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Abstract

We consider the problem of modeling discrete-valued vector time series data using extensions of
Chow-Liu tree models to capture both dependencies across time and dependencies across variables.
We introduce conditional Chow-Liu tree models, an extension to standard Chow-Liu trees, for
modeling conditional rather than joint densities. We describe learning algorithms for such models
and show how they can be used to learn parsimonious representations for the output distributions in
hidden Markov models. We illustrate how these models can be applied to the important problem of
simulating and forecasting daily precipitation occurrence for networks of rain stations. To illustrate
the effectiveness of the models, we compare their performance versus a number of alternatives
using historical precipitation data from Southwestern Australia and the Western United States.
We illustrate how the structure and parameters of the models can be used to provide an improved
meteorological interpretation of such data.
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1 Introduction

In this paper we consider the problem of modeling discrete-time, discrete-valued, multivariate
time-series. For example, consider M time-series where each time-series can take B values. The
motivating application in this paper is modeling of daily binary rainfall data (B = 2) for a spatial
network of M stations (where typically M can vary from 10 to 100). Modeling and prediction of
rainfall is an important problem in the atmospheric sciences. A common application, for example,
is simulating realistic daily rainfall patterns for a 90-day season, to be used as input for detailed
crop-modeling simulations (e.g., Semenov and Porter 1995). A number of statistical methods
have been developed for modeling daily rainfall time-series at single stations — first-order Markov
models and various extensions (also known as “weather generators”) have proven quite effective for
single-station rainfall modeling in many geographic regions. However, there has been less success
in developing models for multiple stations that can generate simulations with realistic spatial and
temporal correlations in rainfall patterns (Wilks and Wilby 1999).

Direct modeling of the dependence of the M daily observations at time t on the M observations
at time t − 1 requires an exponential in M number of parameters. which is clearly impractical for
most values of M of interest. In this paper we look at the use of hidden Markov models (HMMs)
to avoid this problem — an HMM uses a K-valued hidden first-order Markov chain to model time-
dependence, with the M outputs at time t being conditionally independent of everything else given
current state value at time t. The hidden state variable in an HMM serves to capture temporal
dependence in a low-dimensional manner, i.e., with O(K 2) parameters instead of being exponential
in M . From the physical point of view, an attractive feature of the HMM is that the hidden states
can be interpreted as underlying “weather states” (Hughes et al. 1999, Robertson et al. 2003).

Modeling the instantaneous multivariate dependence of the M observations on the state at time
t would require BM parameters per state if the full joint distribution were modeled (which would
defeat the purpose of using the HMM to reduce the number of parameters). Thus, approximations
such as assuming conditional independence (CI) of the M observations are often used in practice
(e.g., see Hughes and Guttorp 1994), requiring O(KMB) parameters.

While the HMM-CI approach is a useful starting point it suffers from two well-known disadvan-
tages for an application such as rainfall modeling: (1) the assumed conditional independence of the
M outputs on each other at time t can lead to inadequate characterization of the dependence be-
tween the M time-series (e.g., unrealistic spatial rainfall patterns on a given day), (2) the assumed
conditional independence of the M outputs at time t from from the M outputs at time t − 1 can
lead to inadequate temporal dependence in the M time-series (e.g., unrealistic occurrences of wet
days during dry spells).

In this paper we investigate Chow-Liu tree structures in the context of providing improved, yet
tractable, models to address these problems in capturing output dependencies for HMMs. We
show how Chow-Liu trees can be used to directly capture dependency among the M outputs in
multivariate HMMs. We also introduce an extension called conditional Chow-Liu trees to provide
a class of dependency models that are well-suited for modeling multivariate time-series data. We
illustrate the application of the proposed methods to two large-scale precipitation data sets.
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The paper is structured as follows. Section 2 formally describes existing models and our exten-
sions. Section 3 describes how to perform inference and to learn both the structure and parameters
for the models. Section 4 describes an application and analyzes the performance of the models.
Finally, Section 5 summarizes our contributions and outlines possible future directions.

2 Model Description

We begin this section by briefly reviewing Chow-Liu trees for multivariate data before introducing
the conditional Chow-Liu tree model. We then focus on vector time-series data and show how the
conditional Chow-Liu tree model and hidden Markov models can be combined.

2.1 Chow-Liu Trees

Chow and Liu (1968) proposed a method for approximating the joint distribution of a set of
discrete variables using products of distributions involving no more than pairs of variables. If
P (x) is an M -variate distribution on discrete variables V =

(

x1, . . . , xM
)

, the Chow-Liu method
constructs a distribution T (x) for which the corresponding Bayesian and Markov network is tree-
structured. If GT = (V,ET ) is the Markov network associated with T , then

T (x) =

∏

(u,v)∈ET
T (xu, xv)

∏

v∈V T (xv)degree(v)
=

∏

(u,v)∈ET

T (xu, xv)

T (xv)T (xu)

∏

v∈V

T (xv) . (1)

Widely used expression to measure how different one distribution is from another, the Kullback-
Liebler divergence KL (P, T ) between distributions P and T is defined as

KL (P, T ) =
∑

x

P (x) log
P (x)

T (x)
.

Chow and Liu showed that in order to minimize KL (P, T ) the edges for the tree ET have to be
selected to maximize the total mutual information of the edges

∑

(u,v)∈ET
I (xu, xv) where mutual

information between variables xu and xv is defined as

I (xu, xv) =
∑

xu

∑

xv

P (xu, xv) log
P (xu, xv)

P (xu)P (xv)
. (2)

This can be accomplished by calculating mutual information I (xu, xv) for all possible pairs of
variables in V , and then solving the maximum spanning tree problem, with pairwise mutual infor-
mation from Equation 2 as edge weights (e.g., Cormen et al. 1990). Once the edges are selected,
the probability distribution T on the pairs of vertices connected by edges is defined to be the same
as P :

∀ (xu, xv) ∈ ET T (xu, xv) = P (xu, xv) ,

and the resulting distribution T minimizes KL (P, T ). Figure 1 outlines the algorithm for finding
T .

If each of the variables in V takes on B values, finding the optimal tree T has time complexity
O
(

M2B2
)

for the mutual information calculations and O
(

M2
)

for finding the minimum spanning
tree, totalling O

(

M2B2
)

. (For the case of sparse high-dimensional data, Meilă (1999) showed that
the Chow-Liu algorithm can be sped up.) In practice, P is often an empirical distribution on the
data, and thus calculation of pairwise counts of variables (used in mutual information calculations)
has complexity O

(

NM2B2
)

where N is the number of vectors in the data.
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Algorithm ChowLiu(P )
Inputs: Distribution P over domain V ; procedure MWST( weights ) that
outputs a maximum weight spanning tree over V

1. Compute marginal distributions P (xu, xv) and P (xu) ∀u, v ∈ V

2. Compute mutual information values I (xu, xv) ∀u, v ∈ V

3. ET = MWST({I (xu, xv)})

4. Set T (xu, xv) = P (xu, xv) ∀ (u, v) ∈ ET

Output: T

Figure 1: Chow-Liu algorithm (very similar to Meilă and Jordan 2000)

The advantages of Chow-Liu trees include (a) the existence of a simple algorithm for finding the
optimal tree 1, (b) the parsimonious nature of the model (the number of parameters is linear in
dimensionality of the space), and (c) the resulting tree structure T often has a simple intuitive
interpretation. While there are other algorithms that retain the idea of a tree-structured distri-
bution, while allowing for more complex dependencies (e.g., thin junction trees, Bach and Jordan
2002), these algorithms have higher time complexity than the original Chow-Liu algorithm and do
not guarantee optimality of the structure that is learned. Thus, in the results in this paper we
focus on Chow-Liu trees under the assumption that they are a generally useful modeling technique
in the context of multivariate time dependent data.

2.1.1 Mixtures of Trees

Meilă and Jordan (2000) proposed a richer class of structures by describing a mixture model
with Chow-Liu tree distributions as the mixture components. A probability distribution on an
M -dimensional set X is defined as

P (x) =

K
∑

i=1

P (z = i)Ti (x) ∀x ∈ X

where the latent variable z indicates the component of a mixture, and T1, . . . , TK are component
probability distributions with a Chow-Liu tree structure for each mixture component. The tree
structures T1, . . . , TK can be constrained to be the same or allowed to differ. Meilă and Jordan
(2000) also describe how to perform inference with this model, and how to learn both the structure
and the parameters using the EM algorithm.

2.2 Conditional Chow-Liu Forests

It is common in practice (e.g., in time-series and in regression modeling) that the data to be mod-
elled can be viewed as consisting of two sets of variables, where we wish to model the conditional
distribution P (x|y) of one set x on the other set y. We propose an extension of the Chow-Liu

1In fact, if we change the structure to allow cliques of size more than 2 in the graph GT , the problem of finding
optimal approximation distribution becomes NP-hard (Chickering 1996, Srebro 2003).
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Algorithm CondChowLiu(P )
Inputs: Distribution P over domain Vx∪Vy; procedure MWST( V , weights )
that outputs a maximum weight spanning tree over V

1. (a) Compute marginal distributions P (xu, xv) and P (xu) ∀u, v ∈ Vx

(b) Compute marginal distributions P (yu) and P (yu, xv) ∀u ∈
Vy, v ∈ Vx

2. (a) Compute mutual information values I (xu, xv) ∀u, v ∈ Vx

(b) Compute mutual information values I (yu, xv) ∀u ∈ Vy, v ∈ Vx

(c) Find u (v) = argmaxu∈Vy I (yu, xv) ∀v ∈ Vx

(d) Let V ′ = Vx ∪ {v′}, and set I
(

xv′ , xv
)

= I
(

yu(v), xv
)

∀v ∈ Vx

3. (a) ET ′ = MWST(V ′, I)

(b) Ex = {(u, v) |u, v ∈ Vx, (u, v) ∈ ET ′}

(c) Ey = {(u (v) , v) |v ∈ Vx, (v, v′) ∈ ET ′}.

4. (a) Set T (xu, xv) = P (xu, xv) ∀ (u, v) ∈ Ex

(b) Set T (yu, xv) = P (yu, xv) ∀ (u, v) ∈ Ey

Output: T

Figure 2: Conditional Chow-Liu algorithm

method to model such conditional distributions. As with Chow-Liu trees, we want the correspond-
ing probability distribution to be factored into a product of distributions involving no more than
two variables. Pairs of variables are represented as an edge in a corresponding graph with nodes
corresponding to variables in V = Vx ∪ Vy. However, since all of the variables in Vy are observed,
we are not interested in modeling P (y), and do not wish to restrict P (y) by making independence
assumptions about the variables in Vy. The structure for an approximation distribution T will be
constructed by adding edges such as not to introduce paths involving multiple variables from Vy.

Let GF = (V,EF ) be a forest, a collection of disjoint trees, containing edges Ex between pairs of
variables in Vx and edges Ey connecting variables from Vx and Vy, EF = Ex∪Ey. If the probability
distribution T (x|y) has GF for a Markov network, then similar to Equation 1:

T (x|y) =
∏

(u,v)∈Ex

T (xu, xv)

T (xu)T (xv)

∏

v∈Vx

T (xv)
∏

(u,v)∈Ey

T (yu, xv)

T (yu)T (xv)
(3)

=
∏

(u,v)∈Ex

T (xu, xv)

T (xu)T (xv)

∏

v∈Vx

T (xv)
∏

(u,v)∈Ey

T (xv|yu)

T (xv)
.
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Figure 3: Conditional CL forest for a hypothetical distribution with (a) 1 component (b) 2 com-
ponents (c) 3 components.

We will again use KL-divergence, this time between conditional distributions P and T , as an
objective function:

KL (P, T ) =
∑

y

P (y)
∑

x

P (x|y) log
P (x|y)

T (x|y)
.

It can be shown that the optimal probability distribution T with corresponding Markov network
GF

∀ (u, v) ∈ Ex, T (xu, xv) = P (xu, xv)

and
∀ (u, v) ∈ Ey, T (yu, xv) = P (yu, xv) .

As with the unconditional distribution, we wish to find pairs of variables to minimize

KL (P, T ) =
∑

v∈Vx

H [xv] − H [x|y] −
∑

(u,v)∈Ex

I (xu, xv) −
∑

(u,v)∈Ey

I (yu, xv)

where H [xv] denotes the entropy of P (xv), and H [x|y] denotes the conditional entropy of P (x|y).
Both H [x] and H [x|y] are independent of EF , so as in the unconditional case, we need to solve a
maximum spanning tree problem on the graph with nodes Vy∪Vx while not allowing paths between
vertices in Vy (alternatively, assuming all nodes in Vy are connected).

The algorithm for learning the conditional Chow-Liu (CCL) distribution is shown in Figure 2.
More details about the algorithm are provided in Appendix A. Due to the restrictions on the edges,
the CCL networks can contain disconnected tree components (referred to as forests). These CCL
forests can consist of 1 to min {|Vy| , |Vx|} components. (See Figure 3 for an illustration.)

2.2.1 Chain CL Forests

We now return to our original goal of modeling time-dependent data. Let Rt =
(

R1
t , . . . , R

M
t

)

be a
multivariate (M -variate) random vector of data with each component taking on values {0, . . . , B − 1}.
By R1:T we will denote observation sequence R1, . . . ,RT

2.

2The notation is overloaded as T denotes both the length of the sequence and an approximating tree distribution.
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Figure 4: Graphical model for a hypothetical CCLF

A simple model for such data can be constructed using conditional Chow-Liu forests. For this
chain Chow-Liu forest model (CCLF), the data for a time point t is modeled as a conditional
Chow-Liu forest given data at point t − 1 (Figure 4):

P (R1:T ) =
T
∏

t=1

T (Rt|Rt−1)

where

T
(

Rt = r|Rt−1 = r′
)

=

=
∏

(u,v)∈EV

T (Ru
t = ru, Rv

t = rv)

T (Rv
t = rv)T (Ru

t = ru)

∏

v∈Rt

T (Rv
t = rv)

∏

(u,v)∈EIi

T
(

Rv
t = rv|Ru

t−1 = r′u
)

T (Rv
t = rv)

.

Note that learning the structure and parameters of CCLF requires one pass through the data
to collect appropriate counts and to calculate joint probabilities of pairs of variables, and one
subsequent run of the CondChowLiu tree algorithm.

2.3 Hidden Markov Models

An alternative approach to modeling R1:T is to use a hidden-state model to capture temporal
dependence. Let St be the hidden state for observation t, taking on one of K values from 1 to K,
where S1:T denotes sequences of length T of hidden states.

A first-order HMM makes two conditional independence assumptions. The first assumption is
that the hidden state process, S1:T, is first-order Markov:

P (St|S1:t−1) = P (St|St−1) (4)

and that this first-order Markov process is homogeneous in time, i.e., the K ×K transition proba-
bility matrix for Equation 4 does not change with time. The second assumption is that each vector
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Rt at time t is independent of all other observed and unobserved states up to time t, conditional
on the hidden state St at time t , i.e.,

P (Rt|S1:t,R1:t−1) = P (Rt|St) . (5)

Specifying a full joint distribution P (Rt|St) would require O(BM) joint probabilities per state,
which is clearly impractical even for moderate values of M . In practice, to avoid this problem,
simpler models are often used, such as assuming that each vector component R

j
t is conditionally

independent (CI) of the other components, given the state St, i.e.,

P (Rt|St) = P (R1
t , . . . , R

M
t |St) =

M
∏

j=1

P (Rj
t |St).

We will use this HMM-CI as our baseline model in the experimental results section later in the
paper—in what follows below we explore models that can capture more dependence structure by
using CL-trees.

2.4 Chow-Liu Structures and HMMs

We can use HMMs with Chow-Liu trees or conditional Chow-Liu forests to model the output
variable given the hidden state. HMMs can model temporal structure of the data while the Chow-
Liu models can capture “instantaneous” dependencies between multivariate outputs as well as
additional dependence between vector components at consecutive observations over time that the
state variable does not capture.

By combining HMMs with the Chow-Liu tree model and with the conditional Chow-Liu forest
model we obtain HMM-CL and HMM-CCL models, respectively. The set of parameters Θ for these
models with K hidden states and B-valued M -variate vector sets consists of a K × K transition
matrix Γ, a K × 1 vector Π of probabilities for the first hidden state in a sequence, and Chow-Liu
trees or conditional forests for each hidden state T = {T1, . . . , TK}. Examples of graphical model
structures for both the HMM-CL and HMM-CCL are shown in Figures 5 and 6 respectively. The
likelihood of Θ can then be computed as

L (Θ) = P (R1:T |Θ) =
∑

S1:T

P (S1:T ,R1:T |Θ)

=
∑

S1:T

P (S1|Θ)

T
∏

t=2

P (St|St−1,Θ)

T
∏

t=1

P (Rt|St,Rt−1,Θ)

=

K
∑

i1=1

πi1Ti1 (R1)

T
∑

t=2

K
∑

it=1

γit−1itTit (Rt|Rt−1)

with P (Rt|St,Rt−1,Θ) = P (Rt|St,Θ) and Ti (Rt|Rt−1) = Ti (Rt) for the HMM-CL.

For hidden state St−1 taking value i, the probability distribution P (Rt|Θ) is just a mixture of
Chow-Liu trees (Meilă and Jordan 2000) with mixture coefficients (γi1, . . . , γiK) equal to the i-th
row of the transition matrix Γ.
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As a side note, since the outputs can depend directly on outputs at the previous time step in an
HMM-CCL, the model can be viewed as a constrained form of autoregressive HMM (AR-HMM,
Rabiner 1989) with the log-likelihood defined as

L (Θ) = P (R1:T |Θ) =
∑

S1:T

P (S1:T ,R1:T |Θ)

=
∑

S1:T

P (S1|Θ)

T
∏

t=2

P (St|St−1,Θ)

T
∏

t=1

P (Rt|St,Rt−1,Θ) .

Note that a fully connected (unconstrained) AR-HMM would require O
(

KB2M + K2
)

parameters.

3 Inference and Learning of HMM-based Models

In this section we discuss both (a) learning the structure and the parameters of the HMM-CL
and HMM-CCL models discussed above, and (b) inferring probability distributions of the hidden
states for given a set of observations and a model structure and its parameters. We outline how
these operations can be performed for both the HMM-CL and HMM-CCL.

3.1 Inference of the Hidden State Distribution

The probability of the hidden variables S1:T given complete observations R1:T can be computed
as

P (S1:T |R1:T ) =
P (S1:T ,R1:T )

∑

S1:T
P (S1:T ,R1:T )

.

The likelihood (denominator) cannot be calculated directly since the sum is exponential in T . How-
ever, the well-known recursive Forward-Backward procedure can be used to collect the necessary
information in O

(

TK2M
)

without exponential complexity (e.g., Rabiner 1989). The details are
provided in Appendix B.

3.2 Learning

Learning in HMMs is typically performed using the Baum-Welch algorithm (Baum et al. 1970),
a variant of the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). Each iteration
of EM consists of two steps. First (E-step), the estimation of the posterior distribution of latent
variables is accomplished by the Forward-Backward routine. Second (M-step), the parameters of
the models are updated to maximize the expected log-likelihood of the model given the distribution
from the M-step. The structures of the trees are also updated in the M-step.

The parameters Π and Γ are calculated in the same manner as for regular HMMs. Updates for
T1, . . . , TK are computed similar to the algorithm for mixtures of trees (Meilă and Jordan 2000).
Suppose R1:T = r1:T . Let T ′

i denote the Chow-Liu tree for St = i under the updated model. It can
be shown (see Appendix B) that to improve the log-likelihood one needs to maximize

K
∑

i=1

(

T
∑

τ=1

P (Sτ = i|R1:T = r1:T )

)

T
∑

t=1

Pi (rt) log T ′
i (rt)

where Pi (rt) = P (St=i|R1:T =r1:T )
PT

τ=1
P (Sτ=i|R1:T =r1:T )

. This can be accomplished by separately learning Chow-

Liu structures for the distributions Pi, the normalized posterior distributions of the hidden states
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calculated in the E-step. The time complexity for each iteration is then O
(

TK2M
)

for the E-step
and O

(

TK2 + KTM2B2
)

for the M-step.

4 Experimental Results

To demonstrate the application of the HMM-CL and HMM-CCL models, we consider the problem
of modelling precipitation occurrences for a network of rain stations. The data we examine here
consists of binary measurements (indicating precipitation or not) recorded each day over a number
of years for each of a set of rain stations in a local region. Figures 7 and 8 show networks of such
stations in Southwestern Australia and Western U.S., respectively.

The goal is to build models that broadly speaking capture both the temporal and spatial proper-
ties of the precipitation data. These models can then be used to simulate realistic rainfall patterns
over seasons (e.g., 90-day sequences), as a basis for making seasonal forecasts (Robertson et al.
2003), and to fill in missing rain station reports in the historical record.

Markov chains provide a well-known benchmark for modelling precipitation time-series at indi-
vidual stations (e.g., Wilks and Wilby 1999). However, it is non-trivial to couple multiple chains
together so that they exhibit realistic spatial correlation in simulated rainfall patterns. We also
compare against the simplest HMM with a conditional independence (CI) assumption for the rain
stations given the state. This model captures the marginal dependence of the stations to a certain
degree since (for example) in a “wet state” the probability for all stations to be wet is higher,
and so forth. However, the CI assumption clearly does not fully capture the spatial dependence,
motivating the use of models such as HMM-CL and HMM-CCL.

In the experiments below we use data from both Southwestern Australia (30 stations, 15 184-day
winter seasons beginning May 1) and the Western United States (8 stations, 39 90-day seasons
beginning December 1). In fitting HMMs to this type of precipitation data the resulting “weather
states” are often of direct scientific interest from a meteorological viewpoint. Thus, in evaluating
these models, models that can explain the data with fewer states are generally preferable.

We use leave-one-out cross-validation to evaluate the fit of the models to the data. For evaluation
we use two different criteria. We compute the log-likelihood for seasons not in the training data,
normalized by the number of binary events in the left-out sets (referred to here as scaled log-
likelihood). We also compute the average classification error in predicting observed randomly-
selected station readings that are deliberately removed from the training data and then predicted
by the model. This simulates the common situation of missing station readings in real precipitation
records. The models considered are the independent Markov chains model (or “weather generator”
model), the chain Chow-Liu forest model, the HMM with conditional independence (HMM-CI), the
HMM with Chow-Liu tree emissions (HMM-CL), and the HMM with conditional Chow-Liu tree
emissions (HMM-CCL). For HMMs, K is chosen corresponding to the largest scaled log-likelihood
for each model—the smallest such K is then used across different HMM types for comparison.

The scatter plots in Figures 9 and 10 show the scaled log-likelihoods and classification errors
for the models on the left-out sets. The y-axis is the performance of the HMM-CCL model, and
the x-axis represents the performance of the other models (shown with different symbols). Higher
implies better performance for log-likelihood (on the left) and worse for error (on the right). The
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Figure 7: Stations in the Southwestern Australia region. Circle radii indicate marginal probabilities
of rainfall (> 0.3mm) at each location.
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Figure 8: Stations in the Western U.S. region. Circle radii indicate marginal probabilities of rainfall
(> 0mm) at each location.
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Figure 9: Southwestern Australia data: scatterplots of scaled log-likelihoods (top) and average
prediction error (bottom) obtained by leave-one-winter-out cross-validation. The line corresponds
to y = x. The independent chains model is not shown since it is beyond the range of the plot
(average ll = −0.6034, average error = 0.291).
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Figure 10: Western U.S. data: Scatterplots of scaled log-likelihoods (top) and average prediction
error (bottom) obtained by leave-one-winter-out cross-validation. The line corresponds to y = x.
The independent chains model is not shown since it is beyond the range of the plot (average
ll = −0.5204, average error = 0.221).
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Figure 11: Graphical interpretation of the hidden states for a 5-state HMM-CL trained on South-
western Australia data. Circle radii indicate the precipitation probability for each station given
the state. Lines between the stations indicate the edges in the graph while different types of lines
indicate the strength of mutual information of the edges.
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HMM-CL and HMM-CCL models are systematically better than the CCLF and HMM-CI models,
for both score functions, and for both data sets. The HMM-CCL model does relatively better than
the HMM-CL model on the U. S. data. This is explained by the fact that the Australian stations
are much closer spatially than the U.S. stations, so that for the U.S. the temporal connections
that the HMM-CCL adds are more useful than the spatial connections that the HMM-CL model
is limited to.

Examples of the Chow-Liu tree structures learned by the model are shown in Figure 11 for the
5-state HMM-CL model trained on all 15 years of Southwestern Australia data. The states learned
by the model correspond to a variety of wet and dry spatial patterns. The tree structures are
consistent with the meteorology and topography of the region (Hughes et al. 1999). Winter rainfall
over SW Australia is large-scale and frontal, impacting the southwest corner of the domain first and
foremost. Hence, the tendency for correlations between stations along the coast during moderately
wet weather states. Interesting correlation structures are also identified in the north of the domain
even during dry conditions.

Figures 12 and 14 demonstrate the spatial nature of the dependencies in the Southwestern Aus-
tralia data. The structure of the conditional Chow-Liu forests contains very few edges corresponding
to temporal dependence as the stations are spatially close, and spatial dependencies contain more
information than the temporal ones. In contrast, Figures 13 and 15 suggest that the spatial depen-
dencies of the Western U.S. data is weak which is consistent with the geographical sparsity of the
stations.

5 Conclusions

We have investigated a number of approaches for modelling multivariate discrete-valued time
series. In particular we illustrated how Chow-Liu trees could be embedded within hidden Markov
models to provide improved temporal and multivariate dependence modeling in a tractable and
parsimonious manner. We also introduced the conditional Chow-Liu forest model, a natural ex-
tension of Chow-Liu trees for modeling conditional distributions such as multivariate data with
temporal dependencies. Experimental results on real-world precipitation data indicate that these
models provide systematic improvements over simpler alternatives such as assuming conditional
independence of the multivariate outputs. There are a number of extensions that were not dis-
cussed in this paper but that can clearly be pursued, including (a) using informative priors over
tree-structures (e.g., priors on edges based on distance and topography for precipitation station
models), (b) models for real-valued or mixed data (e.g., modelling precipitation amounts as well
as occurrences), (c) adding input variables to the HMMs (e.g., to model “forcing” effects from
atmospheric measurements—for initial results see Robertson et al. (2003)), and (d) performing
more systematic experiments comparing these models to more general classes of dynamic Bayesian
networks where temporal and multivariate structure is learned directly.

Acknowledgements

We would like to thank Stephen Charles of CSIRO, Australia, for providing us with the Western
Australia data. This work was supported by the Department of Energy under grant DE-FG02-
02ER63413.

15



115 116 117 118 119 115 116 117 118 119

−35

−34

−33

−32

−31

−30

 =90%

 =50%
 =10%

Figure 12: Graphical interpretation of the CCLF trained on Southwestern Australia data. Circle
radii indicate the precipitation probability for each station. Lines between the stations indicate the
edges in the graph while different types of lines indicate the strength of mutual information of the
edges. The left side of the plot corresponds to observations Rt−1 while the right side to Rt.
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Figure 13: Graphical interpretation of the CCLF trained on Western U.S. data. Circle radii indicate
the precipitation probability for each station. Lines between the stations indicate the edges in the
graph while different types of lines indicate the strength of mutual information of the edges. The
left side of the plot corresponds to observations Rt−1 while the right side to Rt.
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Figure 14: Graphical interpretation of the hidden states for a 5-state HMM-CCL trained on South-
western Australia data. Circle radii indicate the precipitation probability for each station given
the state. Lines between the stations indicate the edges in the graph while different types of lines
indicate the strength of mutual information of the edges. The left side of the plot corresponds to
observations Rt−1 while the right side to Rt.
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Figure 15: Graphical interpretation of the hidden states for a 7-state HMM-CCL trained on Western
U.S. data. Circle radii indicate the precipitation probability for each station given the state. Lines
between the stations indicate the edges in the graph while different types of lines indicate the
strength of mutual information of the edges. The left side of the plot corresponds to observations
Rt−1 while the right side to Rt.
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A Tree Structure Optimality

In this section we will prove the results related to finding optimal tree structures. The proof
consists of two parts. In the first part, we consider a Bayesian network interpretation of the
approximating distribution T , and show that to minimize KL-distance between T and the true
distribution P , P and T must agree on all conditional distributions for individual variables. This
implies that probability distributions on the edges on the tree must agree with P . The second part
describing how to select the edges of the tree was originally described by Chow and Liu (1968).

Theorem 1. Let P be a distribution on the multivariate X on discrete variables V =
{

x1, . . . , xM
}

.
Let T be another distribution on X. Assume a Bayesian network BT describing the distribution T

with parents
(

xi
)

denoting a set of nodes needed to describe a decomposition of the joint probability
distribution T on x ∈ X

T (x) =

M
∏

i=1

T
(

xi|parents
(

xi
))

. (6)

Then the distribution T minimizing KL (P, T ) must agree with P for all distribution components,
i.e.,

T
(

xi|parents
(

xi
))

= P
(

xi|parents
(

xi
))

i = 1, . . . ,M.

Proof. We are interested in finding T such that

T = argmin
T ?

KL (P, T ?) = arg max
T ?

∑

x

P (x) log T ? (x)

with T ? having decomposition described by BT . Let xVi =
{

xi
}

∪ parents
(

xi
)

. Then by Equation
6

∑

x

P (x) log T ? (x) =
M
∑

i=1

∑

xVi

P
(

xVi
)

log T ?
(

xi|parents
(

xi
))

(7)

=

M
∑

i=1

∑

xVi

P
(

xVi
)

log P
(

xi|parents
(

xi
))

−

M
∑

i=1

KL
(

P
(

xi|parents
(

xi
))

, T ?
(

xi|parents
(

xi
)))

.(8)

The maximum of Expression 7 is achieved when the Kullback-Liebler divergences are minimized in
Expression 8. The KL-divergence KL (P, T ) has a unique minimum point with value 0 for P ≡ T .
Thus Expression 7 is minimized when and only when

T ?
(

xi|parents
(

xi
))

= P
(

xi|parents
(

xi
))

i = 1, . . . ,M.

It also follows that

min
T ?

KL (P, T ?) =
∑

x

P (x) log P (x) −

M
∑

i=1

∑

xVi

P
(

xVi
)

log P
(

xi|parents
(

xi
))

.

Chow and Liu (1968) showed that if T has a tree structure, i.e. parents
(

xi
)

consists of not
more than one xj, then there is an efficient greedy method for finding the optimal such tree. If
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GT = (V,ET ) a Markov network associated with the tree, then by Equation 1

KL (P, T ) =
∑

x

P (x) log P (x) −
∑

v∈V

∑

xv

P (xv) log P (xv)

−
∑

(u,v)∈ET

∑

xu,xv

P (xu, xv) log
P (xu, xv)

P (xu)P (xv)

= −H [x] +

K
∑

v∈V

H [xv] −
∑

(u,v)∈ET

I (xu, xv) . (9)

Since the entropies H [x] = −
∑

x P (x) log P (x) and H [xv] =
∑

xv P (xv) log P (xv) in Expression
9 are independent of the structure, KL (P, T ) is minimized by selecting edges ET to maximize the
sum of mutual informations

∑

(u,v)∈ET
I (xu, xv).

Similarly, for conditional Chow-Liu forests with structure GF = (V,EF ) defined in Section 2.2,
KL (P, T ) can be computed as

KL (P, T ) =
∑

x,y

P (x,y) log
P (x|y)

T (x|y)

=
∑

x,y

P (x,y) log P (x|y) −
∑

v∈Vx

∑

xv

P (xv) log P (xv)

−
∑

(u,v)∈Ex

∑

xu,xv

P (xu, xv)
P (xu, xv)

P (xu)P (xv)
−

∑

(u,v)∈Ey

∑

yu,xv

P (xv, yu)
P (xv|yu)

P (xv)P (yu)

= −H [y|x] +
∑

v∈Vx

H [xv] −
∑

(u,v)∈Ex

I (xu, xv) −
∑

(u,v)∈Ey

I (yu, xv) . (10)

Since neither H in the Expression 10 depends on the network structure, KL can be minimized by
maximizing the sum of mutual informations I. This problem is equivalent to finding a maximum
weight spanning tree in a graph with vertices V = Vx ∪ Vy where all nodes in Vy are already
connected, and the weights of edges connecting pairs of nodes in Vx or pairs with one node in Vx and
one in Vy are determined by appropriate mutual informations. We can view Vy as a supernode with
weights from this supernode v′ to a node v ∈ Vx determined as the maximum mutual information
from any node in Vy to v, i.e.,

weight
(

v′, v
)

= max
u

I (yu, xv) .

B Expectation-Maximization Algorithm for HMM-CL and HMM-

CCL

We describe the details of how to learn the parameters Θ of HMM-CL and HMM-CCL models
on the data consisiting of multiple sequences of multi-variate discrete time series.

Assume that the data set D consists of N sequences each of length T (the learning algorithm
can be easily generalized for sequences of unequal lengths). Let rnt =

(

r1
nt, . . . , r

M
nt

)

denote an
observation vector for time point t of sequence n, and let Snt be the hidden state for the same time
point. Assume that each of rm

nt can take one of B values from the set B = {0, . . . , B − 1}. (Again,
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the algorithm easily generalizes to sets of variables with different numbers of possible values.) By
rn1:nT or rn we will denote the n-th observation sequence, and by Sn1:nT or Sn — the sequence of
hidden states corresponding to the observation sequence rn. We assume that each of the observed
sequences is conditionally independent of the other sequences given the model.

Consider the set of parameters specified in Section 2.4. Under the HMM-CL or HMM-CCL, the
log-likelihood l (Θ) of the observed data is defined as:

l (Θ) = lnP (r1, . . . , rN |Θ) =
N
∑

n=1

∑

Sn

P (Sn, rn|Θ)

=

N
∑

n=1

ln
∑

Sn

P (Sn1|Θ)

T
∏

t=2

P (Snt|Sn,t−1,Θ)

T
∏

t=1

P (rnt|Snt, rn,t−1,Θ)

=

N
∑

n=1

K
∑

in1=1

πin1
Tin1

(rn1)

T
∑

t=2

K
∑

int=1

γin,t−1intTint (rnt|rn,t−1)

with Tint (rnt|rn,t−1) ≡ Tint (rnt) for HMM-CL. (For HMM-CCL, Tin1
(rn1) can be computed by

summing Tin1
(rn1|r

′) over all values r′. It can be done efficiently using Equation 3 if we store
P (yu, xv) instead of P (xv|yu).)

We seek the value of the parameters Θ that maximizes the log-likelihood expression. This max-
imizing value cannot be obtained analytically—however, the EM algorithm provides an iterative
method of climbing the l (Θ) surface in parameter space Θ. Starting with an initial set of parame-
ters Θ0, we iteratively calculate new sets of parameters improving the log-likelihood of the data at
each iteration. Once a convergence criterion is reached, the last set of parameters Θ̂ is chosen as the
solution. This process of initialization followed by iterative “uphill” movement until convergence is
repeated for several random initializations of Θ0 and the Θ̂ that corresponds to the largest value of
l
(

Θ̂
)

is chosen as the maximum likelihood estimate. The resulting solution Θ̂ is not guaranteed to
be at the global maximum. Since different initializations Θ0 result in different trajectories through
the parameter space and, eventually, in different local maxima, it is advisable to try several different
initial values Θ0 thus finding potentially different local maxima of the log-likelihood surface and
choosing the one with the largest value.

At iteration r, parameters Θr+1 are selected to maximize

Q
(

Θr,Θr+1
)

= EP (S1,...,SN |r1,...,rN ,Θr) lnP
(

S1, . . . ,SN , r1, . . . , rN |Θr+1
)

=
N
∑

n=1

∑

Sn

P (Sn|rn,Θr) lnP
(

Sn, rn|Θ
r+1
)

.

It can be shown that l
(

Θr+1
)

−l (Θr) ≥ Q
(

Θr,Θr+1
)

−Q (Θr,Θr), so by maximizing Q
(

Θr,Θr+1
)

,
we guarantee an improvement in log-likelihood.

Q
(

Θr,Θr+1
)

is maximized in two steps. In the first, the E-step, we calculate P (Sn|rn,Θr).
In the second, the M-step, we maximize Q

(

Θr,Θr+1
)

with respect to the parameters in Θr+1.
While it is infeasible to calculate and store probabilities of N ∗ KT possible sequences of hidden
states P (Sn|rn,Θr) as suggested in the E-step, it turns out we need only a manageable set of
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N ∗ T ∗ K probabilities Ant (i) = P (Snt = i|rn,Θr) and N ∗ (T − 1) ∗ K2 probabilities Bnt (i, j) =
P (Snt = i, Sn,t−1 = j|rn,Θr) to perform optimization in the M-step. If Θr+1 = {Π′,Γ′,T′}, then

Q
(

Θr,Θr+1
)

=

N
∑

n=1

∑

Sn

P (Sn|rn,Θr) lnP
(

Sn, rn|Θ
r+1
)

=
N
∑

n=1

∑

Sn

P (Sn|rn,Θr)

(

T
∑

t=1

lnP
(

rnt|Snt, rn,t−1,Θ
r+1
)

+ lnP
(

Sn1|Θ
r+1
)

+

T
∑

t=2

lnP
(

Snt|Sn,t−1,Θ
r+1
)

)

=
N
∑

n=1

T
∑

t=1

K
∑

i=1

Ant (i) lnT ′
i (rnt|rn,t−1) (11)

+

N
∑

n=1

K
∑

i=1

An1 (i) lnπ′
i +

N
∑

n=1

T
∑

t=2

K
∑

i=1

K
∑

j=1

Bnt (i, j) ln γ ′
ji. (12)

= QR + QS

where QR is equal to the Expression 11 and QS equal to the Expression 12.

The quantities Ant and Bnt can be calculated using the recursive Forward-Backward procedure
(Rabiner 1989). For each value of each hidden state, we recursively calculate a summary of infor-
mation preceding the state (αnt) and following the state (βnt) as follows:

αnt (i) = P (Snt = i, rn|Θ
r) and βnt (i) = P (rn,t+1:nT |Snt = i, rnt,Θ

r) .

Then

αn1 (i) = πiTi (rn1) and αn,t+1 (j) = Tj (rn,t+1|rnt)

K
∑

i=1

γijαnt (i) , t = 2, . . . , T ;

βnT (i) = 1 and βnt (i) =

K
∑

j=1

γijTj (rn,t+1|rnt) βn,t+1 (j) , t = T − 1, . . . , 1.

Once the values of α and β are obtained, the values of A and B can be computed:

Ant (i) =
αnt (i) βnt (i)
∑K

k=1 αnT (k)
and Bnt (i, j) =

T (rnt|rn,t−1) γjiαn,t−1 (j) βnt (i)
∑K

k=1 αnT (k)

The log-likelihood l (Θ) can be computed as

l (Θ) =
N
∑

n=1

lnP (rn|Θ) =
N
∑

n=1

ln
K
∑

i=1

P (SnT = i, rn|Θ) =
N
∑

n=1

ln
K
∑

i=1

αnt (i) .

For the M-step, QR and QS can be maximized separately. The most direct way to maximize QS

is to take partial derivatives of QS (with added Lagrangians to adjust for constraints) with respect
to Π and Γ and to make all of the partial derivatives zero. When applied we obtain

π′
i =

∑N
n=1 An1 (i)

N
and γ′

ji =

∑N
n=1

∑T
t=2 Bnt (i, j)

∑N
n=1

∑T−1
t=1 Ant (j)

.
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QR can be maximized similar to the case of mixture of trees (Meilă and Jordan 2000):

QR =

N
∑

n=1

T
∑

t=1

K
∑

i=1

Ant (i) lnT ′
i (rnt|rn,t−1)

=
K
∑

i=1

(

N
∑

ν=1

T
∑

τ=1

Aντ (i)

)

N
∑

n=1

T
∑

t=1

Pi (rnt) log T ′
k (rnt|rn,t−1)

where Pi (rnt) = Ant(i)
PN

ν=1

PT
τ=1

Aντ (i)
. This can be accomplished by separately learning Chow-Liu

structures for the distributions Pi, i = 1, . . . ,K, the normalized posterior distributions of the
hidden states calculated in the E-step.
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