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Abstract

A hidden Markov model (HMM) is used to describe daily rainfall occurrence at ten gauge stations
in the state of Ceará in northeast Brazil during the February–April wet season 1975–2002. The
model assumes that rainfall occurrence is governed by a few discrete states, with Markovian daily
transitions between them. Four “hidden” rainfall states are identified. One pair of the states
represents wet vs. dry conditions at all stations, while a second pair of states represents north-south
gradients in rainfall occurrence. The estimated daily state-sequence is characterized by a systematic
seasonal evolution, together with considerable variability on intraseasonal, interannual and longer
time scales. The first pair of states are shown to be associated with large-scale displacements of the
tropical convergence zones, and with teleconnections typical of the El Niño-Southern Oscillation
and the North Atlantic Oscillation. A trend toward greater rainfall occurrence in the north of
Ceará compared to the south since the 1980s is identified with the second pair of states.

A non-homogeneous HMM (NHMM) is then used to downscale daily precipitation occurrence at
the ten stations, using general circulation model (GCM) simulations of seasonal-mean large-scale
precipitation, obtained with historical sea surface temperatures prescribed globally. Interannual
variability of the GCM’s large-scale precipitation simulation is well correlated with seasonal- and
spatial-averaged station rainfall-occurrence data. Simulations from the NHMM are found to be able
to reproduce this relationship. The GCM-NHMM simulations are also able to capture quite well
interannual changes in daily rainfall occurrence and 10-day dry spell frequencies at some individual
stations. It is suggested that the NHMM provides a useful tool (a) to understand the statistics of
daily rainfall occurrence at the station level in terms of large-scale atmospheric patterns, and (b)
to produce station-scale daily rainfall sequence scenarios for input into crop models etc.



1 Introduction

One of the major challenges in tailoring seasonal climate forecasts to meet societal needs, is
that the potential users of climate information are often concerned with the characteristics of
high-frequency weather at a particular location. Unfortunately, the statistics of local weather are
generally poorly represented in the coarse-resolution general circulation models (GCMs) that are
typically used to make seasonal climate forecasts. Moreover, the seasonal predictability of high-
frequency local information is often in serious doubt. As part of the endeavor to produce useful
seasonal climate forecasts, an important task is to understand, on a regional basis, just what
aspects of the “weather-within-climate” are predictable a season or more in advance. While the
deterministic predictability limit of weather is on the order of 10 days, some boundary-forced longer-
term predictability of weather statistics may often exist—termed predictability of the “second kind”
by Lorenz (1963).

Northeast (NE) Brazil is a region with a high potential for seasonal rainfall predictability during
the February–April rainy season, due to strong teleconnections with the El Niño-Southern Oscil-
lation (ENSO) and with variability of the tropical Atlantic Ocean (Hastenrath and Heller 1977,
Moura and Shukla 1981, Nobre and Shukla 1996). At the seasonal-mean scale, some of this forecast
potential has been realized in the seasonal forecasts made at the International Research Institute
for Climate Prediction (IRI) during the 1998–2001 period (Goddard et al. 2003). Some of the
highest rainfall skills on the globe occurred over NE Brazil during this short time interval since the
advent of routine IRI seasonal forecasts. The state of Ceará in NE Brazil is also the target of a
water-resource management project1 whose goal is to incorporate climate forecast information into
sectorial decision making, for which the “downscaling” potential from GCM simulations to local
daily rainfall is an important issue.

The first goal of this paper is to examine the probability distribution of local daily rainfall-
occurrence in the state of Ceará on timescales of intraseasonal to interannual, and to identify
relationships with large-scale atmospheric circulation patterns. Our approach is based on fitting
a Hidden Markov Model (HMM) to rainfall records on a network of 10 rain-gauge stations for
the period 1975–2002. The HMM is a doubly stochastic model in which the daily probability
of local rainfall occurrence (typically on a spatial network of stations) is conditioned on a small
number of discrete (“hidden”) weather states, with Markovian daily transitions between them.
It is a data-driven model, in which the parameters defining each state and the estimated daily
sequence of states are derived from a historical record of daily rainfall occurrence. The concept of
discrete weather states has a long history in synoptic (Bauer 1951) as well as theoretical midlatitude
meteorology (Charney and DeVore 1979). No such literature exists for the tropics, however. We
seek to establish a physical basis for the predictability of local daily rainfall statistics over NE Brazil
by constructing relationships between the HMM’s hidden rainfall states and the large-scale modes
of atmosphere-ocean variability associated with ENSO and tropical Atlantic variability (TAV).

For the downscaling of rainfall, Hughes and Guttorp (1994) pioneered the use of the non-
homogeneous HMM (NHMM) in which the transition probabilities between states are not held
fixed, as they are in the classical “homogeneous” HMM, but are allowed to evolve in time according
to a small number of large-scale atmospheric exogenous predictor variables. The NHMM links
the local rainfall at a network of stations to large-scale atmospheric variables, using the hidden

1Information can be found at http://iri.columbia.edu/application/region/america/Ceara/

1



weather states as intermediaries. In the context of downscaling of seasonal forecasts, it may be
most meaningful to allow the daily transition probabilities between states to be a function of the
GCM’s seasonal-average predictions. This would be tantamount to assuming that the information
content of the GCM is limited to the seasonal average; it provides a benchmark against which more
complex hypotheses can be tested involving atmospheric forcing variables derived from the GCM’s
daily output.

Northeast Brazil is located near the boundary between two large-scale tropical convergence
zones—the Atlantic inter-tropical convergence zone (ITCZ) to the north, and the South American
monsoon system (SAMS) centered to the west—and the influence of the South Atlantic subtrop-
ical anticyclone situated to the southeast. The rainfall over NE Brazil is highly seasonal and is
sensitive to anomalies in the extent of any one of these three phenomena (Hastenrath and Heller
1977). It is semi-arid for much of the year, falling under the influence of the western fringe of the
South Atlantic subtropical anticyclone. The principal rainfall season occurs in February-March-
April (FMA), when the Atlantic ITCZ reaches its southernmost position and directly overlies NE
Brazil, merging with the SAMS near the mouth of the Amazon, as the SAMS (which peaks in
austral summer) retreats northward. The time lag in the seasonal migration of the maritime ITCZ
is caused by the large thermal heat capacity of the underlying ocean, together with the impact
of the continental convection associated with the SAMS which tends to weaken the ITCZ during
FMA.

Interannual variability of rainfall is large, and takes the form of droughts that occur when the
usual southward seasonal migration of the ITCZ fails to occur, and large rainfall when the latter
is amplified. The interannual behavior of the Atlantic ITCZ during boreal spring is closely tied
to two inter-related factors: (a) anomalies in the Walker Circulation associated with ENSO events
over the tropical Pacific, and (b) changes in the meridional sea surface temperature (SST) gradient
in the equatorial Atlantic—the so-called Atlantic “meridional mode”—that may or may not be
associated with ENSO (Chiang et al. 2002). The largest ITCZ displacements occur in ENSO years
in which pre-existing Atlantic SST anomalies are such as to amplify the direct impact of ENSO
(Giannini et al. 2003). The North Atlantic Oscillation (NAO)—which peaks in boreal winter—
is one factor that influences the tropical Atlantic meridional mode. The NAO is an intrinsic
mode of the atmosphere with a time scale of about a week (Feldstein 2000), with little seasonal
predictability. GCM modeling studies suggest that the influence of North Atlantic SST anomalies
is small (Hurrell et al. 2002), although some seasonal predictability may arise from stratospheric
coupling (Thompson et al. 2002). The meridional mode is influenced from the south as well, and
Rossby wave energy on sub-monthly time scales emanating from the South Pacific storm track can
reach NE Brazil even during the austral summer (Liebmann et al. 1999).

GCM forecasts of the seasonal average precipitation and temperature are currently made on a
routine basis at IRI and at other centers, issued as three-month seasonal averages on the grid-scale
of the atmospheric GCMs (typically about 300 km). Experimental downscaled seasonal forecasts
are now also being made on an ongoing basis for NE Brazil using high-resolution regional dynamical
models (60-km grid) (Sun et al. 2003). Preliminary results are encouraging. However, these high-
resolution dynamical models also suffer from model biases and are computationally expensive,
motivating the use of statistical approaches.
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Having established that certain HMM rainfall states are strongly tied to the large-scale atmo-
spheric circulation, the paper’s second goal is to determine to what extent the nonhomogeneous
HMM (NHMM) can be used to downscale GCM seasonal climate forecasts over Ceará. The re-
mainder of the paper is laid out as follows. Section 2 describes the observed daily rainfall dataset
and the GCM used in the downscaling experiment. The homogeneous HMM is described briefly
in Section 3. The hidden states of rainfall occurrence derived from the HMM are presented in
Section 4 and discussed in terms of concurrent atmospheric conditions. The results of the GCM
downscaling experiment using a non-homogeneous HMM are described in Section 5, with details of
the parameter fitting procedure for the NHMM given in Appendix A. A summary and conclusions
are presented in Section 6.

2 Observed Rainfall Data and GCM

We use daily rainfall data collected at 10 stations from the state of Ceará in NE Brazil over the
years 1975–2002, provided by FUNCEME (Fig. 1). These 10 stations have the longest and most
complete reliable records. A wet day is defined as having measurable rainfall. The mean seasonal
cycle of rainfall occurrence is plotted in Fig. 2. We select the 90-day period beginning February 1
(February-March-April, FMA), corresponding to the peak rainy season over NE Brazil, and retain
the seasonal cycle of rainfall occurrence within the FMA season. The years 1976, 1978, 1984 and
1986 were omitted because of missing data for certain months at one or more stations, yielding 24
complete 90-day seasons (2160 days).

The climatological values of rainfall occurrence probability are plotted at each station on a map
of topography in Fig. 1. The largest values occur in the northwest decreasing southward, consistent
with the large-scale rainfall pattern associated with the ITCZ and the SAMS. Local topography
also appears to play a role in the large probabilities at stations 9 and 10, and perhaps 3 and 6.

The GCM is the ECHAM 4.5 model (Roeckner and Coauthors 1996), for which an ensemble
of 24 integrations was available, with historical SSTs prescribed at the lower boundary from the
NCEP/NCAR reanalysis data set (Kalnay et al. 1996). Each ensemble member differs only in its
initial condition.

3 The Homogeneous Hidden Markov Model (HMM)

Adopting similar notation to that in Hughes et al. (1999), let Rt =
(
R1

t , . . . , R
M
t

)
be a multi-

variate random vector of rainfall occurrences for a network of M rain stations. Let the observed
value ri

t = 1 if rain is observed on day t at station i and ri
t = 0 if it is dry. Let St be the hidden

rainfall state for day t, taking on one of K values from 1 to K. By R1:T and S1:T we will denote
daily sequences of precipitation occurrences and hidden rainfall states.

An HMM for rainfall data makes two conditional independence assumptions (e.g., see Hughes
and Guttorp 1994). The first assumption is that the multivariate precipitation observations Rt at
time t are independent of all other variables in the model up to time t, conditional on the weather
state St at time t , i.e.,

P (Rt|S1:t,R1:t−1) = P (Rt|St) . (1)
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Figure 1: Rainfall station locations with topographic contours (meters). Circle size denotes the
February–April climatological daily rainfall probability (%) 1975–2002. The stations are: (1) Acopi-
ara (317 m), (2) Aracoiaba (107 m), (3) Barbalha (405 m), (4) Boa Viagem (276 m), (5) Camocim
(5 m), (6) Campos Sales (551 m), (7) Caninde (15 m), (8) Crateus (275 m), (9) Guaraciaba Do
Norte (902 m), and (10) Ibiapina (878 m). One degree of longitude/latitude corresponds to about
110 km at the equator.
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Figure 2: The mean seasonal cycle of rainfall occurrence frequency at each station over Ceará.
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Figure 3: Graphical model representation of a hidden Markov model.

The second assumption is that the hidden state process, S1:T , is first-order Markov:

P (St|S1:t−1) = P (St|St−1) (2)

and that this first-order Markov process is homogeneous in time, i.e., the K ×K transition proba-
bility matrix for Equation 2 does not change with time.

For P (Rt|St), we make the simplifying assumption that the rainfall observation at each station
at time t is independent from observations at other stations at time t, conditional on the hidden
state:

P (Rt = r|St = s) =
M∏

m=1

P (Rm
t = r|St = s) =

M∏
m=1

psmr

where r ∈ {0, 1}, each psmr ∈ [0, 1], and psm0 + psm1 = 1. Note that this conditional independence
assumption given the states does not imply spatial independence of the rainfall process (which
would be unreasonable). Spatial dependence is captured implicitly via the state variable in the
model, as we will see later in the paper.

Techniques for parameter fitting and prediction using homogeneous HMMs are well known in the
statistical literature and, thus, need not be elaborated on here—the reader is referred to standard
references such as Rabiner (1989) and MacDonald and Zucchini (1997) for details. Figure 3 shows
a graphical representation of the conditional independence assumptions in the HMM. Later in the
paper we develop a non-homogeneous extension of this model where the transition probabilities are
no longer homogeneous in time but instead are allowed to vary over time.

4 Hidden States of Daily Rainfall Occurrence

In this section, we use the homogeneous HMM to construct states of daily rainfall occurrence
from the 10-gauge daily record. As a baseline we also evaluate the performance of a model with no
hidden states, where independent Markov chains were fit to the historical data from each station
using maximum likelihood. The stateless model is equivalent to the classical “weather generator,”
commonly used to used to model daily rainfall occurrence (e.g., Wilks and Wilby 1999).

We used cross-validation to evaluate the quality of the fitted HMMs as a function of K the
number of states. HMMs for different values of K were fit to the training data leaving out different
one-fourths (six consecutive years) of the data at a time and then calculating the log-probability
of the observed data for the left-out years. The resulting normalized out-of-sample values of the
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Table 1: Performance of HMMs with different numbers of states K compared to a model with
independent Markov chains.

Model Out-of-Sample Out-of-Sample Out-of-Sample
Normalized Normalized Average Average

Cross-Validated BIC Absolute Difference Absolute Difference
Log-Likelihood Score in Spatial Correlation in

(per station pair) Rainfall Persistence
Markov Chains 0.6314 0.6325 0.2453 0.0641

K = 2 0.5856 0.5844 0.0627 0.0793
K = 3 0.5743 0.5743 0.0511 0.0678
K = 4 0.5709 0.5723 0.0465 0.0635
K = 5 0.5687 0.5725 0.0460 0.0644
K = 6 0.5684 0.5737 0.0450 0.0651

cross-validated log-likelihood for each model are given in Table 1 for K = 2, 3, 4, 5, 6, together with
a normalized Bayes Information Criterion (BIC) for each model (see Appendix B).

The normalized cross-validated log-likelihood is defined to be the negative of the original total (not
averaged over years) cross-validated log-likelihood divided by the total number N of binary events
used in evaluating the model. Here N = 24×90×10, the number of individual rainfall events across
all years, days, and stations. Scaled in this fashion the normalized log-likelihood corresponds to a
form of predictive entropy or uncertainty of the model in bits (for base2 logarithms). The resulting
normalized scores are somewhat more interpretable than unnormalized log-likelihood scores since
they lie on a scale between 0 and 1. The BIC scores in Table 1 are scaled in a similar manner
(Appendix B).

Not surprisingly in Table 1 the HMMs have lower predictive uncertainty and lower normalized
BIC scores than the independent chains model (where lower scores correspond to better predictive
ability). The cross-validated out-of-sample log-likelihood decreases substantially from K = 2 to
K = 4, and then levels off. The normalized BIC score reaches its minimum at K = 4. Given that
both scores indicate that K = 4 is a reasonable choice for K, this is the value we chose in the
following.

Measures of the models’ ability to reproduce both (a) observed spatial correlations between
stations and (b) rainfall persistence (the probability of rain given rain the previous day for a
particular station) are also included in the table. Each number corresponds to the average absolute
difference between (a) 3000 years of simulated data from a model trained on 18 years of data, and
(b) actual data from the remaining 6 out-of-sample years. In this manner the numbers in Table 1
indicate the out-of-sample predictive power of the model in terms of both spatial correlation and
rainfall persistence. The baseline average absolute error for a model which has no spatial correlation
is 0.2453. This is also the error of the independent chains model since this model has (by definition)
zero spatial correlation in its simulations (over the long run). All of the HMMs reduce this error by
roughly a factor of 4, or equivalently can model roughly 80% of the total daily spatial correlation
in the data. The HMM models achieve this via the hidden states which can implicitly capture
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Figure 4: Observed correlations between stations 1 and 8 for all 24 years of data compared with
correlations between the same stations from the data simulated 10 times (plotted stacked above each
other) from the 4-state HMM trained on all 24 years. The histogram of the simulated distribution
was computed from 12000 90-day seasons.

marginal spatial dependence.

There is less difference between the HMMs and the independent chains model in terms of per-
sistence. We might expect the independent Markov chains model to outperform any HMM since
wet and dry spells in daily rainfall data are often well-modeled as first-order Markov (Wilks and
Wilby 1999). Empirically, in Table 1 the HMMs provide similar persistence numbers to that of the
independent chains, out-of-sample. The specific value of K for the HMMs does not seem to have a
large impact on the spatial correlation or persistence error numbers, apart from a slight flattening
out in error after K = 4.

The correlation and persistence numbers in Table 1 summarize the difference in expected values
for the statistics over multiple years. We find that the HMM trained on the data can also recover
most if not all of the year-to-year variability of the statistics. Figures 4 and 5 show for a selected
pair of stations (for correlation) and for one station (for persistence) the observed 24 yearly values
of the statistic. Also shown for comparison are 10 runs producing 24 yearly values of the same
statistic produced from an HMM trained on the observed data. Statistics from the simulated data
appear to be similar to the ones calculated from the observed data. Moreover, the variability
in statistics for the observed years generally agrees with the empirical probability distribution of
simulated statistics (using 12000 sequences or years).
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Figure 5: Observed persistence for station 5 for all 24 years of data compared with persistence for
the same station from the data simulated from the 4-state HMM trained on all 24 years. Details
of simulations as in Fig. 4.

In general, the distributions of wet and dry spell-lengths are captured quite well by the HMM,
as illustrated in Fig. 6. The spell-length distributions (both simulated and observed) follow ap-
proximately geometric distributions (near-straight lines in the semi-log plot on Fig. 6), while the
HMM tends to underestimate the spell durations at some stations. The geometric distribution is
a characteristic of the Markov model. However, the HMM treats the state sequence as a Markov
chain, rather than the rainfall. Thus, while the states in data simulated from an HMM will have
run-lengths whose distribution is geometric, the observed precipitation may be more “bursty”,
leading (for example) to possible underestimation of rainfall persistence.

The state transition-probability matrix is given in Table 2. The self-transitions are relatively
large indicating that the states are persistent, with states 1 and 2 being the most so, and state
4 being the least persistent. Direct transitions between states 1 and 2 are rare, with states 3
and (especially) 4 playing the role of intermediaries. There are no very clear transition directions,
though state 1 tends to follow state 4 (p = 0.22) rather than precede it (p = 0.11).

The rainfall probabilities for each state are plotted in Fig. 7, along with the number of days
assigned to each state. The four states fall roughly into two pairs with states 1–2 characterized
by wet or dry conditions at all stations and states 3–4 describing anomalous north-south gradients
(see also Fig. 9 which shows the probabilities as anomalies from climatology). State 1 (state
2) is characterized by increased (decreased) probability of rain at all stations, compared to the
climatological probabilities in Fig. 1; state 2 has near-zero probability of rain everywhere except
on the coast. State 3 (state 4) has anomalously small (large) probabilities in the south and slightly

9



0 20 40
10−3

10−2

10−1

100

P(
Sp

el
l ≥

 T
)

1: ACOPIARA

0 20 40
10−3

10−2

10−1

100
2: ARACOIABA

0 10 20 30
10−3

10−2

10−1

100
3: BARBALHA

0 20 40
10−3

10−2

10−1

100

P(
Sp

el
l ≥

 T
)

4: BOA VIAGEM

0 10 20 30
10−3

10−2

10−1

100
5: CAMOCIM

0 10 20 30
10−3

10−2

10−1

100
6: CAMPOS SALES

0 20 40 60
10−3

10−2

10−1

100

P(
Sp

el
l ≥

 T
)

7: CANINDE

0 20 40
10−3

10−2

10−1

100

Spell duration T (days)

8: CRATEUS

0 10 20 30
10−3

10−2

10−1

100

Spell duration T (days)

9: GUARACIABA DO NORTE

Obs Dry
Sim Dry
Obs Wet
Sim Wet

Distribution of wet and dry spell lengths

0 10 20 30
10−3

10−2

10−1

100

Spell duration T (days)

P(
Sp

el
l ≥

 T
)

10: IBIAPINA

Figure 6: Distribution of spell-lengths for wet (red) and dry (thick) spells at each station. Dashed
lines are computed from the 4-state HMM simulations, with the observed data shown as solid lines.
Plotted is the probability of a spell exceeding a particular duration. A geometric distribution would
plot as a straight line on these semi-log plots.
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Table 2: Transition probabilities for 4-state HMM.

to state
1 2 3 4

1 0.70 0.01 0.18 0.11
from 2 0.02 0.68 0.16 0.13
state 3 0.18 0.14 0.61 0.08

4 0.20 0.20 0.12 0.48

increased (reduced) probabilities in the north, with near-climatological probabilities in the center
of the domain. It is notable that the rainfall probabilities for states 1 and 2 are more spatially
uniform than in the climatology, while the opposite is true of states 3 and 4 which are characterized
by larger meridional gradients.

The estimated state-sequence, derived using the Viterbi algorithm (Viterbi 1967), is shown in
Fig. 8. The sequence exhibits considerable variability on intra-seasonal, as well as interannual time
scales. We now examine systematic seasonal and interannual variability.

The mean seasonality of state-occurrence is shown in Fig. 10. The frequency of state 2 decreases
from early February to mid-March, while the prevalence of state 1 maximizes in March, indicating
the peak of the wet season at all stations. State 4 decreases in prevalence toward the end of the
rainy season, while state 3 tends to become more frequent, indicating a contraction of the wet
season northward. The ratios of minimum/maximum frequencies (from 24-year averages of 10-day
running means) plotted in Fig. 10 are 0.32, 0.25, 0.36 and 0.28 for states 1–4 respectively; i.e. the
state-frequency varies by a factor of 3–4 within the season.

We now examine the meteorological characteristics associated with each rainfall state, by com-
positing anomalies of NOAA interpolated outgoing longwave radiation (OLR) and NCEP/NCAR
reanalysis winds over the days assigned to each state. Figure 9 shows anomaly-composites of OLR
and 850-hPa winds for the tropical South American-Atlantic sector, along with the state rainfall
probabilities displayed as anomalies from the FMA-mean climatology. Note that the anomalies in
winds and OLR are computed here as deviations from the mean seasonal cycle. States 1 and 2 are
clearly associated with strongly contrasting large-scale anomalies in OLR and the cross-equatorial
flow. Together these represent north-south displacements in the Atlantic ITCZ, as well as zonal
contractions or expansions of the SAMS core region over Amazonia.

State 1 represents an anomalously southward-displaced ITCZ, together with an eastward expan-
sion of SAMS. Thus, the ITCZ and SAMS merge to a greater extent than in the FMA climatology,
consistent with state 1 tending to correspond to the peak of the seasonal evolution (Fig. 10). In
this configuration, Ceará comes entirely under the influence of the large-scale convection zones, and
rainfall probabilities are high at all 10 stations. The contrasting situation characterizes state 2,
in which SAMS and the ITCZ become more separated, reminiscent of the DJF climatology, with
Ceará largely dry. It is worth emphasizing that states 1 and 2 are associated with sizeable atmo-
spheric anomalies with respect to the seasonal cycle (i.e. those plotted in Fig. 9), so that these
states are not merely aspects of the latter. Indeed the anomalous winds associated with states 1
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Figure 7: Four-state HMM rainfall probabilities (%) (circle size) together with topographic con-
tours. The number of days in each state is given in brackets.
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Figure 9: HMM state anomaly composites of 850-hPa wind (vectors) and OLR (contours), together
with rainfall anomaly-probabilities (%) at each station (circles). The wind and OLR anomalies are
deviations from the mean seasonal cycle; the latter was computed by 10-day lowpass filtering and
then averaging all years together. The composites are defined on the days assigned to each state,
with the number of days given in the caption. Contour interval: 2 W m−2, with negative contours
dashed.
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Figure 10: Mean seasonal variation of four HMM daily state occurrence, smoothed with a 10-day
running mean prior to averaging.

and 2, plotted in Fig. 9, change little if anomalies are computed with respect to the FMA long-term
mean.

States 3 and 4 are associated with smaller anomalies in rainfall probability, and this is reflected
in much smaller anomalies in OLR and wind. The north-south gradients in the OLR anomalies are
consistent with those in the gauge-rainfall HMM probabilities. However, the wind anomalies are
not very coherent.

In order to identify any large-scale atmospheric teleconnections, Fig. 11 shows composites of
850- and 200-hPa wind anomalies of states 1 and 2 over a larger domain. Over NE Brazil, the
direction of the wind anomalies reverses with height, typical of the first baroclinic mode of tropical
atmospheric dynamics. Over the tropical Pacific, states 1 and 2 are characterized by anomalous
Walker Circulations, and these are consistent with OLR anomalies over the equatorial Pacific (not
shown). Over the Atlantic, they suggest opposite polarities of the Atlantic meridional mode, with
NAO-like wind anomalies and anomalies in the NE Trades. These are recognized to be the two
mechanisms that influence NE Brazil rainfall on interannual time scales, and both leave their
imprint on the daily rainfall states.

Similar pictures for states 3 and 4 (not shown) do not highlight any coherent circulation patterns
that might be remotely forcing these rainfall states. However, there is a hint, especially for state
3, that Rossby wave activity propagating from the South Pacific may be a contributing factor (cf.
Liebmann et al. 1999).
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Figure 12: Interannual variability of HMM state-occurrence frequency.

Interannual variability of state-occurrence is plotted in Fig. 12 in terms of the number of days
assigned into each state. Large interannual variations do occur, especially in states 1 and 2, which
vary in opposition to each other consistent with their rainfall and meteorological characteristics
seen in Figs. 9 and 11. The occurrence frequency of state 3 shows an upward trend from the 1980s
onwards, while state 4 shows little interannual variation.

To probe the interannual variability further, composites of seasonal-mean SST anomalies are
shown in Fig. 13 for FMA seasons in which the interannual state-frequency (Fig. 12) is in the
top 15% of years (i.e., 4 or 5 years). The shading depicts significance at the 90% level. A clear
ENSO SST anomaly signature is present for years in which states 1 or 2 are highly prevalent, but
statistical significance is only high for state 1 (La Niña). States 1 and 2 are also associated with
Atlantic SST anomalies characteristic of the Atlantic meridional mode, but these are weak. States
3 and 4 are not associated with appreciable SST anomalies.

Finally, to check whether these four specific states might be sensitive to our choice of model
(i.e., the HMM), we also ran the well-known K-means clustering algorithm (e.g., Jain and Dubes
1988) on the data with K = 4 clusters. Here the input was a set of 10-dimensional vectors with
binary components corresponding to the daily rainfall occurrence measurements. The four K-means
clusters were found to match closely those derived from the HMM. Specifically, the 10-dimensional
means for each cluster from K-means (real-valued numbers between 0 and 1) were compared to the
conditional probability vectors for each state from the HMM, and the composite wind and OLR
maps resulting from the most likely assignments of each day to each cluster (for both K-means and
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Figure 13: Composites of anomalous SST for years (February–April) when HMM states are most
prevalent, defined as years in the upper 15% of the interannual distribution of state frequency.
The number of years in each composite is given in brackets. Shading represents 90% statistical
significance according to a two-sided Student t-test. Negative contours are dashed, and the zero
contour is omitted. Contour interval: 0.2oC.
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HMMs) were also visually compared. The means and maps obtained from the two different methods
were found to be quite similar (not shown). The fact that an alternative clustering methodology
such as K-means, that uses no information about temporal ordering of the rainfall measurements,
produces state descriptions that are qualitatively similar to those produced by the HMM, suggests
that these states are an inherent property of the data and insensitive to the particular modeling
methodology being used.

In summary, daily rainfall states 1 and 2 identified by the HMM are associated with well-known
patterns of interannual variability in winds, OLR and SST. These associations provide a basis for
the downscaling of seasonal GCM predictions, and this is pursued in the following section.

5 A NonHomogeneous HMM Downscaling Prototype

The NHMM generalizes the homogeneous HMM in that the transition probabilities in Equation 2
are allowed to vary with time. In particular, for downscaling applications the transition probabilities
between states are allowed to vary as a function of external inputs. Hughes and Guttorp (1994)
introduced this model in the context of modelling rainfall occurrence. The NHMM used in this
paper is based on this original work of Hughes and Guttorp, with some minor modifications.

In this section we illustrate the ability of an NHMM to downscale atmospheric GCM simulations
over NE Brazil. It is found that introducing atmospheric input variables does not visibly change
the appearance of the state composites, nor appreciably change the rainfall probabilities. Thus, a
4-state model is chosen for consistency with the HMM in the previous section.

For demonstration purposes and for consistency with IRI’s current seasonal-forecast scheme, we
define the inputs to the NHMM from the GCM’s simulated seasonal-mean rainfall anomaly. The
daily values needed as inputs to the NHMM are derived by simply repeating the seasonal-mean
input value for each day within the FMA season.

5.1 The NonHomogeneous Hidden Markov Model

Let Xt be a D-dimensional column vector of predictors for day t, derived for example from
a GCM. By X1:T we will denote the sequence X1, . . . ,XT . We now replace Equation 2 in the
homogeneous HMM with:

P (St|S1:t−1,X1:T ) = P (St|St−1,Xt) , (3)

so that the hidden state on day t depends both on the predictor vector Xt for day t and the
value of the hidden rainfall state St−1 on day t − 1. Because Xt can vary in time, this results in
transition probabilities between states that are can vary in time in response to changes in X, i.e.,
an inhomogeneous model. The corresponding graphical model is shown in Fig. 14.

The hidden state transitions in Equation 3 are modelled by a polytomous (or multinomial) logistic
regression:

P (St = i|St−1 = j,Xt = x) =
exp (σji + ρ′

ix)∑K
k=1 exp

(
σjk + ρ′

kx
) . (4)
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Figure 14: Graphical model representation of a non-homogeneous hidden Markov model.

For the specific case of S1, the first hidden state in the sequence,

P (S1 = i|X1 = x) =
exp (λi + ρ′

ix)∑K
k=1 exp

(
λk + ρ′

kx
) . (5)

All σ’s and λ’s are real-valued parameters while the ρ’s are D-dimensional real-valued parameter
vectors, where the prime denotes the vector transpose. This parameterization can be shown to be
equivalent to the one defined in Hughes and Guttorp (1994) and in Hughes et al. (1999) in which
the base-line transition matrix is multiplied by a function of the atmospheric predictors:

P (St = i|St−1 = j,Xt) ∝ P (St = i|St−1 = j) P (Xt|St−1 = j, St = i) (6)

= γji exp
(
−1

2
(
Xt − µji

)′ V−1
(
Xt − µji

))
∝ exp

((
ln γji −

1
2
µ′

jiV
−1µji

)
+ µ′

jiV
−1Xt

)
.

Here µji is the mean of the atmospheric predictor-vector associated with transitions from state j
at day t − 1 to state i at day t. If we make the simplification that P (Xt|St, St−1) = P (Xt|St),
then µji = µi, and the parameterization in Equation 6 becomes equivalent to the one in Equation
4. This can be shown by setting λi = ln γji − 1

2µ′
jiV

−1µji and ρi = V−1µji.

The parameters λ1, σj1, and ρ1 are set to zero to guarantee the identifiability of the transition
parameters. Note that the homogeneous transition matrix (Equation 2) can be viewed as a special
case where ρi = 0 for all i = 1, . . . ,K.

An example of the transition probabilities obtained with this parameterization for a 4-state model
with a univariate normalized input is shown in Fig. 15. This case corresponds approximately to
the downscaling example to be presented below, and demonstrates how the transition probabilities
from state 2 to states 1–4 are modulated by the value of Xt. Each curve can be intrepreted as part
of a logistic “S-shaped” curve, with the value of X = 0 corresponding to the homogenous HMM,
and the central portion of the plot being the most relevant.
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Given a fixed number of hidden states K, we learn the parameters Θ of the NHMM by searching
for parameters that best fit the observed data. To do this, we employ the commonly used maximum
likelihood principle. Specifically, we search for Θ that maximizes the conditional probability of
the observed data as a function of Θ—this conditional probability function is referred to as the
likelihood:

L (Θ) = P (R1:T |X1:T ,Θ) =
∑
S1:T

P (S1|X1)
T∏

t=2

P (St|St−1,Xt)
T∏

t=1

P (Rt|St) . (7)

The set of parameters Θ that maximize L (Θ) can be obtained using the well-known Baum-Welch
algorithm (e.g., Rabiner 1989), a variation of an iterative Expectation-Maximization (EM) algo-
rithm (Dempster, Laird, and Rubin 1977) for obtaining maximum likelihood parameter estimates
for models with hidden variables and/or missing data. Full details on the specific EM procedure
used in this paper for NHMM parameter estimation can be found in the Appendix A.

5.2 Predictor selection: Canonical Correlation Analysis

The choice of input (“predictor”) variables is non-trivial. Here, canonical correlation analysis
(CCA) between historical seasonally-averaged rainfall occurrence probabilities at each of the 10
stations, and the GCM’s simulated seasonal-mean rainfall amount at gridpoints within the region
(80oW − 0oW, 21oS− 7oN) was used to define the input variables. The CCA yields a calibration of
the GCM’s simulation of rainfall amount with respect to observed rainfall occurrence probabilities.
The 24-member ensemble mean of the GCM’s normalized precipitation field was used, driven by
historical estimates of SSTs. The analysis proceeds by firstly expanding each field into principal
components (PCs), and then performing the CCA in the reduced subspace of the two sets of PCs.
The GCM precipitation was normalized by its local interannual standard deviation prior to the
CCA. The optimal truncations for each PC subspace, as well as the optimal number of CCA modes
were determined by (1) computing the CCA for a given choice of truncation and, (2) summing the
out-of-sample correlations exceeding 0.3 between (a) the GCM predictor(s) so identified and (b)
the station rainfall (Tippett et al. 2003).

Since CCA is susceptible to over-fitting, a simple but severe cross-validation procedure was
employed, consisting of dividing the dataset into two contiguous 12-year training and validation
parts. The CCA modes and NHMM model are derived from the training part of the dataset, using
the ensemble-mean of the 24 GCM simulations together with the observed data. The resulting
NHMM is then used to simulate rainfall occurrences for the validation part of the dataset, using
the input timeseries derived by projecting the GCM ensemble-mean simulation from the validation
part onto the CCA modes derived from the training part. The procedure is then repeated switching
the training and validation parts of the dataset. Thus, two models are fitted and used to simulate
the complementary part of the series.

In both cases the CCA yields one statistically significant mode, characterized by correlations
between the canonical variate timeseries of 0.95 and 0.79, for the first and second half of the data set
respectively. Figure 16 shows the structure of the CCA mode for each part of the dataset, in terms
of homogeneous covariance maps formed by regressing each field with its respective (normalized)
canonical variate time series. Both halves of the dataset are characterized by a correspondence
between the GCM’s simulated broad-scale precipitation on the southern flank of the Atlantic ITCZ
and the observed station rainfall occurrence frequency over Ceará, with the relationship being
stronger from 1975–1990 than for 1991–2002.
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Figure 16: Canonical correlation analysis of GCM gridded seasonal-mean precipitation amount
(contours) and Ceará station daily rainfall frequency (circles). The leading CCA mode is shown,
computed from each half of the dataset in turn: (a) 1975–1990, (b) 1991–2002. The amplitudes
correspond to a one standard deviation anomaly, with contours every 0.5. All station-rainfall
anomalies are positive. Details of the CCA: The optimal PCA truncations are (a) 2 GCM PCs, 3
station PCs, and (b) 5 GCM PCs and 1 station PC, for the two halves of the data set respectively.
The associated time-series correlations are (a) 0.95 and (b) 0.79.
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Figure 17: Interannual variability of candidate GCM predictor variables, together with the observed
daily rainfall occurrence, averaged over the 10 stations (black). Key: leading cross-validated CCA
mode (red, r = 0.73); leading CCA mode without cross-validation (yellow, r = 0.86); GCM NE
Brazil area-average precipitation (blue, r = 0.66); NCEP/NCAR reanalysis area-average precipita-
tion (green, r = 0.62). The reported correlation values are with the observed.

The resulting (cross-validated) GCM predictor time series is plotted in Fig. 17, together with
the station-averaged observed rainfall probability; their linear correlation is 0.73. An alternative
to using the CCA calibration, is to use a spatial average the GCM’s seasonal-mean rainfall amount
simulations over the region of NE Brazil, obviating the need for cross-validation. Figure 17 also
shows these (normalized) spatial averages of NE Brazil rainfall (approx. 44oW − 35oW, 8oS− 0oN)
from both the GCM’s ensemble mean (r = 0.66) as well as the NCEP/NCAR reanalysis (r = 0.62).
It is encouraging that the GCM’s 24-member ensemble mean performs about as well as the NCEP
reanalysis. The gain achieved by calibrating the model with CCA is relatively small in this case.
A predictor time series derived using CCA but without cross-validation is also plotted to illustrate
the serious problem of over-fitting that results (r = 0.86).

5.3 NHMM simulations

The generalized EM algorithm (Appendix A) was then used to learn the parameters of the 4-
state NHMM with 10 binary (rainfall) outputs and 1 real-valued (GCM) input, for each half of the
dataset separately.
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Figure 18: Interannual variability of NHMM-simulated rainfall occurrence versus the observed
(black, dashed) averaged over all 10 stations. Plotted is the median of 24 NHMM simulations
(red, solid). The number of raindays per season were summed across the the 10 stations, and then
divided by 10. The error bars indicate the entire range of the 24 simulations, with the inter-quartile
range given by the inner ticks.

Twenty-four simulations of daily rainfall occurrence were then made in each case, using the GCM
ensemble mean input repeated 24 times; use of the individual GCM ensemble members was found
to degrade the simulations. Figure 18 shows the median number of rain-days per season resulting
from the 24 simulations, using the number of raindays averaged over all 10 stations. The linear
correlation with the observed value is 0.78, which is similar to the performance of the seasonal-mean
input variable in Fig. 17. Thus, the NHMM simulations recover the predictive value of the input
variable in this seasonal and station average quantity. Also plotted are the quartiles and extremes
of the simulated distribution. The observed curve is inside the simulated inter-quartile range about
50% of years, indicating that the simulated distribution has a consistent variance. The simulated
distribution also brackets the observed one during all years, and is thus consistent with the NHMM.
In other words, the NHMM is capable of generating the observed rainfall time series under strict
cross-validation.

The interannual performance of the median simulated daily rainfall sequence is plotted for each
station individually in Fig. 19. Stations 8 and 10 have correlations with the observed that exceed
0.7, while station 5 (on the coast) exhibits near-zero correlation. There appears to be no obvious
spatial organization to the more successful interannual simulations.
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Figure 19: Interannual variability of NHMM-simulated rainfall occurrence frequency at each station.
The median of the 24 simulations is plotted for each year (red, solid) together with the observed
(black, dashed). The number of raindays per season is plotted on the ordinate.
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The distribution of dry-spells is a parameter that is of particular importance to agriculture.
Figure 20 shows the interannual variability of NHMM-simulated dry-spell frequency at each station,
in terms of the median of the simulated distribution for each year. Here we define dry spells to be
runs of dry days of at least 10 days, with no more than one intervening wet day. Again, rainfall
amount is not considered. The GCM-NHMM is able to simulate interannual variability in dry-spell
frequency fairly well at several stations, with anomaly correlations (between observed and median
simulated) often approaching those for rainfall frequency.

6 Summary and Conclusions

We have used a hidden Markov model (HMM) to analyze daily rainfall occurrence at ten gauge-
stations over the state of Ceará in NE Brazil during the rainy season (FMA) 1975–2002. A four-state
model is chosen from inspection of the cross-validated log-likelihood of the rainfall data given the
model and the Bayes Information Criterion (Table 1), as well as from subjective considerations.
Unlike the BIC, the log-likelihood does not reach a peak at K = 4 using the leave-six-year-out
cross-validation. It may be preferable to omit more years, but the dataset of only 24 complete
FMA seasons is a limiting factor.

The HMM is used to estimate the hidden state sequence underlying the observed data, from
which seasonal and interannual variability is analyzed. Accompanying meteorological conditions
are examined through composites of NCEP/NCAR reanalysis data and interpolated NOAA OLR.

Two of the states are found to correspond to wet or dry conditions at all stations respectively,
with similar relative frequencies (Fig. 7). However, the wet state (state 1) tends to be more
prevalent during March, with the dry state (state 2) being more prevalent at the beginning of the
FMA season (Figs. 8 and 10). Thus, on average, states 1 and 2 describe the seasonal cycle of
the “monsoon” over NE Brazil, and this is brought out in the composites of anomalous OLR and
low-level winds (Fig. 9). State 1 represents an anomalously southward-displaced ITCZ and an
eastward expansion of the SAMS; both convergence zones merge to a greater extent than in the
FMA climatology, and Ceará comes entirely under their influence. States 3 and 4 are characterized
by meridional gradients of rainfall probability that have increased prevalence late in the season
as the ITCZ retreats northward. However, the meteorological associations are relatively weak (cf.
Fig. 9).

The state-based description of the “monsoon” over NE Brazil deserves some comment. Daily
rainfall occurrence at a single station is binary, and thus it is natural to characterize it by a
discrete Markov process. This is the basis of “weather generator” models of rainfall occurrence.
The statistics in Table 1 demonstrate that the HMM outperforms a stateless model consisting of
independent Markov chains fit to each station. The temporal evolution of the monsoon may actually
be better described in terms of a discontinuous weather-state process, than by a continuous one.
The state-based model provides a probabilistic description of the onset and end of the rainy season
(Fig. 8), together with an average seasonal evolution (Fig. 10). Further work is needed to address
this issue, using raingauge networks covering larger geographical areas that enable the spatial
structures of the weather states to be better defined.

Despite the lack of any built-in rainfall persistence in the HMM, the distribution of wet and dry
spell-lengths is generally reproduced surprisingly accurately. Nonetheless, a tendency to underesti-

27



1980 1990 2000
0

1

2

3

4

5
1: ACOPIARA

r= 0.32

1980 1990 2000
0

1

2

3

4

5
2: ARACOIABA

r= 0.27

1980 1990 2000
0

1

2

3

4

5
3: BARBALHA

r= 0.5

1980 1990 2000
0

1

2

3

4

5
4: BOA VIAGEM

r= 0.38

1980 1990 2000
0

1

2

3

4

5
5: CAMOCIM

r= 0.19

1980 1990 2000
0

1

2

3

4

5
6: CAMPOS SALES

r= 0.4

1980 1990 2000
0

1

2

3

4

5
7: CANINDE

r= 0.55

1980 1990 2000
0

1

2

3

4

5
8: CRATEUS

r= 0.65

1980 1990 2000
0

1

2

3

4

5
9: GUARACIABA DO NORTE

r= 0.24

1980 1990 2000
0

1

2

3

4

5
10: IBIAPINA

r= 0.3

Interannual Var. of Obs. vs NHMM 10−day Dry Spells (ASST CCAoc xvh)

1980 1990 2000
0

1

2

3

4

5
Station Average

r= 0.68

Figure 20: Interannual variability of NHMM-simulated 10-day dry-spell frequency at each station.
The median of the 24 simulations is plotted for each year (red, solid) together with the observed
(black, dashed). The number of dry spells per season is plotted on the ordinate.
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mate the spell-lengths at certain stations is clear. An autoregressive HMM (e.g., Juang and Rabiner
1985) may provide a solution to this defect, by explicity including arrows between the outputs in
Figs. 3 and 14.

The atmospheric composites of states 1 and 2 (Fig. 11) exhibit some well-known characteristics
of intraseasonal (NAO) and interannual (ENSO) teleconnections. These teleconnection patterns
influence the SE trade winds in the tropical Atlantic and the position of the ITCZ, with similar
characteristics to the mean seasonal evolution. It is not surprising that we find indications of vari-
ability on different time scales in the rainfall states, because the atmospheric spatial structures are
similar. From a regional perspective, several mechanisms can influence the probability of occur-
rence of the states, and thus the rainfall occurrence. Thus, the hidden states of observed rainfall
occurrence appear to correspond to intrinsic weather states, which allow a natural description of
rainfall variability across many different timescales.

There are large interannual variations in state-frequency, particularly of states 1 and 2, together
with some decadal-scale changes (also in state 3) (Fig. 12). The SST anomalies during the years of
large anomalies in state frequency (Fig. 13) bear the hallmarks of ENSO. The La Niña relationship
is more statistically significant than for El Niño. This is consistent with the findings of Giannini
et al. (2003) who show evidence that the relationship between NE Brazil rainfall and La Niña hs
been stronger than for El Niño during recent decades, due to preconditioning by Tropical Atlantic
SST anomalies. From our short 24-year daatset, we find the relationship between the latter and
state-frequency to be relatively weak compared to that identified from linear correlation using
longer series (e.g., Moura and Shukla 1981).

The second goal of the paper was to utilize GCM “predictions” of the large-scale circulation
to make downscaled simulations of station-scale rainfall. Based on historical SST forcing, the
24-member ECHAM4.5 GCM ensemble-mean precipitation is found to have considerable cross-
validated skill at reproducing interannual variations in 10-station average rainfall occurrence. We
find a cross-validated linear correlation of 0.66 with the GCM’s precipitation averaged over the
NE Brazil region (Fig. 17). This value rises to 0.73 if a canonical correlation analysis is used to
find the GCM’s pattern of precipitation that is best correlated (under cross-validation) with Ceará
seasonally-averaged rainfall occurrence frequency (Fig. 16).

The GCM’s ensemble-mean simulation of seasonal-mean precipitation is used as a univariate
input into the NHMM, from which multiple daily sequences of rainfall are then generated at the 10
stations. Validating seasonal-mean rainfall frequency simulated by the NHMM integrated across
the 10 stations yields a similar skill to that reported in the previous paragraph. Thus the NHMM is
shown to produce simulations of daily precipitation that are consistent with the GCM’s large-scale
“predictions” of interannual variations. At the individual station level, the maximum interannual
correlation found between simulation and observed is 0.77, using the median of a 24-member NHMM
ensemble of simulations (Fig. 19). Attempting to use the individual GCM ensemble members to
make the NHMM ensemble produced an inferior result to that obtained by repeating the GCM’s
ensemble mean 24 times. Ten-day dry-spell frequency is also hindcast fairly well by the GCM-
NHMM, with a maximum anomaly correlation skill of 0.65 at station 8 (Crateus; Fig. 20).

In terms of downscaling, we have shown that the HMM is able to quite accurately capture
the characteristics of daily rainfall occurrence in terms of spell-lengths (Fig. 6) and spatial inter-
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station correlations (Table 1). It is also able to convey an interannual prediction to the local
scale. The method thus shows promise as a technique for generating downscaled daily rainfall-
sequence scenarios for input into crop models that require such inputs. Daily rainfall amounts
can be incorporated into the NHMM in a consistent manner (Charles et al. 1999, Bellone et al.
2000). A topic of future research concerns the seasonal predictability of daily rainfall intensity vs.
occurrence.
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A Expectation-Maximization Algorithm for NHMMs

The precipitation occurrence data set consists of N sequences each of of length T . Let Rnt =(
R1

nt, . . . , R
M
nt

)
denote a precipitation occurrence vector for day t of sequence (year) n, and let

Xnt and Snt be the corresponding vector of inputs and the weather state (respectively) for the
same day. Rn1:nT and Xn1:nT denote sequences of precipitation and inputs for sequence (or year)
n, 1 ≤ n ≤ N . We assume that the observed sequences (from different years) are conditionally
independent given the model. Under the NHMM model the conditional log-likelihood l (Θ) of the
observed precipitation data, given the inputs, is defined as:

l (Θ) = lnP (R11:1T , . . . ,RN1:NT |X11:1T , . . . ,XN1:NT ,Θ)

=
N∑

n=1

ln
∑

Sn1:nT

P (Sn1|Xn1,Θ)
T∏

t=2

P (Snt|Sn,t−1,Xnt,Θ)
T∏

t=1

P (Rnt|Snt,Θ) .

We seek the value of the parameter vector Θ that maximizes this expression. This maximizing
value cannot be obtained analytically—however, the EM algorithm provides an iterative method
of climbing the l (Θ) surface in parameter space Θ. Starting with an initial set of parameters Θ0,
we iteratively calculate new sets of parameters improving the log-likelihood of the data at each
iteration. Once a convergence criterion is reached, the last set of parameters Θ̂ is chosen as the
solution. This process of initialization followed by iterative “uphill” movement until convergence is
repeated for several random initializations of Θ0 and the Θ̂ that corresponds to the largest value
of l
(
Θ̂
)

is chosen as the maximum likelihood estimate.

In the results in this paper the probabilities defining P
(
Rt|St,Θ0

)
were drawn from the uniform

distribution on (0, 1) and then normalized to satisfy the constraints psm0 + psm1 = 1. All values
of the parameters used to define P

(
St|St−1,Xt,Θ0

)
were drawn from the uniform distribution on

(0.1, 0.9). A change in log-likelihood of less than 0.01 from one iteration to the next of EM was
used as a convergence criterion. The EM algorithm was restarted from 10 different random starting
positions in parameter space and run to convergence for each starting point. The solution was the
parameter vector Θ that had the maximum likelihood over all 10 runs (this helps avoid poor local
maxima that EM can sometimes converge to).
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The updated parameters Θr+1 at iteration r are selected to maximize

Q
(
Θr,Θr+1

)
= EP (S|R,X,Θr) lnP

(
S,R|X,Θr+1

)
=

N∑
n=1

∑
Sn1:nT

P (Sn1:nT |Rn1:nT ,Xn1:nT ,Θr) ln P
(
Sn1:nT ,Rn1:nT |Xn1:nT ,Θr+1

)
.

It can be shown that l
(
Θr+1

)
−l (Θr) ≥ Q

(
Θr,Θr+1

)
−Q (Θr,Θr), so by maximizing Q

(
Θr,Θr+1

)
,

we guarantee an improvement in log-likelihood.

Q
(
Θr,Θr+1

)
is maximized in two steps. In the first, the E-step, we calculate

P (Sn1:nT |Rn1:nT ,Xn1:nT ,Θr). In the second, the M-step, we maximize Q
(
Θr,Θr+1

)
with respect

to the parameters in Θr+1. While it is infeasible to calculate and store probabilities of N ∗KT possi-
ble sequences of hidden states P (Sn1:nT |Rn1:nT ,Xn1:nT ,Θr) as suggested in the E-step, it turns out
we need only a manageable set of N ∗ T ∗K probabilities Ant (i) = P (Snt = i|Rn1:nT ,Xn1:nT ,Θr)
and N ∗(T − 1)∗K2 probabilities Bnt (i, j) = P (Snt = i, Sn,t−1 = j|Rn1:nT ,Xn1:nT ,Θr) is sufficient
to perform optimization in the M-step:

Q
(
Θr,Θr+1

)
=

N∑
n=1

∑
Sn1:nT

P (Sn1:nT |Rn1:nT ,Xn1:nT ,Θr) ln P
(
Sn1:nT ,Rn1:nT |Xn1:nT ,Θr+1

)
=

N∑
n=1

∑
Sn1:nT

P (Sn1:nT |Rn1:nT ,Xn1:nT ,Θr)

(
T∑

t=1

lnP
(
Rnt|Snt,Θr+1

)
(8)

+ lnP
(
Sn1|Xn1,Θr+1

)
+

T∑
t=2

lnP
(
Snt|Sn,t−1,Xnt,Θr+1

))

=
N∑

n=1

T∑
t=1

K∑
i=1

Ant (i) ln P
(
Rnt|Snt = i,Θr+1

)
(9)

+
N∑

n=1

K∑
i=1

An1 (i) ln P
(
Sn1 = i|Xn1,Θr+1

)
(10)

+
N∑

n=1

T∑
t=2

K∑
i=1

K∑
j=1

Bnt (i, j) ln P
(
Snt = i|Sn,t−1 = j,Xnt,Θr+1

)
. (11)

The quantities Ant and Bnt can be calculated using the recursive Forward-Backward procedure (Ra-
biner 1989). For each value of each hidden state, we recursively calculate a summary of information
preceding the state (αnt) and following the state (βnt) as follows:

αnt (i) = P (Snt = i,Rn1:nt|Xn1:nt,Θr) and
βnt (i) = P (Rn,t+1:nT |Snt = i,Xn,t+1:nT ,Θr) .
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Then

αn1 (i) = P (Sn1 = i|Xn1,Θr) P (Rn1|Sn1 = i,Θr) ;

αn,t+1 (j) = P (Rn,t+1|Sn,t+1 = j,Θ)
K∑

i=1

P (Sn,t+1 = j|Snt = i,Xn,t+1,Θr) αnt (i) ;

βnT (i) = 1;

βnt (i) =
K∑

j=1

P (Sn,t+1 = j|Snt = i,Xn,t+1,Θr) P (Rn,t+1|Sn,t+1 = j,Θr) βn,t+1 (j) .

Once the values of α and β are obtained, the values of A and B can be computed:

Ant (i) =
αnt (i) βnt (i)∑K

k=1 αnT (k)
;

Bnt (i, j) =
P (Rnt = rnt|Snt = i,Θr) P (Snt = i|Sn,t−1 = j,Xnt,Θr) αn,t−1 (j) βnt (i)∑K

k=1 αnT (k)
.

For the M-step, the most direct way to maximize Q
(
Θr,Θr+1

)
is to take partial derivatives of Q

(with added Lagrangians to adjust for constraints) with respect to parameters in Θr+1 and to make
all of the partial derivatives zero. This approach yields a closed form solution for the parameters
of P (Rt|St):

p̂im0 =

∑
rm
nt=0 Ant (i)∑N

n=1

∑T
t=1 Ant (i)

=

∑
rm
nt=0

1
Ln

αnt (i) βnt (i)∑N
n=1

1
Ln

∑T
t=1 αnt (i) βnt (i)

;

p̂im1 =

∑
rm
nt=1 Ant (i)∑N

n=1

∑T
t=1 Ant (i)

=

∑
rm
nt=1

1
Ln

αnt (i) βnt (i)∑N
n=1

1
Ln

∑T
t=1 αnt (i) βnt (i)

,

where Ln =
∑K

k=1 αnT (k).

Unfortunately, parameters of the transition P (St|St−1,Xt) have non-linear partial derivatives,
and the system equations resulting from equating their partial derivatives to zero cannot be solved
analytically. Hughes et al. (1999) resort to a black-box general numerical optimization package to
solve for the parameters of their model numerically. This method can be quite slow in practice.
We implemented an alternative conjugate gradient algorithm tailored for the NHMM model for the
results reported in this paper. This conjugate gradient optimization is run within each iteration
(during the M-step) of the EM algorithm.

The Conjugate Gradient Algorithm

The conjugate gradient method iteratively identifies directions in the space of the parameters and
maximizes the objective function along each of the directions. The directions are chosen such that
each successive direction is orthogonal to the gradient of the previous estimate of the parameters
and conjugate to all previous directions, thus, reducing the overlap in the optimization space from
iteration to iteration. In order, to apply the conjugate gradient algorithm, we need to be able
to find a gradient vector for a set of parameters and to optimize the objective function along an
arbitrary vector, i.e., to solve a linear search problem.
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From the equation defining Q (Equation 8), note that Q can be optimized with respect to the
parameters of P (Rt|St) (line 9) independently of the parameters of P (St|St−1,Xt) (lines 10 and
11). Let

ΘS = (λ1, . . . , λK , σ11, . . . , σKK , ρ1, . . . , ρK)

be the vector of parameters for the transition probabilities P (St|St−1,Xt), and let QS

(
Θr

S ,Θr+1
S

)
be the terms of Q

(
Θr,Θr+1

)
involving the parameters of ΘS . The conjugate gradient method is

needed to optimize QS .

A new set of parameters Θr+1
S will be obtained from the old Θr

S in an iterative manner. Starting
with Θ0 = Θr

S , each successive Θl+1 is a set of parameters derived from the previous set of
parameters Θl by optimizing QS in the direction Φl, i.e.

Θl+1 = Θl + νlΦl where νl = arg max
ν

QS (Θr
S ,Θl + νΦl) . (12)

Note that for all l ≥ 0, QS (Θr
S ,Θl+1) ≥ QS (Θr

S ,Θl) ≥ QS (Θr
S ,Θr

S); thus by choosing Θr+1
S = Θl

for any positive l would yield an improvement in log-likelihood. Usually, final l is chosen such that
the objective function does not significantly change between Θl+1 and Θl.

We need to specify how to choose directions Φl. The standard gradient descent algorithm uses
gradients Φl = ∇ (Θl); it is, however, usually slow to converge since each of the new directions
could have significant overlap with previously chosen direction vectors. Conjugate gradient method
reduces the overlap between the optimization directions and can, in turn, speed up convergence
to a solution. We used the Polak-Ribiere variation of the conjugate gradient method (Press et al.
1992, Chapter 10.6):

Φ0 = −∇ (Θ0) ;
Φl+1 = ∇ (Θl)− γlΦl;

γl =
(∇ (Θl+1)−∇ (Θl)) · ∇ (Θl+1)

∇ (Θl) · ∇ (Θl)
.

All that remains is to perform the line search to find νl in Equation 12. This can be accomplished by
any line optimization algorithm. We solve it via Newton-Raphson by finding the zero of the deriva-
tive of QS (Θr

S ,Θl + νlΦl) with respect to νl. We also need to calculate first and second derivatives

33



of QS (Θr
S ,Θl + νlΦl) with respect to νl. Assuming Φl = (λ1φ, . . . , λKφ, σ11φ, . . . , σKKφ, ρ1φ, . . . , ρKφ),

dQS (Θr
S ,Θl + νlΦl)
dνl

=
N∑

n=1

K∑
i=1

An1 (i)
(
λiφ + ρ′

iφxn1

)
(1− P (Sn1 = i|Xn1,Θl + νlΦl))

+
N∑

n=1

T∑
t=2

K∑
j=1

K∑
i=1

Bnt (i, j)
(
σjiφ + ρ′

iφxn1

)
×

× (1− P (Snt = i|Sn,t−1 = j,Xnt,Θl + νlΦ)) ;

d2QS (Θr
S ,Θl + νlΦl)
dν2

l

= −
N∑

n=1

K∑
i=1

An1 (i)
(
λiφ + ρ′

iφxn1

)2 ×
×P (Sn1 = i|Xn1,Θl + νlΦl) (1− P (Sn1 = i|Xn1,Θl + νlΦl))

−
N∑

n=1

T∑
t=2

K∑
j=1

K∑
i=1

Bnt (i, j)
(
σjiφ + ρ′

iφxn1

)2 ×
×P (Snt = i|Sn,t−1 = j,Xnt,Θl + νlΦl)×
× (1− P (Snt = i|Sn,t−1 = j,Xnt,Θl + νlΦl)) .

This completes the information required to implement conjugate gradient for the M-step of an EM
algorithm for an NHMM model.

B BIC Scores

The BIC score for an HMM or NHMM model with K states is defined as

BICK = 2L (Θ∗
K)− p log T

where Θ∗
K is the estimated maximum likelihood parameter vector as found by EM on the training

data for a model with K states, L (Θ∗
K) is the likelihood of the model evaluated at Θ∗

K as in
Equation 7, p is the number of parameters in the K-state model (linear in K), and T is the total
number of days of observed data used to train the model. The second term in the BIC expression
−p log T “penalizes” more complex models. BIC can be viewed as a practical approximation to the
more ideal (but intractable to compute) Bayes factor for model selection (e.g., see Kass and Raftery
1995). Although not fully justified theoretically for model selection in the context of HMMs and
NHMMs (e.g., see Titterington (1990) and Hughes et al. (1999) for further comments), the BIC
score can nonetheless provide a useful indication of which models are supported by the data (e.g.,
Hughes and Guttorp 1994).

To obtain normalized BIC scores (as in Table 1) that are on roughly the same scale as the
normalized log-likelihoods, we replace BICK above with −BICK/2N , where N is the total number
of binary predictions made (here N = 24× 90× 10).
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