Learning Stochastic Path Planning Models from Video Images

Technical Report UCI-ICS 04-12
School of Information and Computer Science
University of California, Irvine

Sridevi Parise, Padhraic Smyth
Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
{sparise,smyth}@ics.uci.edu

June 18, 2004

Abstract

We describe a probabilistic framework for learning models of pedestrian trajectories in general
outdoor scenes. Possible applications include simulation of motion in computer graphics, video
surveillance, and architectural design and analysis. The models are based on a combination of
Kalman filters and stochastic path-planning via landmarks, where the landmarks are learned from
the data. A dynamic Bayesian network (DBN) framework is used to represent the model as a
position-dependent switching state space model. We illustrate how such models can be learned and
used for prediction using the block Gibbs sampler with forward-backward recursions. The ideas
are illustrated using a real world data set collected in an unconstrained outdoor scene.

1 Introduction

In this paper we describe a probabilistic landmark-based framework for modeling, learning, and
predicting pedestrian trajectories in a scene (as obtained from video-based tracking, for example).
Figure 1 shows an example of a set of trajectories. Trajectory modeling and prediction has appli-
cations in problems such as computer graphics, video surveillance, path usage analysis for planning
and design, trajectory compression for logging purposes, and as an aid to handle occlusions or other
ambiguities during tracking.

In prior work on pedestrian trajectory modeling clustering algorithms have been used to model
different behaviors (e.g., [Walter et al., 1999, Makris and Ellis, 2002, Bennewitz et al., 2002]). Our
work differs from the clustering approaches in that we explicitly model goal-directed behavior via
the notion of “landmarks” (or intermediate goals), imparting a richer representational structure
to the model. In [Patterson et al., 2003] models of pedestrian motion trajectories are learned
from GPS sensor data. Unlike our work, there is no notion of a final goal, and landmarks are
fixed a priori based on already existing street maps. A similar model is proposed in [Bui et al.,
2001], using a discretized space representation and an assumption that the trajectories are already
segmented in terms of landmark boundaries for learning purposes. In contrast to this earlier
work we learn a model (including landmark locations) in an unsupervised manner. In addition,
rather than using a fixed set of pre-specified landmarks that are same for all trajectories, we
allow a probabilistic hierarchical structure for each landmark such that the precise locations of the
intermediate landmarks are allowed to vary by individual

The rest of the paper is organized as follows. In section 2 we describe the general model. Sections
3 and 4 discuss inference and learning in this type of model using Gibbs sampling and the Monte
Carlo EM algorithm. Section 5 describes experiments and results and section 6 concludes the paper
with a discussion on possible future work.

2 The Model

2.1 Assumptions

We make the following assumptions about pedestrian motion.

e The scene has a fixed set of end regions from which pedestrians can enter or exit (e.g.,
walkways on the edge of the scene, doors to buildings, etc).

e The scene has a fixed set of landmark regions. These represent regions where pedestrians
can change direction and act as intermediate goals, playing an important part in their path
planning.

e People move in approximately straight lines with constant speed towards target landmark
regions.

e Humans exhibit a goal directed behavior.

Figure 1: Example scene: The white lines represent pedestrian trajectories. The rectangles represent en-
try/exit regions and the *’s and circles represent initial guesses (from a heuristic non-probabilistic algorithm)
for the means and covariances of the landmark regions. The entry/exit regions are numbered from 1 to 14
and the landmark regions are numbered from 15-23

These assumptions are clearly a gross simplification of realistic pedestrian motion (e.g., there is no
concept of interactions among pedestrians, speed can vary), but nonetheless are intended as a first-
step in building models that can approximate the general characteristics of pedestrian trajectories
and that can be learned from data.

2.2 Trajectory Generation

Given the above assumptions, the model generates trajectories as follows:

e At time t = 0, choose a start region sO from the set of entry/exit regions according to a
probability distribution 7(s0). 7(i) is a multinomial distribution that gives the probability
of starting in any end region 1.

e Choose an exit/goal region sFE according to F(s0,sE). E(s0,sE) is a probability transition
matrix, such that,

E(i,j) = plexit = jlstart region = 1)

e Choose a speed v from the population distribution on speeds. Here we assume a truncated
Gaussian, N (i1, 02), truncated to disallow negative speeds.

e At each time step ¢, we assume the existence of an active landmark region L; (explained
below), and we take a noisy step with speed v toward a target point Iy, (explained below)
associated with this landmark region to give the position, b;. Here, Iz, and b; are two-
dimensional vectors representing (z,y) positions in the image. We assume additive zero

Figure 2: An illustration of the need for different target points within landmark regions

mean Gaussian noise.

p(belbe—1,v, L) = N(bg—1 +

where, Hbt_l 1, is the slope of the line, (Ip, — bi—1) and X is the covariance of the Gaussian
noise.

In this model, L; is a multinomial random variable representing the landmark region towards
which the individual is moving during time t. We assume that each landmark region is
represented by a target point when an individual is moving towards that landmark region.
The individual selects the next active landmark region at a given time step ¢, L, 1), depending
on the current position, the current landmark region (including its target point) and the
final goal region. More specifically, we introduce a switch variable T}, that takes values from
{0, 1}, indicating the presence or absence of a landmark region switch (or turn) and define a
probability of switching landmark regions as a function of the distance between the current
position and current landmark region target point,

1
L+ exp([lln, —bel| = 5)°

where 3 is some parameter controlling the range of the turn. If this distance is small enough
to trigger a switch, we choose the next active landmark region (which could be an end region)
using a 2nd order transition probability matrix conditioned on both the current landmark
region and the goal state (the end region). If there is no switch, we keep the current landmark
region active. That is,

p(Ti1 = 1L, by) =

p(Lt :i|Lt—1 :]aT’tasE) = tTCL?’LS(j,i,SE), if T’t =1
— 5(i,), if T,=0

where trans is the 2nd order transition probability matrix, so that,

Z trans(j,i,Sg) =1

3

In the following text, we sometimes use the term landmark region to refer to both landmark
regions and end regions - the usage should be clear from context.

e We observe noisy measurements, y;, of the actual positions, again with additive zero mean
Gaussian noise.

p(elbe) = N (b, Ze),

where Y. is the noise covariance matrix.

For the landmark regions, instead of fixing these to be single points with the same target point for
all the trajectories, we allow these to be defined by extended regions, each trajectory picking a set
of individual target points for use from these regions. This hierarchical structure on the landmarks
seems to capture the natural structure in the data as seen in figure 2. Here we can see that different
trajectories have different target points for a given landmark region (indicated by circular regions).
In particular, we represent the end regions as rectangles with uniform probability of picking a target
point. The distribution of possible targets points for each internal landmark region is represented
as a 2-dimensional Gaussian with a mean location and covariance matrix.

2.3 Model Parameters

The various parameters mentioned in the previous section, that need to be specified in order to
generate a trajectory from the model, are summarized below.

1. 7(i), which defines the probability of starting in any end region i.
2. E(i,7) = p(goalregion = j|startregion = i)

3. trans(i, j,e), which defines the probability of the next landmark region when there is a land-
mark region switch, given the current landmark and the goal.

4. u, and o,, the parameters of the population speed.

5. X, the covariance matrix for the Gaussian errors in the dynamics

6. X, the covariance matrix for the Gaussian errors in the measurements.

7. 3, the parameter controlling the landmark region switching range.

8. The parameters giving the four corners of each rectangle defining the end regions.

9. {ul(i), El(i)}, the mean and covariances defining the Gaussian distributions for the target points
of a landmark region 1.

Figure 3: DBN for our model

2.4 Representation as a Dynamic Bayesian Network

To aid in understanding the various dependency relations between variables in the model, it is useful
to represent it as a dynamic Bayesian network (DBN) as shown in Figure 3. Here the variables
at each time slice t are {L, T}, by, y: }. We also have v and sp that influence the entire trajectory.
In this figure, for clarity as well as to emphasize the basic intermediate landmark region switching
structure, we have not included the random variables that represent the locations or target points
of the landmark regions and entry/exit regions for an individual trajectory—there is a population
prior for each, but for any individual trajectory the exact locations are not known. This graphical
model implicitly assumes that the landmark regions are defined by single known points that are
same for all trajectories. See figure 4 for the DBN that encodes the hierarchical landmark structure.

3 Inference given Known Parameters

Our model is similar to a switching state-space model [Ghahramani and Hinton, 1996], with the
additional dependence of switch variables on current position. Exact inference in this model is not
tractable because of the presence of the switching variables (See Appendix for details). Hence, we
resort to approximate inference techniques.

3.1 Offline Inference and Forward-Backward Gibbs Sampling

For offline inference, we use a block Gibbs sampler based on the forward filtering and back-
ward sampling recursions of [Carter and Kohn, 1994]. We call this the forward-backward (FB)
Gibbs sampler, following [Scott, 2002]. Referring back to figure 3, we would like to infer all the
hidden sates given an entire observation sequence, that is, we want to generate samples from
p(L1.7, T1.1, bo7—1,v|S0, SE, yot) (here we assume we know the start and end regions). We do
this by sampling, {L1.7, T1.7}, {bo.r} and {v} as separate blocks from the appropriate conditional
distributions. That is, we cycle through the following steps:

QLY X

\@é@/

) [

Figure 4: 2-slice DBN for model with the hierarchical landmark structure: l; denotes the target
point for landmark region 7 for this trajectory. N denotes the total number of landmark regions.

1. generate samples from p({Li.7, T1.¢ }|all other variables)

2. generate samples from p(bg.r|all other variables)

3. generate samples from p(v|all other variables)
Note that, it is important to block the variables in this way, since in our model the samples
for variables at neighboring time steps will be highly correlated and sampling them individually
would make it difficult for the sampler to move away from any given configuration. Also, a good
initialization is important and we initialize the b chain at the observations and v to be the average

speed as calculated from y;.7. We assume we know Sy and Sg which can be reasonably assigned
based on yg and yp.

The various sampling steps involved are further explained below.

3.1.1 Sampling the {L,T} chain

We can generate samples from p({Li.7, 1.1 }|all other variables) as follows:

Recursive Forward Filtering Pass: to compute p(Ly, T¢|yo.t, bo:t, So, SE, v), for t =1,2,... ,T.

p(Lt7ﬂ‘y0:t7bO:t7S07SE7v) - Zp(Lt7ﬂ7Lt—1|y0:t7b0:t7507SEav)
Ly 1

o p(be|Le,be—1,v) X

XY p(Le1lyo:e—1,bose—1, So, S, v)p(Th|Li—1, bi—1) X
Ly 1

Xp(Lt|Tt7 Lt—l7 SE)

In the above, p(L¢—1|yo:t—1, bo:t—1, S0, SE,v) can be obtained by summing out 7;_ in
p(Lt—1,Ti—1|y0:t—1, bo:t—1, S0, Sg,v) which we already have from the forward computation at time
t—1.

Backward pass: We successively generate samples from the required joint in a backward pass by
factorizing the joint as follows:

p(L1.1, Th.7|bo:7, Yo7, v, S0, SE) = p(Lr, Tr|bo.T, Yo.1,v, S0, SE)X
1

X H p(Lt, Tt|bo.T, yo.1, v, So, SEy Liv1:7, Tev1.7)
t=T—1

We already have, p(Lr, Tr|bo.T, yo.T, v, So, Sg) from the forward pass, and also,

p(LtJ Tt‘bO:Ta Yo.T,V, SOJ SE, Lt+1:T7 Tt+lZT) X p(Lt+17 CZ—:‘,-i-].|I/t7 bt7 SE)p(LtJ Tt|b0:t7 Yo:t, U, 507 SE)

3.1.2 Sampling v

Since b1 depends linearly on v with Gaussian noise and also since we assume that the prior distri-
bution on v is Gaussian, we can recursively update the posterior distribution, p(v|all other variables),
in closed form.

p(v|all other variables) = p(v|bo.7, Lo.T)

Now,

P(U\bosu Lo:t) X P(bt, Lt‘bO:t—la Lo, U)p(71|50:t—1, Lo:t—l)
o< p(be|Ly, be—1,v)p(v]bo:t—1, Lo:t—1)

Let,

P(0lbot—1, Los—1) ~ N (™, 02D)and

p('U|bO:ta LO:t) ~ N(,U,g)t), 0_12)(75))

We have,
bir1 = CL,, 1 0,0 + b + €y, where e, ~ N(0,%;)

cosb

sind gives the direction towards the currently active landmark region.

Here, OLH.th = |: :|
Lit1,bt

Following on the lines of the Kalman update equations, we have,

Mgt) _ Mgt—l) + K (by —{CrL b, v+ bi—1})
20 = (1 - K,0)o2tD)

K, = oX0oT(coXtNoT 4 x)7!

3.1.3 Sampling the b-chain

When generating samples for the b-chain from p(bg.r|all other variables), we cannot directly apply
the FB algorithm, since the forward distributions required for the b’s are not available in closed
form due to the position-dependent switching. We overcome this problem by maintaining and
propagating a sample based approximation to this forward distribution as explained below.

Recursive Forward Filtering Pass: to compute p(b|yo.¢, Lo:t, Th:4+1,SE,v) , for t =1,2,... ,T.
p(b¢|yo:t, Lot, Ti:t41, S, v) oc p(ye|bs)p(Ti41| Ly, by)

></ p(Le|Li—1,Ty) p(bi—1|Lo:t—1, Th:ts Yo:t—1, SE, v)P(be|br—1, L¢, v)
bi—1

Given the above equation, we use importance sampling to recursively generate a weighted sample
set that approximates the above filtered distribution at time ¢ using samples from the corresponding
distribution at time (¢ — 1).

Backward Pass:

p(bo.r|S0, S, Li.m, Thv.r, v, y0.r) = p(br|So, S, Li.1, Ti.1, v, Yo.1)
0
X p(be|bey1:7, S0, SEs L., T, v, yo.7), and
t=T—1
p(bt‘bt+1:T7SO7SE7L1:T7T15T7v7y0:T) = p(bt|bt+l7507SEaLl:t+l7T1:t+l7vay0:t)

o p(be1|Lit1,be,v)p(beSo, SE, L1ty Th:t41, vV, Yo:t)

Given a sample for b;11, we update the filtered distribution for b; according to the above equations
(by updating the weights appropriately) and then draw a sample from it.

3.1.4 Sampling the landmark region target points

With the hierarchical structure on landmark regions, we have the target points as additional ran-
dom variables in the model as seen in figure 4. When these are unknown, they can be inferred by
sampling them as additional blocks in the gibbs sampling. We assume that we know the target
points for the end regions. Note that only one end region target point is required - that associ-
ated with the known goal region Sp. We assign it to be yr and denote it explicitly by target_skE.
For target points of internal landmark regions, we can sample each from the required conditional,
p(l;]all other variables), as follows:

Recursive Forward Filtering Pass: to compute p(l;|yo.¢, Lo:t, T1:¢, SE, v, bot, target sE, {lj\;})
,fort =1,2,...,T. Here {lj\i}, denotes all internal landmark region target points except ;.

p(Lilyo:t, Lot, Th:t, SE, v, bout, target_sE, {lj\;})
oc p(Lg, Ty, be, ye| Lost—1, Tr:4—1, v, Yo:e—1, SE, bo:e—1, target sE, {l;})x
xp(li| Lo:t—1, T1:t-1,v, bo:t—1, Yot—1, S, target s, {lj\; })
o< p(Ty|Li—1,be—1, {lj})-p(be|Le, be1, v, {l5}) x
p(li|Lot—1,Th:4—1,v,bo:t—1,Yo:t—1, SE, target sE, {lj\;})

Since the above distribution cannot be obtained in closed form, we maintain a sampled represen-
tation as we do for the b-chain.

The backward pass is also similar to that for the b-chain. Also note that sampling of each landmark
region position does not effect the conditional distributions of other landmark region positions when
these are sampled consecutively. Hence, we can update the required distributions for all landmark
region positions simultaneously by going through each trajectory just once and then sampling all
these positions together.

3.2 Online Inference and Particle Filters

Particle filtering is an alternate sampling method [Doucet et al., 2001]. Although the basic particle
filter (or bootstrap filter) [Doucet et al., 2001] has broad applicability and in theory can be applied
to any type of model, many adjustments and refinements may be required for good performance
in practice. In our model, the observations have a direct impact only on the positions, b;, and not
on the landmark sequence. In the absence of a good proposal distribution, this leads to inaccurate
representations of the posterior distributions for variables other than b;. Also the presence of
static variables such as the goal state and speed and also slowly varying parameters such as active
landmark variables effect the performance of the particle filter since the support for these does
not change once they are sampled. These factors also necessitate the need for a careful choice of
resampling scheme inorder to prevent premature elimination of good particle paths in cases where
the initial trajectory is in low probability regions. The effect of the above problems is especially
evident in the case where we do not already have the model parameters and are trying to learn
their values from data, by embedding the particle filter in an intermediate inference step. Thus,
for learning, we found the FB Gibbs sampling to be more robust in general.

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
iteration # iteration #

(a) (b)

-~ variance along direction of motion
—— variance orthogonal to direction of motion

T (11)

0 .'l': 1‘0 1‘5 26 25 3‘0 35 0 5 10 15 20 25 30 35
iteration # iteration #

(c) (d)

Figure 5: Learning with MCEM: (a) and (b) show the variation of mean and variance respectively
of the population speed with iteration number. (c) shows the variation of the parameter ¥, with
iteration number. (d) shows the variation of the parameter ¥, with iteration number.

However, a major advantage of particle filters over Gibbs sampling is that the posterior is updated
recursively over time. This makes them very efficient for online inferencing tasks where we need
to compute this distribution at each time step. So for online inferencing tasks where we assume
we already learned a good set of parameters, we use the particle filter. To counter some of the
above mentioned problems, we use the balanced resampling scheme suggested in [Liu et al., 2001].
Here, unlike the basic multinomial resampling, the relationship between weights and the number of
resampled copies need not be linear and can be adjusted (the parameter «) to balance the need for
diversity and focus. For our experiments, we use (o« = 0.1). To handle the static variables, we use
the static parameter rejuvenation scheme suggested in [Storvik, 2002]. This allows for sampling the
static variables at each time step independent of their values at the previous time steps based on
the values of the other variables in the model. For computational efficiency [Storvik, 2002] requires
the presence of sufficient statistics that can be recursively updated. It is easy to see that this is true
for our static variables v and sE. For v, the recursive computation here is similar to its forward
computation in the gibbs sampling and for sE the sufficient statistic is the different landmark
region switchings and this information can be updated recursively at each t. To further improve
the performance, we interleave the particle filter updates with occasional FB Gibbs sampling runs
at intermediate time steps. We use a deterministic schedule, though one can think of using some
heuristic based dynamic schedule. These FB runs help the particle filter to refocus in the right
regions in cases where it has drifted.

10

AlogL
8

é 110 . 1‘5 Zb 2‘5 30
iteration #
Figure 6: Learning with MCEM: variation of the estimate for the increase in log likelihood obtained

by bridge sampling with iteration number. It converges to zero from above with some random
variation, indicating approximate convergence.

4 Learning the Model Parameters

Given a set of video sequences showing pedestrian motion in a scene, we estimate the model
parameters using a Monte Carlo version of the EM (MCEM) algorithm [Wei and Tanner, 1990].
We use the afore-mentioned FB Gibbs sampling scheme to approximate the E step.

The data used for learning consists of a set of 67 manually tracked trajectories for the example scene
shown in figure 1 using video data from single fixed-location camera. For each frame the estimated
x,y location of a pedestrian’s head in the image was located by manual mouse-clicks. Gaps in the
trajectories due to occlusions were filled in with equidistant observations on interpolated straight
lines.

For this scene, we selected the number of end regions (14) and the number of landmark regions (9)
subjectively. With sufficient computational power one could also in principle learn the numbers of
each (e.g., find the number of landmark regions that give the best predictive power on out-of-sample
data). The end regions are assumed to be specified by the user and are not altered during learning.
These are defined as rectangular regions and are mostly at the scene boundaries and other possible
entrances such as doors etc. in the scene. The initial estimates for the locations of the means for
various landmark regions are obtained by running a simple linear segmentation algorithm [Mann
et al., 2002] on each trajectory to find the linear segments and corresponding switch points and
then clustering those points where segments have considerable change in direction (we use > 10°).
[Mann et al., 2002] uses a parameter A that defines the trade-off between linearity and number of
segments. We use A = 500. The initial estimates of locations of various end regions and landmark
regions are shown in figure 1.

Given this approximate (non-probabilistic) segmentation of trajectories, one can generate initial
maximum likelihood estimates for the path planning parameters. We smooth these using some
heuristics, such as preferring the shortest straight line path to the goal, assigning a non-zero prob-
ability of using a previously unused segment in one direction given that it has been used in the
other direction etc., to use as an initialization for the MCEM algorithm.

11

200 300 400 500 600 700 t

(a) (b)

Figure 7: Trajectory segmentation using FB: (a) shows the trajectory and relevant landmark regions
and some intermediate time points. (b) shows the samples for the L-chain obtained from the
Gibbs sampler (slightly jittered to show all samples). From this we can see that the most likely
segmentation for the trajectory is [4 21 17 11 | (Note that there is some probability of going from 17
to 16. This is because 16 and 11 (an end region) overlap).

For the noise in the dynamics, >j, we use a covariance matrix that is described by two parameters—
the variance along the direction of motion and variance orthogonal to the direction of motion, and
diagonal along the direction of motion. Hence, in the original coordinate frame we get a varying
Yy with t. The measurement noise covariance . is assumed to be isotropic.

We estimate all the parameters described in section 2.3, except the end region definitions and
the parameter 3, which we treat as fixed. It was seen empirically that 6 = 40 pixels gives a
good segmentation. Obtaining initial parameter values for other variables as described above (for
parameters not mentioned above, such as for example, the covariance of the landmark regions,
we use a reasonable ad hoc guess), we ran the MCEM algorithm on the trajectory data. For the
gibbs sampling we used a sample size of 100 and for the sampled representation of the forward
distributions we again used a sample size of 100. The convergence of the MCEM algorithm is
monitored using bridge sampling [Meng and Schilling, 1996]. We also assess convergence by looking
at the values of the various parameters at each iteration. We could see that the parameters of the
speed and noise covariances start converging after just a few iterations (around 15). See figure
5. However, the landmark region distributions did not seem to converge even after 30 iterations.
This issue needs further investigation. Currently, we avoid this problem by learning the landmark
region distributions for first few iterations (15) and then clamping their values. Figure 6 shows the
estimate for increase in loglikelihood at each iteration as given by bridge sampling. We can see
that this is a curve converging to zero from above with some random variation. This shows that
approximate convergence has been reached.

12

(a) (b) (c)

Figure 8: Online Trajectory Monitoring: Each row corresponds to a given time t. (a) shows the
partial trajectory up to ¢t and the samples for the 7-step ahead predictions. Also the relevant
landmark regions are marked. (b) and (c) show the probability of the goal state and the current
active landmark region given observations up to ¢ respectively.

5 Experiments

In this section, we show the learned models from section 4 can be useful for various applications.

We can use FB Gibbs sampling to infer the underlying L-chain given an entire observation sequence
and the learned parameters. See figure 7 for an example. This kind of landmark-based representa-
tion of the trajectories is useful in many applications, for example, for trajectory data compression
as suggested in [Makris and Ellis, 2002], for path based clustering or for analyzing path usage. In
some environments, each segment may have a natural interpretation as being associated with a
specific behavior or activity.

The model can also provide useful information about a trajectory’s future behavior given the partial
trajectory up to current time. It can provide high level information such as the distribution over
the trajectory’s possible exit region and currently active landmark region. These could be useful
in online activity prediction tasks. Also long range predictions made by the model can aid any
tracking process, especially in the presence of occlusions and turns.

13

Accuracy

— ranked top
0.5- - - - ranked in top 2

- - ranked in top 3

O‘.l 0.‘2 0.‘3 O‘.4 015 0.‘6 0.‘7 0.8
fraction of trajectory

Figure 9: Accuracy in predicting the end region as a function of the fraction of measurements
available from the full trajectory.

As mentioned in section 3, we use the particle filter (with static parameter rejuvenation and occa-
sional FB runs) for these online inference tasks. The number of particles used was 4000. At each
time step t, the particle filter gives a sample(weighted) based representation of the filtered distribu-
tion on all the hidden states. For the multi-step ahead prediction, at each t, we extend the particle
paths from the filtered distributions by just using the system dynamics without any observations.
These ideas are illustrated in figure 8. From the figure, we can see that for the multi-step ahead
predictions, the model is able to provide multi-modal distributions to account for possible turns or
end regions along the path. This would not be possible with a simple model that has no notion of
landmarks and landmark switching.

Figure 9 shows the accuracy of predicting the true goal state at specific times, averaged over 28
test trajectories (these were not included in training and recorded several months after the original
training data was collected). Since the trajectories are of different lengths, we use times defined by
the fraction of the trajectory’s length rather than absolute values. To predict the goal at any time
t, we sort the end regions e according to p(sg = e|yo.+) and pick the top i regions as the prediction
set for making the “top i’ prediction. The default accuracy at time 0 based on knowing only where
the pedestrian entered the scene was about 0.33.

6 Conclusions

In this paper, we described a model for pedestrian trajectories and discussed learning of such a
model from data. This work represents an early step in the direction of more sophisticated models
for population motion that can be learned automatically from data. Despite the simplicity of the
model, we are encouraged by the fact that the models appear to capture well the gross characteristics
of motion in an outdoor scene and that in principle all aspects of the model can be learned in an
unsupervised manner. Directions for future work involves developing more accurate richer models
including mechanisms to handle multiple individuals, interactions, “stop and go” behaviors, and
appropriate methods for occlusion. We also plan to look at ways to automatically chose the number
of landmark regions during learning.

14

Acknowledgments

This work was supported by the National Science Foundation under grant number UCI-0331707.
We also gratefully acknowledge the assistance of Momo Alhazzazi in obtaining and preprocessing
of the video data.

A Need For Approximate Inference

Suppose that, given the model in figure 3, we would like to do inference. The most common inference
tasks in these kind of state space models involve finding the filtered and smoothed distributions of
the hidden states given a set of observations. That is, finding p(h:|yo.c) and p(h¢|yo.r), where hy
denotes the hidden state at time ¢. (These are also required for the E step in an EM algorithm
for learning the model parameters). Usually these are computed by carrying out a set of forward-
backward recursions (for example, such as the a3 procedure for HMMs).

Let us group the variables, so that, hy = {L¢, Ty+1,b:}. Consider the recursive forward computation
of the quantity, p(h¢|yo.t):

p(helyoe) = /h p(he, hi—1]yo:t)
t—1

/ P(ye|he)p(hi—1|yo:t—1)p(he | e—1)
hi—1 p(ye|yo:t—1)

by)
= yt\yytl: N ZZ/ P(Li—1, T, be—1]yo:t—1)p(Lt| Li—1, Ty, Sp)p(be| Le, be—1) x
1

X p(Tiy1|Lt, bt) (1)

Say, you are given that,
p(Lo, T1,bolyo) = N(bolpo, o), if Lo = Sp and T} = 1
= 0, otherwise
(In the above, ug could be a function of yy and Sy)

From (1) for (t = 1), p(Ly,T5,b1|yo,y1) for fixed values of the discrete variables Li,T5 is given
by:

b
p(L1, To, bilyo, y1) = zi;y; ZZP L1|L0,T1,SE)/ p(Lo, T, bolyo)p(b1|L1, bo) %
x p(T»|L1,b1) (2)
~ p(ynbl)p(LnLo:so,Tl:1,SE>[N (bols0, 00)p(b1 L1, bo) | (Tl L, by)
bo

o N(bilp1, S1)p(Te|L1,by), where piy depends on Ly, pg and yy

1 _
o eap(=5 (b =) S (b1 —) x exp(—log(1 + exp(|| Ly — bil| — 5))),
Jif Ty =1

15

Since we cannot evaluate the above distribution in closed form, we need some kind of approximation.
Also, though not obvious for t = 1 since Lg, T} can take only one value, for other ¢ > 1, we can see
that the sums in (2) increase the number of components for the distribution of b; by an order of
L times, for each t, where L is the number of landmark regions. This exponential growth in the
complexity of the state with time is a known problem, that makes exact inference intractable, in
switching state space models [Ghahramani and Hinton, 1996]. To overcome these problems with
exact inferencing in our model, we use the sampling approach described in the paper.

References

M. Bennewitz, W. Burgard, and S. Thrun. Using EM to learn motion behaviors of persons with
mobile robots. In Proceedings of the Conference on Intelligent Robots and Systems (IROS), 2002.

H. H. Bui, S. Venkatesh, and G. West. Tracking and surveillance in wide-area spatial environments
using the abstract hidden markov model. International Journal of Pattern Recognition and
Artificial Intelligence, 15(1):177-195, 2001.

C. K. Carter and R. Kohn. On Gibbs sampling for state space models. Biometrika, 81(3):541-553,
1994.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer,
New York, 2001.

Z. Ghahramani and G. E. Hinton. Switching state space models. Technical Report CRG-TR-96-3,
Dept. Comp. Sci., University of Toronto, 1996.

J. S. Liu, R. Chen, and T. Logvinenko. A theoretical framework for sequential importance sampling
with resampling. In Sequential Monte Carlo Methods in Practice, pages 225-246. Springer, 2001.

D. Makris and T.J. Ellis. Spatial and probabilistic modeling of pedestrian behaviour. In British
Machine Vision Conference, pages 557-566, 2002.

R. Mann, A. D. Jepson, and T. El-Maraghi. Trajectory segmentation using dynamic programming.
In International Conference on Pattern Recognition, 2002.

X. Meng and S. Schilling. Fitting full-information item factor models and an emperical investi-
gation of bridge sampling. Journal of the American Statistical Association, 91(435):1254-1267,
September 1996.

D. J. Patterson, L. Liao, D. Fox, and H. Kautz. Inferring high-level behavior from low-level sensors.
In UbiComp 2003: Ubiquitous Computing: 5th International Conference, pages 73-89, 2003.

S. L. Scott. Bayesian methods for hidden Markov models, recursive computing in the 21st century.
Journal of the American Statistical Association, 97:337-351, 2002.

G. Storvik. Particle filters for state-space models with the presence of unknown static parameters.
IEEFE Transactions on Signal Processing, 50(2):281-289, february 2002.

16

M. Walter, A. Psarrou, and S. Gong. Learning prior and observation augmented density models
for behaviour recognition. In British Machine Vision Conference, pages 23-32, 1999.

G. Wei and M. Tanner. A Monte Carlo implementation of the EM algorithm and the poor mans
data augmentation algorithms. Journal of the American Statistical Association, 85:699-704,
1990.

17

