity of cell cycle-regulated genes in yeast. The data set contains
time course measurements for 800 genes in yeast Saccharomyces cerevisiae identified
as cell cycle-regulated based on analysis provided in [33]. Specifically, we use the
alpha arrest data that captures gene expression levels at 7 minute intervals for two
consecutive cell cycles, for a total of 17 measurements per gene (Figure 4). There
are no missing measurements in any of the curves in this data set. The goal is to
discover equivalence classes of genes such that the genes in the same class exhibit
similar behavior subject to translation in the time axes. We did not use measurement
offsets in the experiments for this data set since we cluster normalized log-ratios of
the true measured intensities (a standard pre-processing step for gene expression data
[33]). The analysis of the log-ratios in the yeast cell cycle data set [36] suggests that
the log-ratios are better modeled by the normal distribution than the raw intensities.
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Figure 6: Cross-validated logP scores on gene expression data with V' = 10.

Figure 5 shows the difference in the within-cluster mean variance for the different
models evaluated both with and without alignment in the time axis as the number
of clusters K is varied. Naturally, the variance continues to decrease as the number
of clusters is increased. We see that the mixture model with time-shift alignment
systematically produces the most compact clusters. We used models that allow sym-
metric shifts of up to M = 2 time steps to the left and to the right, for a total of
5 possible alignments for each curve. Increasing M to 3 does not result in large
improvements in performance as the maximum possible shift approaches the length
of the cell cycle, i.e. the period of the measured curves.

Figure 6 plots the out-of sample logP scores for the same models as in Figure 5.
Each score was obtained by 10-fold cross validation; higher scores indicate better fit of
the model to the data. As expected, the score starts to climb quickly for small values
of K, and then flattens out (with some evidence of a decrease) after K ~ 20. Again,
models with alignment provide systematically better density estimation performance
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Figure 7: Cross-validated MSE of one-step-ahead prediction on gene expression data.
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Figure 8: Average improvement in out-of-sample logP scores for various training
sample sizes using Bayesian estimation on gene expression data with K=10.

(as measured by logP) than those models that do not.

Figure 7 shows the cross-validated mean squared-error of predicting every mea-
surement within each observed curve, given previous measurements up to the time
of prediction. As shown, the models with time-shift alignment lead to a reduction in
prediction error. There was little difference in the prediction quality of the models
with M = +2 and M = +1.

We also evaluated the impact of using priors on the quality of the solution as
a function of the size of the training data. Figure 8 shows the average decrease in
logP score on a validation set for models trained on sub-samples of the full gene
expression data set. The numbers are presented relative to the logP score of the best
model trained on the full data set. Figure 8 shows the performance of two models,
both with K = 10 and maximum time shift M = 4+2. The first model was fit using
maximum likelihood estimation while the second one was fit using MAP estimates
obtained by the Gibbs sampling approach described in Section 5. Each point on the
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plot is an average decrease in the logP score over 10 different train/validation splits.
For a single fixed validation set of size n = 200 curves, we incrementally created
training sets ranging in size from 60 to 600 curves, so that each training set contains
all training sets of smaller sizes. The z-axis indicates the amount of data that was
used for training while the y-axis indicates the difference in logP score (relative to the
best model overall) due to limited training data. The results show that the Bayesian
methods provide systematically better density estimation performance. The improved
performance is particularly noticeable at very small sample sizes agreeing with our
general intuition about Bayesian estimation.

We have also performed experiments on two other gene expression data sets de-
scribed in [33]. These data sets include measurements of the same set of genes but
under a different set of initial conditions. On these data sets, we see similar improve-
ments in terms of logP scores for small to medium values of K (e.g., up to 20 or so).
For larger values of K there is still a systematic improvement due to time-shifting,
albeit a smaller improvement than that obtained in Figures 6 and 7.

9 Cyclone Clustering

We also applied our methodology to clustering of ETC (Extra-Tropical Cyclone)
tracks or trajectories obtained from gridded records of sea-surface pressure data over
time. Atmospheric scientists are interested in the spatio-temporal patterns of evolu-
tion of ETCs for a number of reasons. For example, it is not well-understood how
long-term climate changes (such as global warming) may influence ETC frequency,
strength, occurrence and spatial distribution. Also of concern is how changes in ETC
patterns may in turn influence long-term climatic processes.

Much work in this area is spent on the identification and tracking of ETCs which
results in a set of cyclone trajectories. The trajectories consist of sequences of latitude,
longitude, and intensity tuples observed over time. Clustering is usually performed on
just the latitude-longitude position measurements over time. For example, Blender et
al. [3] convert the two-dimensional lat-lon trajectories into fixed-dimensional vectors
for clustering by the K-means algorithm. In our prior published work on this data
we have focused on parametric model-based regression mixtures with no translation
modelling [13, 14].

This prior work has not addressed the problem of simultaneously aligning and
clustering cyclone trajectories. As was shown earlier in Figure 1, this is an important
concern.

9.1 Dataset and Experimental Setup

The cyclone dataset used in this paper consists of 614 cyclones tracked over the
North Atlantic (see [13] for full details). Each trajectory consists of a variable length
sequence of latitude, longitude, and intensity measurements observed over 6-hour
intervals. Figure 9 shows some of the cyclones in this dataset mapped over the North
Atlantic.
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Figure 9: A subset of the North Atlantic cyclone trajectory data.

It is hypothesized by atmospheric scientists that there are subgroups of cyclones,
where each subgroup has distinct dynamic behavior [3]. This suggests clustering the
cyclones in latitude-longitude space to capture similar spatial patterns, and clustering
in intensity space to capture similar intensification patterns over time. To achieve
some degree of translation invariance in lat-lon space, clustering of storm trajectories
in the atmospheric science literature is typically carried out by subtracting the first
lat-lon observation of each cyclone from its entire trajectory (e.g., [3]), which we will
refer to as first-observation alignment (in measurement space). This can be problem-
atic if the cyclones themselves are shifted in time. Shifts in time cause cyclones to be
aligned to incorrect starting observations since the observed starting measurements
are not the actual starting observations. The methodology proposed in this paper
allows for translation in time via time-shifts as well as for translation in the lat-lon
measurements via measurement offsets. This alignment is carried out in a data-driven
manner as an integrated part of the clustering process. Note that in the intensity
measurement dimension for this data we allow for time-shifts, but we do not allow
intensity measurement offsets since there is no a priori reason to believe that the
intensities are offset relative to each other.

9.2 Cyclone Results

We compare the clustering performance of four different methods on the cyclone data:
(1) standard Gaussian mixtures with simple first-observation alignment, (2) Gaus-
sian mixtures where lat-lon measurement offsets are estimated via EM, (3) method
2 followed by a simple one-pass within-cluster time-shift alignment, and (4) joint
clustering and alignment (in both time and measurement axes) using EM, as pro-
posed in the paper. The one-pass alignment technique of Method 3 takes each of the
returned clusters (in turn) from Method 2 and runs Method 4 (within each cluster
with the number of clusters set to 1), separately aligning the clusters in time. For
the purposes of presenting the figures we denote Method 1 as [—] (which denotes no
alignments at all), Method 2 as [X, Y] (which denotes separate offsets estimated for
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Figure 10: Cross-validated logP scores on cyclone data.
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Figure 13: Clustering results for standard mixture of Gaussians (column 1), mixture
of Gaussians with lat-lon translation (column 2) and mixture with both measurement
and time axes alignment (column 3)
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both the latitude and longitude measurement dimensions, i.e. X and Y), Method 3
as [X,Y],[T] (which denotes measurement offsets are first estimated simultaneously
in latitude and longitude space during clustering, and then followed by estimation of
time-shifts after clustering), and Method 4 as [ X, Y, T'] (which denotes alignments that
are simultaneously estimated in latitude, longitude, and time, all during clustering).

Figure 10 shows a plot of logP scores for these methods. The scores are obtained
using 10-fold cross-validation with the number of clusters varied from 3 to 9. All
methods are allowed 10 random starts of EM at each fold and initialization is carried
out by selecting K random curves as the initial K cluster means.

Method 1 performed poorly enough that its logP scores are not included in the
figure. Method 2 performs much better than Method 1 because of its data-driven
alignment in measurement space. Method 3 improves on Method 2 by taking the
curves within each cluster in Method 2 and aligning them in time. Finally, the “full”
joint clustering and alignment method (Method 4) systematically outperforms all of
the others. Of note, is that our proposed method 4 results in a higher score at K = 3
than the standard method (method 1) even when it is allowed to reach K = 9.

Figure 11 shows the mean within-cluster variance for Methods 2, 3, and 4, over
the same K-values, trained on all of the cyclone data. This plot again demonstrates
the superior performance of Method 4 in that it finds the most compact clusters.

Figure 12 shows a significant increase in one-step-ahead prediction accuracy for
the cyclone trajectories, which is important in atmospheric science. To obtain each
point on the plot, we used the model that was learned from the training data to make
predictions of the test curve dynamics. We predicted the point on the curve at time
t 41 given the curve up to time ¢, for all test curves and all values of ¢, and averaged
the mean squared prediction error. The prediction error achieved by the models can
be compared to the solid line that shows the error of the trivial prediction (i.e., using
the measurement at time ¢ as a prediction for time ¢ + 1).

Figure 13 shows the types of clusters that each method discovers. The measured
cyclone trajectories in lat-lon space, clustered and aligned by the corresponding algo-
rithms, are shown by black curves; the thick white line in the center of each cluster
corresponds to the estimated cluster mean curve. The results were obtained by run-
ning Methods 1, 2, and 4 on the complete set of cyclone data with the number of
clusters set to 5. We display (from left-to-right) the five clusters from Method 1 in
column one, those for Method 2 in column two, and Method 4 in column three. The
elements in each column were chosen so as to line-up similar looking clusters across
the rows.

The clusters in column one all emanate from a common genesis point. This is
due to the first-observation alignment enforced by Method 1. In contrast, Method
2 (column 2) allows for a data-driven alignment in measurement space and thus the
clusters in column two seem more natural than those in column one. The full joint
clustering and alignment of Method 4 appears to produce in even more compact and
distinct clusters, as shown in column three. From this picture is reasonable to suggest
that we are getting a clustering that is somewhat more interpretable from a scientific
point-of-view.
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10 Conclusions

In this paper we addressed the general problem of clustering multi-dimensional curve
data where we allow for curve-specific shifts in both the independent variable (typ-
ically time) and the measurement variables. We proposed a general mixture model
framework for this problem and demonstrated on two real-world data sets that the
methodology systematically leads to lower variance clusters (compared to ignoring
alignments), better predictions in terms of both density estimation and mean-squared
error on unseen curves, and generally leads to more interpretable results (which is
important from a scientific viewpoint). Space limitations prevented a full discussion
of many other aspects of this problem. For example, it is quite easy to allow for mul-
tiplicative amplitude scaling using this same mixture framework and our experiments
to date indicate that it also leads to systematically better clustering results. Non-
linear deformations, such as non-linear warping of the time-axis, are somewhat more
difficult to handle; however, we believe that by extending our current mean curve
model to a more general (but highly constrained) class of hidden Markov models we
can handle a large class of time-warping deformations in a systematic probabilistic
manner. We hope to report on these extensions in future work.
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Appendix

Appendix I: E and M step equations

In this section, we provide the E and M step equations used to find maximum likeli-
hood estimates of parameter values for model specified by Equations 1 through 5. We
use the same notation as introduced in Section 4. Wherever appropriate, we drop the
normalizing constants in the equations, and specify distributions up to some constant
of proportionality.

E-step

During the E-step, we estimate for each observed curve X; the distribution of the
latent variables Z; (cluster membership) and ¢; (amount of shifting), given current
estimates of the parameters © = {«, v, u, C}: P(Z; = k,p; = m|Y;,0). For simplic-
ity of notation, we denote P(Z; = k,p; = m|Y;,0) by P(k,m|Y;,O).

D
P(k,m|Y;,0) < P(Y,|k,m,0)P(k,m|O) = apym [[ P(Y{|k,m, O) (12)

d=1
The conditional likelihood of observation Y¢ is given by
P(Y{|k,m,0) =N (Y = 67/(k,m) | (am : am + Li = 1), Ci(am : am + Li — 1))
(13)

where §%(k,m) is the optimal offset as in Equation ( 5). The value of the offset
can be found analytically:

08k, m) = — 3 (Y() — pif(am +j — 1)) (14)

M-step

In the M-step, one finds the parameter values that maximize the expected log-
likelihood with respect to the distribution of the latent variables.

A leil E%:OP(k’,m’Yi,@)

O = 15
K e N M P(k,m[Y,©) (15)
. N P(k,m|Y;,©
[13(4) (7 — am +1)P(k,m|Y;,0) (17)

m 03:am, <j<bi,

(Y0 = a +1) = () Pkm| Y, 0)  (18)

m 0d:am <j<bi,
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where P(k,j) is the total probability mass of points at position j within cluster
k:

Pk, j) =S P(k,m|Y;,©) (19)

and 0! is the rightmost point on the grid for curve i given alignment m:
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Appendix II: Bayesian smoothing and MAP estimates of pa-
rameter values in the EM algorithm

There are two steps involved in parameter estimation when we use a Bayesian hier-
archical model:

1. Updating and sampling from the posterior distribution of hyperparameters,
given data and current estimates of component parameters;

2. Finding MAP estimates of the component parameters, given data and current
values of hyperparameters.

Updating the posterior distribution on hyperparameters

In what follows, we assume the following parametric form for the hyperprior Gamma
distribution I'(A, B):

Plaja, By = B° - 20

First, we show how to estimate the posterior probability of the variance o2 of
the normal distribution that links together two consecutive cluster means. In what
follows, we assume that the variances o? are the same for all clusters, and we pull
together the differences between consecutive means in all clusters to estimate the
parameters of its posterior distribution. The equations below can be easily modified
to handle the case of a single value of the variance per cluster.

To find the posterior conditional distribution P(v|Y,©) of the hyperparameters

%, we note that it is independent of the actual data:

UV =

P(v|Y,0) x P(Y|r,0)P(rv|©) = P(Y|©)P(r|©) x P(r|©) (21)

since the likelihood of the data is defined by © only and is independent of v.
Moreover, the distribution of v only depends on current estimates of the cluster
means:

P(|©) o< P(p, C, o, v|v) P(v) o< P(p|v)P(v) (22)

since C, o and v are a priori independent of v. Since P(u|v) is a multivariate
normal distribution, and P(v) is a Gamma distribution, we can use the conjugacy
property and find that the posterior conditional distribution of v? is also a Gamma
distribution. We allow the hyperparameters to be independent for each of the D
different dimensions of observed curves, and obtain the following parameter update
equations:

P(VYY,0) =T(A%, BY) (23)
Ad:AdJr%(K*(T—l)) (24)
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R 1
B! = 2 (25>
1
Bd +Zk 12 (Hk t+)2 ())

Finding M AP estimates of the component parameters

In this section, we describe how to find MAP estimates of the component parameter
values, given fixed values of hyperparameters.

It is known that the MAP estimates can be found by an EM algorithm, which
optimizes the expected posterior parameter probability (rather than the expected
likelihood) with respect to the distribution of latent variables at the M-step. Thus,
we augment the objective function to be optimized at the ¥ iteration of the EM
®(©) by the log prior:

®(0) = Ep(zgle, 1) (P(Y]0)) + log(0)

We assume that the prior factorizes as shown in Equation 6, and thus the esti-
mates of cluster and shift probabilities are found as standard MAP estimates of the
corresponding Dirichlet distribution, independently of all other parameters.

It is easy to obtain closed form expressions for parameter values when performing
maximum likelihood estimates: all parameters can be estimated independently from
one another. When we introduce dependence between the consecutive means, the
derivatives with respect to cluster centers are coupled:

op(O) M (V4G — am + 1) = pi(5)) |

WO B Cit) Pk )
piGi+ ) pid) | () — pi( = 1) (26)
[50+1ﬂ o (7)]°

The expressions for the derivative with respect to the variances within the clusters
Cd(4) remain independent from one another given the values of the means. As before,
we assume that the precision is a priori a Gamma distribution with parameters

G and F*:

1
i

LY i g
P(C,f(j)) T(GY, F?) (27)

Setting the derivatives of the posterior with respect to the variances to zero yields
the following expression for the variance C{(j) given the value of the cluster mean

pi(9):

2 M i, (YOG — i+ 1) — (7)) Pk, m[ Y, ©)

Gl = TPk g) 25 (G- 1) 28)
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Note that setting derivatives with respect to the cluster means to zero (Equation
26) leads to a non-linear system of equations with a tri-diagonal structure: every
equation mentions the means at the two neighbor points (except for the points at the
beginning and the end of the curve). However, if we assume the values of the variances
C(4) to be fixed, the system reduces to a linear system whose coefficients and solution
can be obtained in time linear with respect to the number of variables (i.e. cluster
means). This leads to an iterative procedure for finding the MAP estimates of cluster
means and variances:

1. Initialize the MAP estimates with maximum likelihood estimates;

2. Find the values of the cluster means assuming the variances are fixed; cluster
means are found by solving a linear tri-diagonal system of equations obtained
by setting derivatives (26) to zero;

3. Update the values of the variances according to (28) so that the corresponding
derivatives are set to zero;

4. Repeat steps 2 and 3 until convergence.

In practice we have found that this iterative procedure converges within the first
few iterations to a fixed point, and thus yields a highly efficient M-step.
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