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Abstract

We consider the problem of unsupervised learning from a matrix of data vectors where in each
row the observed values can be randomly permuted in an unknown fashion. Such problems arise
naturally in areas such as computer vision and text modeling where measurements need not be
in correspondence with the correct features. We provide a general theoretical characterization of
the difficulty of “unscrambling” the values of the rows for such problems and relate the optimal
error rate to the well-known concept of the Bayes classification error rate. For known parametric
distributions we derive closed-form expressions for the optimal error rate that provide insight into
what makes this problem difficult in practice. Finally, we show how the Expectation-Maximization
procedure can be used to simultaneously estimate both a probabilistic model for the features as
well as a distribution over the correspondence of the row values.



1 Introduction

There are a number of real-world machine learning problems that can be characterized as follows:
there are N objects of interest, where for each object we measure a number of features or attributes
of the objects but we do not necessarily know the correspondence between the measurements for
different objects. In this paper we focus specifically on the case where the feature values have been
permuted in some unknown manner. Table 1 shows a simple example of this type of permutation
problem. We would like to be able learn the joint probability density of the original data on the
left given only the permuted data and knowledge of the type of permutations that may have been
applied to the data (e.g., cyclic shifts). Two questions naturally arise: (a) how hard is this type of
learning problem in general? and (b) what kinds of algorithms can we use to solve this problem in
practice?

In considering the first problem, our intuition tells us that the “more different” the features in the
original (unpermuted) table are then the “easier” the unscrambling problem may be. For example,
in Table 1, the distributions of each individual feature in the table on the left appear quite different
from each other, so that one hopes that given enough data one could eventually recover a model
for the original data given only permuted data. In Section 2 we make this notion of learnability
precise by introducing the notion of a Bayes-optimal permutation error rate. In Section 3 we
show that under certain conditions this error rate is upper-bounded by an appropriately defined
Bayes-optimal classification error rate, confirming the intuition that the ability to unmix the row-
values should be related to the overlap of the column densities. In Section 4 we derive closed-form
expressions for the permutation error rate for specific parametric models — finding for example
that negative correlation among Gaussian columns can make the unmixing problem significantly
harder, while positive correlation can make it quite easy. In Section 5 we address the second question
(how to simultaneously unlearn the mixing and estimate the original joint density) using an EM
framework, and provide various experimental results to illustrate how these learning algorithms
work. Conclusions are presented in Section 6. The primary novel contribution of this paper is
the introduction and analysis of the notion of Bayes-optimal error rates for “unscrambling” the
permutations, providing a lower bound on the performance of any unsupervised learning algorithm
for this problem.

Our interest in this “learning from permuted data” problem is motivated by recent work in applying
machine learning techniques to astronomical image data [3]. In this problem each image consists
of three intensity “blobs” that represent a particular type of galactic structure of interest to as-
tronomers. For each blob a vector of features can be extracted, such as mean intensity, ellipticity,
and so forth. Astronomers can visually identify a central “core” blob, and right and left “lobe”
blobs in each image. However, in the training data the groups of features are not associated with

Table 1: An example of the permutation problem

ORIGINAL DATA | PERMUTED DATA | PERMUTATIONS

02 10 4 5|10 4 56 0.2 (2,3,4,1)
01 12 4 62|62 01 4 12 (4,1,3,2)
01 11 3 70|11 3 01 70 (2,3,1,4)
03 14 4 61|61 03 14 4 (4,1,2,3)




any labels that identify whether they are from the center, left, or right blob — this information
is hidden and must be estimated from the data. This is a version of the permutation problem
described earlier, but where sets of feature values (rather than individual feature values) are being
permuted in each row the training data matrix. In our prior work [3] we developed an EM algo-
rithm to solve this image analysis problem and focused on domain-specific aspects of the astronomy
application.

Problems similar to the permutation problem occur in computer vision where, for example, features
in the form of landmarks are calculated for an object of interest in an image (such as a face) but
the features are not necessarily in correspondence across different images. Similar problems also
arise in language modeling and information extraction, e.g., in learning models for bibliographic
references in documents, where different text fields can occur in different positions depending on
the bibliographic style being used [4]. A significant step forward has occurred in recent years with
the realization that many of these types of correspondence issues can be cast as machine learning
problems, viewing the unknown correspondences as hidden variables that can be estimated from
the data using techniques such as Expectation-Maximization (EM), e.g., in vision [2]. Much of
this prior work takes advantage of domain-specific information to help solve the correspondence
problem, e.g., the use of prior knowledge of likely types of spatial deformations in images, or
sequential constraints on text formation in information extraction. In contrast, in this paper we
focus on a more abstract theoretical characterization of learning from permuted data.

2 Probabilistic Generative Models

2.1 Notation

Let x = (#1,...,%;,...,%.) be composed of ¢ feature-vectors Z;, with each vector Z; taking values
from the same d-dimensional set S. Thus, x has dimension ¢ X d and takes values in the set S°.

Example 1. Let each #; be a one-dimensional real-valued feature-vector. In this case S is the real
line (S = R) with d = 1, each &; is a scalar, and S¢ = R°.

Example 2. Let each feature-vector Z; take values on the vertices of a d-dimensional unit hyper-
cube. Here S = {0,1}% and S¢ = {0,1}°*¢.

Example 3. Consider the case where A = {a,b,...,z} is a set of letters in an alphabet and let
S = A x R. In this case each feature-vector takes values as pairs of a letter and a real number, i.e.
d = 2, and the space S¢ is 2¢-dimensional.

We define p(x) as a probability density (distribution) function over the set S¢. For example, in
Example 1 above p(x) could be a c-dimensional multivariate Gaussian density.

2.2 A Generative Model for Permuted Data

Our generative model consists of two parts:

e In the first part we generate samples from p(x) in a standard manner — throughout this
paper we assume independent and identically distributed random samples. In this manner
we can generate a data matrix of N rows and ¢ columns, where each column has dimension

d.



Table 2: Probability distributions for Example 5.

x | p(x) | ax)
(0,0) | 0.28 | 0.28
(0,1) | 0.42 | 0.27
(1,0) | 0.12 | 0.27
(1,1) | 0.18 | 0.18

e The second part of the generative model randomly applies a permutation p to each row of the
data matrix in the following manner. Let P = {p1,...,pm} be a set of permutations defined
on (1,...,¢). For example, P could be the set of all ¢ cyclic shifts, e.g., ¢ = 3,p1 = (1,2,3),
p2 = (2,3,1), and p3 = (3,1,2). For each row x of the data matrix a permutation p € P is
randomly selected according to a probability distribution p (p) over P. The components of x
are then permuted according to the selected p to obtain a permuted vector taking values in
the same set S°.

The size of P, |P|, is denoted by m. Note that if all possible permutations are allowed then m = c!.
Unless stated otherwise, in this paper we will generally assume that all permutations in P are
equally likely, i.e. p(p;) = %, j=1,....m.

2.3 Probability Densities for Permuted Data

It is useful to express the probability density of permuted vector, call it ¢ (x), as a function of (a)
the density of the original data rows p (x), and (b) the distribution over permutations p(p). In the
remainder of the paper whenever the symbol ¢ is used it is implicitly assumed that the argument
x has been permuted. Note that ¢ (x) can be expressed as a finite mixture over all m possible
permutations that could have led to the generation of x:
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where p: ! is the unique inverse permutation for p;.
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Example 4. Let ¢=3, and P = {p1,p2,p3} be a set of cyclic shifts: p; = (1,2,3), p2 = (2,3,1),
and p3 = (3,1,2). If x = (&1, &2, #3) is a permuted vector, it could have been obtained from one of
three possible permutations, as reflected by the mixture model:

q(x) = q(Z1,%2,T3|p1)p(p1) + q (L1, To, 3|p2) P (p2) + g (Z1, T2, T3|p3) p (p3)
= p(&1,%2,L3)p(p1) +p (T3, L1, %2) p (p2) + p (T2, T3, Z1) p (p3) -



An important point is that p and ¢ are not the same distribution although both are defined over
Se.

Example 5. Let S = {0,1} with ¢ = 2. Let P = {p1,p2} where p; = (1,2) and p2 = (2,1). Let
p(x) be as defined in the Table 2. Assume p (p1) = p(p2) = 0.5. The resulting ¢ distribution on
permuted vectors x is also listed in the Table 2. p # ¢ since, for example,

q(0,1)

2
Z;p (0100 Ly 1) 2 (0)
e

= p(0,1) x0.5+p(1,0) x 0.5
= 042 x0.5+0.12 x 0.5 = 0.27
£ 042=p(0,1).

2.4 Inference and Learning

There are two problems of direct interest. In the first problem, we assume that p(x) is known,
and that the set of permutations P and their probabilities p (p) are also known. Then, given a
permuted vector x, we can calculate

iy = _9(xlpi)p(ps) _
A ST AT M

using the mixture model in Equation 1 and Bayes rule. This allows us to identify (for example) the
most likely permutation, arg max; g (p;|x). It is straightforward to show that this decision rule is
Bayes-optimal in that no other decision rule can achieve a lower average error in terms of identifying
the permutations [1]. Of interest here is the probability that we make an error (on average) using
this decision rule, i.e., what is the optimal error rate achievable in terms of unscrambling the row
values. Here an “error” occurs whenever the most likely permutation is not the same as the true
permutation that generated x. We will refer to this error rate as the Bayes-optimal permutation
error rate, defined as

L,m

B = [ a0 x (1= maxq (pibo) ) ax
e J
with the superscript x referring to “Bayes-optimal” and subscript P referring to “permutation”.

In the second problem, we are given the set of permuted vectors D = {xl,...,xN }, a set of
permutations P, and an assumed functional form for p(x). Our task in this case is to estimate
the parameters of p (x), the probabilities p(p), and for each row x to estimate the probability that
permutation p; was used to generate it. This problem is discussed in Section 5.

The two problems above are intimately related. The error rate of any learning algorithm in problem
2 (in terms of identifying permutations) will be lower-bounded by the Bayes-optimal permutation
error rate E} as defined in problem 1. Thus, E7} is a fundamental characteristic of the difficulty
of learning in the presence of permutations and it is of direct interest to study it. In what follows
we first show in Section 3 that E7} is it itself upper-bounded (under certain assumptions) by a
well-known characteristic of density overlap (the Bayes-optimal classification error rate), and we
then in Section 4 derive closed form expressions for E} for specific simple forms for p (x).



3 Analysis of Bayes-Optimal Error Rates

Recall that x = (#1,...,Z;). We can define a marginal distribution for each feature-vector Z;,
1=1,...,cas

p(%) = /---/p(fla---afi—lafiafi+1a---afc)dfl---d-'fi—ldfi—kl---dfca
s Js

i.e., the marginal density for Z; defined on the set S. Each of the ¢ features has a similar marginal
density on the same set S. We will use p (Z|C;) = p (&;) to denote the marginal density of Z; on the
set S.

We now have c different densities defined on S, which in turn defines a finite mixture pas (Z) on S:
C
pu (&) =Y p(F|Ci) x p(Ci)
i=1

where p (C;) = %, since all marginals have equal weight in the process of defining the mixture. In
the space S consider a classification problem with ¢ classes, where, given a measurement £ € S,
we infer the most likely feature-vector &; that it originated from, 7 = 1,...,c. The Bayes-optimal
classification rate for this problem is defined as

Ef = /pM (Z) x (1 — maxp (CJ\:Z")) dz.
S

Intuitively, EZ is the error rate obtained if we were given vectors Z; one at a time, and asked
to identify which of the ¢ “columns” they originated from, based on knowing each of the p (Z|C;)
densities, i = 1,...,c. EZ is proportional to the overlap of the individual feature densities p (Z;)
in the space S. For example, for the data on the left in Table 1 we would expect the overlap of the
4 densities, as reflected by E,, to be quite small. Furthermore, we would expect intuitively that
the permutation error rate E7} should also be low in this case, and more generally that it should
be related to E7, in some manner. In what follows below we quantify this intuition. Specifically,
under certain choices of P, we show that E7, is upper-bounded by Ef.

Definition 1. For P, let k be a key index if (p; (k) ,..., pm (k)) is a permutation of (1,...,c).

Note that P having a key implies m = |P| = ¢. The set of all cyclic shifts for example has a key.
Example 6. For P = {p1, p2} with p; = (1,2) and pa = (2, 1), both indices 1 and 2 are keys.

Example 7. A set of permutations P = {p1, p2, p3,pa} with p1 = (1,2,3,4), p2 = (2,1,3,4),
p3s = (1,2,4,3), and py = (2,1,4,3) does not have a key.

Theorem 1. If a set of permutations P for a permutation problem has a key, and if each permu-
tation is equally likely, then
E; < E7.

Proof.

B = [ @ x (1-maxp(Cla)) a7 = [ @z~ [ max o (@)p (G2 az
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where
I (%) = argmaxp (7|C;) .
2

Let k be a key for P. Let Q (Zx) be such that
PQ,) (k) = I (Zy) .-
By the definition of a key, existence of such @ (Z) is guaranteed for all Z € S. Note that
po@y) (k) = I (Zk) & pgz,) (I (@) = k.
Recalling the definition of E},
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The theorem shows that under certain assumptions, the permutation problem is easier than a
corresponding version of the classification problem. This generally agrees with our intuition since
in the classification version of the problem we are classifying feature values one at a time in terms of
which column they are thought to have originated from, whereas in the permutation version of the
problem we are simultaneously classifying ¢ values together and have the additional information

available that the ¢ values must all be assigned to different classes (in the presence of a key).

Note that if the set of permutations P does not have a key, E} may in fact be larger than EF.

Example 8. Let P be defined as in Example 7. Let S = {v{,v2}. Let p(v;|c;) be defined as in
Table 3. If we define the joint p (Z1, T2, T3, Z4) as p (F1) p (Z2) p (¥3) p (Z4), it can be shown that in

this case, £y = 0.55 < 0.6975 = Ej,.



Table 3: Distribution for Example 8.

p(vj|Cy) |i=1]i=2]i=3|i=4

j=1 | 09 | 08 | 02 | 0.1
j=2 | 01 | 02 | 08 | 0.9

4 Analysis of Permutation Error Rates

In this section we derive closed-form expressions for the Bayes-optimal permutation error rate E}
for specific functional forms for p (x) and we use these expressions to show how changes in the
parameters of p (x) can make learning and inference harder or easier.

4.1 Gaussian Features

We begin with the case of Gaussian features, since the Gaussian model is both amenable to analysis
and widely used in practice.

4.1.1 Case 1: Two Independent Features

Consider the case when ¢ =2, d =1 and S = R. Let p(x) be a Gaussian with covariance matrix
of the form o?I where I is the identity matrix (the features are independent Gaussians with equal
variances). Thus,

p(x) =N (x|p, Z)

2
_|m _ (o O
“_[ua]andz_(o 02)

We have m = 2 with p; = (1,2) and py = (2,1).

where

q (x|p1) = p(z1,72) = N ((z1, 72)|p, E)

and
q (x|p2) = p(z2,71) = N ((21,72) |2, %),

where

~ | M2

w0
It is straightforward to show that

1 ° 2
E} = —/ e U/ 2dy 2

where



Therefore, given the functional forms for g (x|p;) and g (x|p2),

e v /2dy,

B = — /
P Jor 1)

The quantity |pu; — p2| /o is a measure of the overlap of the two Gaussians: as overlap increases
E% decreases, and vice-versa. This is exactly the same qualitative behavior as one gets with the
Bayes-optimal classification error rate E7, for this problem, except that the range of integration is
different. Specifically (using the results for E, in [1]) we have

lw1— M2|
P N Vo /m uzl

In the cases of maximal overlap (|u; — pe|/o is very large) and minimal overlap (the overlap
expression is very small) the difference in the two error rates is very small. The difference between

Ef — e 2dy,

the two types of error is maximized when % =+In2.

4.1.2 Case 2: Two Correlated Gaussian Features

Next, consider a generalization of Case 1 where the features are no longer assumed to be independent
but are allowed to have non-zero correlation v:

p(x) =N (x[p, =)

where

2
”:[51] andE:(i :2>, -’ <v <ol
2

q (x|p1) and ¢(x|p2) are defined as in Case 1, but where 3 now has a covariance term v in the
off-diagonal positions. Using Equation 2 again, we get

x —u?/2
EP \/2_7r/lu1—142| € du.
\/5\/0'2—1/

Thus, as in the independent case, E}, decreases as |p1 — po| increases and vice-versa.

As 0 — v, the lower limit of the integral approaches oo and E} approaches zero. Thus, even
though the two Gaussians could be heavily overlapped, as the correlation approaches 1, we can
identify permuted pairs of values with accuracy approaching 1, in contrast to the Bayes-optimal
classification error rate for the same problem which is defined based on classifying each value
separately and cannot take advantage of the correlation information. This is a case where the
permutation error rate can approach 0 even in cases where the classification error rate (proportional
to the overlap of feature densities) can be as high as 0.5.

Interestingly, negative correlation has the opposite effect in that as the correlation coefficient be-
comes more negative, £} increases and approaches E%. Intuitively, negative correlation makes
the problem harder by effectively leading to more overlap between the two densities. To see this
visually, in Figure 1 we plot simulated data from ¢ (x) for the case of very negative correlation,
zero correlation, and very positive correlation.



L x x X ] « x o
15 ) atxle,) axle,) .
y o q(xlp,) o qxlp.) x
X, =X 10F N a
12 — X7 X «
10t % 1 XX
0 % © x
xR X%« 0o
xQx 5h x o X % % o X XXX o
57 7 ) : XX >§(;XXXSOX o Qé oO
SN XO% Xyo%xé « 009 o
< X < ol ST EY
oF X ] 0 o, Ao o Xxooo?js o °
& O x Xoo Oo o Ygo%@&o o© i
-5t 0 ° 1 -5 ’ °
o o
_1 . 4
0 -10
-10 -5 0 5 10 15 -10 -5 0 5 10
Xl X1
v —og? vr=20
150 [« aey) 1
o a(xlp,) .
10t 1
o
5t |
N
x
of |
_57 4
210 -5 0 5 10 15
X1
v o?

Figure 1: Simulated data (and covariance ellipses) from ¢ (x|p1) (x’s) and ¢ (x|p2) (0o’s) for the
correlated Gaussian case with equal variances (case 2). The optimal decision boundary corresponds
to the line z1 = z».



4.1.3 Case 3: Unequal Variances

Consider further the case where the Gaussian features have unequal variances o? and o5 and
covariance v. In this case, since ¢ (x|p1) and g (x|p2) have unequal covariance matrices, there is no
closed-form expression for E}, or Ef, as we had before. Nevertheless, we can get an understanding
of the variation of E} as a function of 01,07 and v via simulations. Figure 2 shows some 2-D plots
for various values of v, keeping o; and o9 fixed. We see that variance inequality changes the nature
of the overlap between ¢ (x|p1) and ¢ (x|p2) compared to the equal variance case in Figure 1.

We can also calculate empirical error rates (in terms of classifying permutations) using the true
model for various values of the parameters (note that these are empirical estimates of E} by
definition). Figure 3 shows the variation of these empirical error rates with v for different values
of the variances keeping the ratio o109 constant. It can be seen from the plots that E} depends
on both v as well as the difference |0’% — Jg‘, and that the variation of the error rate with v is not
monotonic.

4.2 Categorical Data
Consider the simple case when ¢ = 2 and d = 1, i.e., x consists of two scalar features. Assume that

the features are discrete and can take one of V' values. Let m = 2 with p; = (1,2) and ps = (2,1),
and both permutations are assumed to be equally likely. We have,

B = Ya0 (1-maxa (o)
= ) 4 Zq x) max ¢ (p; x)

1
- 1_ 5 Zm?X‘I(XW) where x = (71, z2)
X
1
= 1- 3 Z max {p (z1,22) ,p (z2,71)}
zl,zz
- 1--= Z (Ip (1, 29) — p (z2,71)| + p (21, T2) + p (T2, 71))
zl,za
1 1
T 371 Z Ip (1, T2) — p (72, 71)].
1,7y

Thus, Ep is a function of the quantity Zzl,m |p (1, 22) — p (z2,x1)|, which we can call the permu-
tation distance between p; and ps. E7 decreases linearly with this distance, reflecting the fact that
the more dissimilar the probabilities of each permuted pair of values are from the probabilities of
the unpermuted pairs, the more E7, decreases.

For the special case when V' = 2, i.e. S = {v1,v2}, and the features are independent, i.e. using the
notation defined in Section 3, p (z1,z2) = p (z1|C1) p (z2|C2),

1

1
Ep = 27 % p (v1]C1) — p (n1]C2)| -
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Figure 2: Simulated data (and covariance ellipses) from g (x|p1) (x’s) and ¢ (x|p2) (0’s) for the cor-
related Gaussian case with unequal variances (case 3). The optimal decision boundary corresponds
to the line z1 = zs.
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Figure 3: Empirical values of the error rates for Case 3

5 Learning from Permuted Data

In this section we briefly comment on the problem of unsupervised learning with permuted data.
Space limitations do not permit a complete treatment of the topic: the goal is to illustrate that
learning with permutations can be achieved in a practical sense, and to demonstrate that the Bayes-
optimal permutation error rate provides an absolute lower bound on the error rate of practical
learning algorithms. Just as for standard finite mixtures, mixtures of permutations can suffer
from identifiability problems. The same probability distribution ¢ (x”) for permuted vectors can
be obtained from different sets of distinct probability distributions (up to a permutation of the
feature-vectors) of unpermuted vectors. For example, consider p (x) from Example 5 and change
the values for p (0,1) and p (1, 0) to different values while keeping their sum the same. The resulting
distribution ¢ (x) would not change. For these situations, it is impossible to learn the original
distribution p (x) from a sample D of distribution ¢ (x). Identifiability issues for mixtures of
permutations need to be researched further [5]; however, we suspect that they would mirror that of
ordinary mixtures of distributions of the same type as defined on the space of unpermuted vectors.
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5.1 EM Algorithms for Permuted Data

Consider a “matrix” data set D = {xl, o xN } with N rows and ¢ columns (each column being
d-dimensional) where we assume that D was generated using the generative model described in
Section 3. Assume that we know the set of permutations P and the functional form (but not
the parameters) of p (x). If we knew the permutations that generated each data vector x*, then
presumably the problem of estimating the parameters of p (x) using the “unscrambled” data would
be straightforward. This suggests the use of the EM framework for this problem, treating the m
possible permutations as “hidden” information and using the mixture framework of Equation 1 as
the basis for an EM learning algorithm for likelihood maximization.

Letting © be the unknown parameters of p(x), the log-likelihood can be defined as

N m
[(©) = Ing(D|O)= Zlnq x'|0) Zanp(m)p(p}l (x’))
=1 j=1

After © has been initialized in some fashion, the parameters are changed iteratively, guaranteeing
a non-decreasing log-likelihood at the end of each iteration. In the E-step, the probability of each
permutation is estimated for each data vector given the current ©. In the M-step, new values for ©
are chosen to maximize the expected log-likelihood of the data with respect to the distribution over
permutations as estimated in the E-step. As an example, the p (p;) terms can always be updated
analytically as follows:

p(pj) = qu PJ|X 9)

=1

where here (unlike in the analysis earlier in the paper) the probabilities of different permutations
need not be equal and can be learned from the data.

5.2 Learning from Gaussian Data

We simulated data with S = R, ¢ = 2, using the setup in Section 4.1.1. In the first experiment,
we performed an empirical analysis of how the permutation error rate of models learned with EM
depends on the number of training examples N. For this we set p; = 1, yg = —1, 02 = 16 which
yields a Bayes-optimal permutation error rate of roughly 0.36 — thus, we know in advance that
none of our learned models can have a lower error rate than this. 10 different training data sets were
generated for each of the following sizes: N = {10, 20,50, ...,5000,10000} and for each training
data set the best fitting (maximum likelihood) model was chosen from 10 random restarts of EM.
Each of these best-fit models were then evaluated on a large independent test data set (N = 2 x 105
data points).

The plot in Figure 4 shows that, as expected, the error rate of the predicted model approaches
the Bayes-optimal error rate as the number of examples increases. For this particular problem,
once the number of data points is on the order of 1000 or greater, EM is performing optimally in
terms of identifying the permutations. We also investigated how the error rate of a learned model
depends on the error rate of the true model which generated the training set. We fixed the number
of examples in each training set (N = 100), and for several values of the Bayes-optimal permutation
error rate we generated 10 sets of size N. Then we learned the best model for each of these sets
with 10 random restarts. Each of these models was then evaluated on a large set (N = 2 x 10°
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Figure 4: Error rates of models learned from permuted data as a function of the number of training
examples.
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N ANAND AL

true permutation

iter:1

0.1101 0.0889 0.2657 0.0499 0.3256 0.1599
iter:5

0.0419 0.0528 0.3505 0.0167 0.4299 0.1083
iter:10

0.0201 0.0577 0.3306 0.0075 0.4778 0.1063

iter:20

0.0015 0.1045 0.1596 0.0003 0.6108 0.1233
iter:42

0.0000 0.0041 0.0119 0.0000 0.9822 0.0018

Figure 6: Iustration of EM learning with triangle data.

data points) generated from a true model. Figure 5 shows that as the error rate of the true model
increases, so does the increase in error over the true error. The increase begins to diminish once
the true error rate gets close to its maximum value of 0.5 since the error rate of any model in this
case is bounded by 0.5.

5.3 Learning with Rotated Triangles

This problem is a simplified version of the image analysis problem considered in [3], presented here
for illustrative purposes. We simulated 100 triangles from a distribution over angles (corresponding
to p (x)), and then rotated and reflected the triangles in a manner corresponding to a set of random
permutations. The learning problem is to learn back the distribution which generated the triangles
and put the triangles in geometric correspondence. For this problem, ¢ = 3 (3 angles), S = R,
and P = {p1,...,ps} (all six possible permutations of (1,2,3)). We set p(p) as uniform. p(x) is
defined as p (z1, 79, 73) x N (ac1|,u1,af) x N (a:2|,u2,0§) if z1 + z9 + z3 = 7, and 0 otherwise. For
p1, po > 0 such that i + pe < 7, and with small 02 and o3, this distribution generates triangles
with angles z1, z9, 3.

Figure 6 demonstrates how EM learns both the underlying density model for angle generation
and a distribution over rotations and reflections for each triangle. The rows represent different
iterations of EM and the leftmost column is the learned density model as represented by the
“mean triangle” at each iteration. The columns represent the 6 possible permutations for one
of the simulated triangles in the training data, and the numbers in each row are the probability
distribution p(p;|x),j = 1,...,6 for a specific iteration of EM. Starting from a random triangle
model (upper left corner) and considerable uncertainty about the likely permutation (row 1), EM
gradually learns both the correct “mean shape” and identifies the most likely orientation for this
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particular triangle (row 5).

6 Conclusions

We analyzed the problem of unsupervised learning in the presence of unknown permutations of fea-
ture values. We introduced and analyzed the Bayes-optimal permutation error rate E7,. Motivated
by the fact that E7 is a lower bound on the error rate of any model that tries to identify permuta-
tions, we derived a general bound and closed-form expressions for E7, for specific learning problems
and found (for example) that negative and positive correlation among the feature variables can lead
to very different learning problems in the presence of permuted data. The paper concluded with a
brief empirical illustration of how EM can be used to perform unsupervised learning from permuted
data. There are several possible extensions of this work including further analysis of the relation-
ship between E7, and E} and analysis of learning algorithms for more general transformations than
permutations.
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