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Abstract

Cross-validated likelihood is investigated as a tool for automatically determining the
appropriate number of components (given the data) in finite mixture modeling, particularly
in the context of model-based probabilistic clustering. The conceptual framework for the
cross-validation approach to model selection is straightforward in the sense that models
are judged directly on their estimated out-of-sample predictive performance. The cross-
validation approach, as well as penalized likelihood and McLachlan’s bootstrap method,
are applied to two data sets and the results from all three methods are in close agreement.
The second data set involves a well-known clustering problem from the atmospheric science
literature using historical records of upper atmosphere geopotential height in the Northern
hemisphere. Cross-validated likelihood provides an interpretable and objective solution to
the atmospheric clustering problem. The clusters found are in agreement with prior analyses
of the same data based on non-probabilistic clustering techniques.



1 Introduction

Cross-validation is a well-known technique in supervised learning to select a model from a
family of candidate models. Examples include selecting the best classification tree using
cross-validated classification error (Breiman et al., 1984) and variable selection in linear
regression using cross-validated predictive squared error (Hjort, 1995). Cross-validation
has also been used in unsupervised learning in the context of kernel density estimation for
automatically choosing smoothing parameters (e.g., Silverman, 1986). However, it has not
been applied to the problem of determining cluster structure in clustering problems, i.e.,
solving the problem of how many clusters to fit to a given data set. This may be due in
part to the fact that for many clustering techniques there is no obvious score-function (for
the number of clusters) to cross-validate. However, probabilistic model-based clustering
(using finite mixture densities) is an exception in that any score function which measures
the quality of fit of the density also provides a candidate function for model selection.

In this paper cross-validated likelihood is investigated as an appropriate score function
for model selection in probabilistic clustering, in particular for choosing the number of
component densities in finite mixture models. Section 2 briefly reviews the application
of mixture models to clustering. Section 3 discusses the use of cross-validated likelihood
for choosing the number of mixture components. In Section 4 the method is compared
to penalized likelihood and bootstrap techniques on two real data sets, including a well-
known problem in atmospheric science, namely determining the number of “regimes” (or
clusters) in records of upper atmosphere pressure taken daily since 1947 over the Northern
Hemisphere. The cross-validation methodology provides an objective validation of earlier
results from non-probabilistic clustering studies in the atmospheric science literature.

2 Clustering using Mixture Models

There is a long tradition in the statistical literature of using mixture models to perform
probabilistic clustering (e.g, see Everitt and Hand, 1980; Titterington, Smith and Makov,
1986; and McLachlan and Basford, 1988). A key feature of the mixture approach to cluster-
ing is the ability to handle uncertainty about cluster membership in a probabilistic manner
by allowing overlap of the clusters. Furthermore, the probabilistic model provides a frame-
work for finding the optimal weights, locations, and shapes of the component clusters in a
principled manner.

Let X be a d-dimensional random variable and let z represent a particular value of
X, e.g., an observed data vector with d components. A finite mixture probability density
function for X can be written as

k
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where k is the number of components in the model and each of the g; are the component
density functions. The #; are the parameters associated with density component g; and the
«; are the relative “weights” for each component j, where >, a; = 1 and a; > 0,1 < j < k.
ok) = {aq,...,0p,8;,...,08,} denotes the set of parameters for the overall mixture model
with & components.



Let Dtain — {2, . 2y} denote the training data from which the model parameters
are estimated. Assuming independent observations from an underlying true density f(z),

the log-likelihood of ®(¥) is defined as
] ] N k
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(Note that there are alternative objective functions which can be maximized in the clus-
tering context, e.g., see Celeux and Govaert (1995) for clustering using the “classification
likelihood” function). Direct maximization of the mixture log-likelihood expression in Equa-
tion (2) is difficult except in trivial special cases. Thus, much of the popularity of mixture
models in recent years is due to the existence of efficient iterative estimation techniques
for obtaining maxima of this likelihood. In particular, the expectation-maximization (EM)
procedure (Dempster et al. 1977; McLachlan and Krishnan, 1997) is a general technique
for obtaining maximum-likelihood parameter estimates in the presence of missing data. In
the mixture model context, the “missing data” are interpreted as the unknown or hidden
labels that identify which data points originated from which mixture component. The EM
procedure typically converges in parameter space to a local maximum of the log-likelihood
function, but there is no guarantee of convergence to a global maximum. Hence, the pro-
cedure is often initialized from multiple randomly chosen initial estimates and the largest
of the resulting set of maxima is chosen as the final solution. It is well-known that there
are various singular solutions to the maximum likelihood equations with infinitely large
likelihood (such as having a cluster containing only one datapoint). Thus, in practice, only
maxima in the interior of the parameter space are considered as solutions to the maximum
likelihood estimation problem (see Section 4.1 for further details and also McLachlan and
Peel (1998) for discussion). The parameters found in this manner using a data set D will
be denoted by &) (D).

The application of parameter estimation techniques (such as EM) assume that & (the
number of components) is fixed. In practice, it is frequently the case that k is unknown,
and, thus, one would like to also be able to infer some information about & from the data.
Likelihood (as defined in Equation (2)) is of no direct use, since the likelihood on the training
data can always be increased by increasing k irrespective of the true model.

Consider the problem of testing the hypothesis of & components versus the hypothesis
of k + 1 components. Tests based on the likelihood ratio test statistic,

B p(Dtrain|(Ab(k))
o p(Dtmm'n|(i)(k+1))7

(3)

cannot be directly applied in the mixture context due to the breakdown of the standard
assumptions on the asymptotic properties of the estimators (Feng and McCulloch, 1996).
In the bootstrap approach of McLachlan (1987) (see also Aitkin, Anderson and Hinde,
1981) the distribution of —2log A is estimated by generating B bootstrap samples under the
null hypothesis (i.e., from a model fitted to D" with k components), and then estimating
—2log A on each bootstrap sample after fitting models with & and k41 components to each
of the B samples. The value of —2log A""*” (obtained from fitting models with & and k4 1
components to D"®") is then compared with the bootstrap values of the ratio statistic to
create a bootstrap version of a conventional likelihood-ratio test. Results in McLachlan



(1987) and McLachlan and Peel (1997) demonstrate the utility of the bootstrap method on
small problems with relatively few datapoints and two or three clusters. The simulation
studies in McLachlan and Peel (1997) illustrate a small bias in the bootstrap approach,
leading to a slight tendency to be biased in favor of the null hypothesis of & components.
Nonetheless, the method appears to be a quite useful framework for the general mixture
model model selection problem.

Bayesian and penalized likelihood methods also provide general frameworks for “honest”
estimates of the number of components. Penalized likelihood methods (such as AIC, BIC,
MDL, etc.) are typically derived from approximations based on asymptotic arguments as
the training data size N approaches oo (Schwarz (1978), Kass and Raftery (1995)). They
have the advantage of being relatively simple to implement since one simply penalizes the
log-likelihood by an additive factor. However, as pointed out by Titterington, Makov,
and Smith (1986), there are significant theoretical limitations on the applicability of these
standard methods to mixture problems. Nonetheless, despite these theoretical reservations,
penalized likelihood methods have often been found to work quite well for model selection
in mixture problems (for example see the recent results of Fraley and Raftery (1998) using
the BIC score function).

The fully Bayesian approach is to treat the number of components k as a parameter and
obtain a posterior distribution on k given the data and the models. Even for the relatively
simple Gaussian mixture model, this posterior cannot be calculated in closed form and must
either be approximated analytically or estimated via sampling techniques such as Markov
Chain Monte Carlo method (MCMC). Lavine and West (1992), Diebolt and Robert (1994)
and Bensmail et al. (1997) provide examples of the application of sampling techniques to
Bayesian inference for mixture models.

The Bayesian and penalized likelihood approaches can be viewed from a single per-
spective by noting that the penalized likelihood methods can each be derived as different
approximations to the full Bayesian solution (see Chickering and Heckerman (1997) for a
full discussion of this viewpoint). Thus, in practice, existing model selection methods for
mixture densities largely rely on approximations of one form or another. For any of these
approximation-based methods (whether it be penalized likelihood, closed-form approxima-
tions to the Bayesian solution, or Monte Carlo sampling of the Bayesian solution) the results
obtained can be dependent in a non-transparent manner on the quality of the underlying
approximations or simulations.

In the next section we discuss the use of cross-validation as an alternative approach to
those discussed above. The cross-validation framework is closest in spirit to the bootstrap
method of McLachlan (1987) in the sense that it is a likelihood-based method (rather than
fully Bayesian) and has similar computational complexity.

3 Cross-validated Likelihood

Let f(z) be the “true” probability density function for z and let D" = {z, ... 2z} be
a random sample from f as before. A set of finite mixture models with & components are
fitted to D@" where k ranges from 1 to kmax. Thus, we have an indexed set of estimated
models, f(¥) (g|(i)(k)), 1 < k < kmayx, where each f(¥) (g|<i>(k)) has been fitted to the same
data set Dtrain,

Let [train — [($(k)(ptrain)| ptrainy denote the usual log-likelihood of the fitted model



with & components, where the parameters &) have been determined from the training
data D'" and the log-likelihood has been evaluated on the same data (as in Equation
(2)). Ii*@" is a non-decreasing function of k since the increased flexibility of more mixture
components allows better fit to the data (increased likelihood) as k is increased. Thus,
l]tcrai“ cannot directly provide any clues as to the true mixture structure in the data, if such
structure exists.

Imagine instead that one has a large test data set DSt which was not used in fitting any
of the models. Let 1£55¢ = [} (&) (Dtrain)| Dtest) he the log-likelihood, in a manner analogous
to Equation (2), where the models are fit to the training data D' but the log-likelihood is
evaluated on data D' with N datapoints. One can interpret this “test log-likelihood” as
a function of the “parameter” k, keeping all other parameters and D' fixed. Intuitively,
this test likelihood /it should be a more useful estimator (than the training data likelihood
[{r3in) for comparing mixture models with different numbers of components. (This test
log-likelihood is also known as the log predictive score (Good, 1952)).

For convenience of notation, let fi(z) denote the model with £ components with pa-
rameters ®*) (Drain) fitted using D" and let

l]tgest 1
Ntest Ntest

iy = l((i)(k) (Dtrain) |Dtest)
be the negative test log-likelihood per sample. Taking the expectation of 7; with respect to
all training data sets of size N drawn from f(z),

Eliz] = T tl tE[l(i)(k)(Dtrain”Dtest)]
Ntest
= = > Ellog fi(z;)]
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i.e., the expected value of i is the Kullback-Leibler (KL) distance (Cover and Thomas, 1991)
between f(z) and fi(z) (the first term on the right in Equation (4)), plus a constant which
is independent of k£ (namely, the entropy of the true density function f(z), the second term
on the right above). Thus, the test log-likelihood /{** (scaled appropriately) is an unbiased
estimator (within a constant) of the KL distance. The KL distance in turn defines how
far the model fi(z) is from the true f and is strictly positive unless fy(z) = f(z). Thus,
the test log-likelihood is an unbiased estimator of the KL distance between truth and the
models under consideration, and this motivates its use as a model selection criterion in this
context.

Of course one typically does not have a large independent test data set such as Dtest
available. Thus, a practical alternative is to use [{” for model selection instead, namely,
a cross-validated estimate of [{**f. In cross-validation the data are repeatedly partitioned
into two sets, one of which is used to build the model and the other is used to evaluate the
statistic of interest. Let M be the number of partitions. For the ¢th partition let .S; be the
data subset used for evaluation of the log-likelihood and D\ S; be the remainder of the data
used for building the model. Thus, the cross-validated estimate of the test log-likelihood



for the kth model is defined as:
1o
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where ®(F)(D\ S;) denotes the parameters for the kth model estimated from the ith training
subset, and [(®@F)(D\ S;)|S;) is the log-likelihood evaluated on the data in S; using the
parameters estimated from the data D\ S;.

It is worth noting that cross-validation will necessarily be less efficient in its use of
the data compared to a fully Bayesian approach, i.e., it estimates /{*5* for models trained
on some fraction of the data, rather than on the full data. Thus, in this sense, the fully
Bayesian approach is in principle more efficient in its use of the available data. Of course, as
mentioned earlier, implementing the Bayesian approach in practice involves approximation
of one form or another and, indeed, cross-validation itself can be viewed as a different type
of approximation in the Bayesian context (Dawid, 1984).

In general, consider the case when the model family under consideration includes the
true data generating distribution f(z); let this particular model have k¢ye components.
Both the Bayesian and cross-validation methodologies will tend to converge to ke (as a
function of k, from below) as the sample size is increased, i.e., for very small data sets there
are only enough data to support the £ = 1 hypothesis, but gradually as the sample size NV
is increased the selected model & increases until it “locks-on” to kirue. For cases where truth
is not within the model family, it is clear from the KL distance equations above, that the
cross-validation methodology will directly seek that model from within the model family
which is closest to truth.

There are a number of different cross-validation methodologies and they largely differ
in how the partitions are chosen. “v-fold” cross validation uses v disjoint test partitions
{S1,...,5,} each of size N/v. Well known examples are v = N (“leave-one-out”) and
v = 10 (which is used in CART for example (Breiman et al, 1984)). For model selection
in linear regression, Burman (1989), Shao (1993), and Zhang (1993) have each investigated
a particular CV procedure where M partitions are generated independently with a fixed
fraction [ being used as test samples, and 1 —  being used for parameter estimation in
each case. (Burman calls it “repeated-learning-testing” or RLT, and Shao calls it “Monte
Carlo cross validation” or MCCV-—the latter acronym will be used in this paper). The
main difference between this and the v-fold method is that each datapoint may be used as a
test point more than once. 10-fold cross-validation was found to be much less reliable than
MCCYV (8 = 0.5) in terms of choosing the correct number of components on a set of both
simulated and real mixture modeling problems (Smyth, 1996).

In general, there appears to be no obvious systematic method for automatically de-
termining the best value of § to use for a particular problem when the true structure is
unknown, although the choice of 3 = 0.5 appears to be reasonably robust across a variety
of problems (Smyth, 1996). In terms of choosing the number of different partitions M, the
larger the value of M the less the variability in the log-likelihood estimates. In practice,
values of M between 20 and 50 appear adequate for most applications.

Finally, it is worth noting that there is an extra computational cost incurred by repeated
cross-validation, namely kpax different models are to be estimated and evaluated M different
times. Compared to the simpler penalized likelihood methods (such as AIC or BIC) this is
an increase in computation by roughly a factor M. The bootstrap approach also increases



the computational burden by a factor of B (the number of bootstrap samples) over the
penalized likelihood methods. Thus, if B and M are of the same order, the computational
cost of the bootstrap and cross-validation will be comparable. An important point to note
is that the computational cost of both the bootstrap and cross-validation approaches are
linear in the number of resampling runs B or M. In addition, both methods could be easily
and efficiently implemented on parallel computing hardware, e.g., using B or M parallel
Processors.

In this paper we limit our attention to experiments with the non-Bayesian approaches
(penalized likelihood, bootstrap, and cross-validation) but clearly there is room for further
study comparing these methods to the Bayesian MCMC methodologies.

4 Applications of Cross-Validated Clustering

4.1 Experimental Methods

For the cross-validation and BIC results below the EM algorithm was implemented as
follows. The algorithm was started from 3 different randomly chosen initial partitions of
the data as well as from 3 different partitions generated by the k-means algorithm. The
algorithm was stopped in each case either when (a) 500 iterations of the algorithm were
complete, or (b) when the increase in log-likelihood from the most recent two iterations of
EM was below 10~* of the increase in log-likelihood from the first two iterations of EM.
The parameter solution consisting of the largest likelihood among these solutions was then

chosen as the maximum likelihood solution, excluding any solution where Ulj < 0.01gy, where

Ulj is the estimated standard deviation for the [th variable in the Gaussian model of the jth
component (1 < j < k) and oy is the population standard deviation for the /th variable,
1 <[ < d. This latter step eliminates spurious local maxima on the edges of parameter
space.

For the BIC method, the above procedure is run once on all of the training data and
the penalty term (pg/2)logn is subtracted from the maximum likelihood value. For the
cross-validation method, for each partition of the data, models with £ = 1 to & = kmax
components are fitted on the training portion of the data using exactly the method above,
and the log-score (or test set log-likelihood) is then calculated (for each k) on the out-
of-sample test portion of the data. This procedure is repeated on M randomly-chosen
partitions of the data and the resulting log-likelihood scores are averaged over M (Equation
(5)). In the results reported here the data are partitioned repeatedly into two disjoint
subsets of equal size (i.e., MCCV with g = 0.5).

The MIXFIT software (courtesy of G. McLachlan) was also used to test the bootstrap
method on the data sets described below. The software was configured to run the EM
algorithm using the best initial condition found from among (a) 3 randomly chosen parti-
tions of the data and (b) 3 partitions generated from the k-means algorithm. The option to
initialize the MIXFIT algorithm using hierarchical clustering was disabled due to its O(N?)
complexity (N = 3960 for one of the data sets below). Monitoring of the maxima found
by EM in parameter space provided no evidence that poor local maxima were being found,
i.e., for these particular data sets the random/k-means method of initializing EM appeared
quite adequate. The EM algorithm was halted using the default method in MIXFIT, i.e.,
after either (a) a maximum of 500 iterations or (b) when the change in likelihood between
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Figure 1: Scatter plots of diabetes data, without the class labels.

the current iteration and the likelihood ten iterations previous is less than 106, whichever
of (a) or (b) occurs earlier.

99 bootstrap replications (B = 99) were run for each data set, testing k =1 vs k = 2,
k =2 vs. k=3, and so forth. B = (100/a) — 1 permits significance testing at the a%
level (McLachlan and Peel, 1997, 1998). For B = 99 for example, the bootstrap algorithm
roughly matches the same number of computational steps as the cross-validation approach
with M = 100 and allows significance testing at the 1% level.

4.2 Clustering of Diabetes Patients

Reaven and Miller (1979) analyzed 3-dimensional plasma measurement data for 145 subjects
who were clinically diagnosed into three groups: normal, chemically diabetic, or overtly
diabetic. This data set has since been analyzed in the clustering literature by Symons
(1981), Banfield and Raftery (1993), and Fraley and Raftery (1998). Here we analyze the
unlabeled data, i.e., the 3-dimensional measurements without any class labels.

When viewed in any of the 2-dimensional projections along the measurement axes, the
data are not separated into obvious groupings. However, some structure is discernible
(Figure 1). For example in the plot of sspg versus glucose there is a cluster of points in the
lower left corner as well as two “wings” to the data in roughly orthogonal directions.

Table 1 summarizes the results for BIC and cross-validated likelihood (A = 100). Both



Table 1: Comparison of scores for Gaussian mixture models with components from k& = 1
to k = 4 on the diabetes patient data

‘ Scoring Method H k=1 ‘ k=2 ‘ k=3 ‘ k=4 ‘
Dk 9 19 29 39
Likelihood -2545.8 | -2355.9 | -2303.5 | -2279.8
BIC -2583.2 | -2433.0 | -2420.4 | -2436.6
CV-Likelihood -1287.5 | -1219.6 | -1207.8 | -1229.5
BIC/datapoint -17.82 | -16.78 | -16.69 | -16.80
CV-Likelihood /datapoint || -17.88 | -16.94 | -16.78 | -17.08

BIC and cross-validated likelihood choose k = 3 as the most likely value for k. The bootstrap
method (as implemented in the MIXFIT software described earlier, using B = 99) indicated
that the null hypothesis & = 2 is rejected (vs. k = 3) at the 1% level but that the null
hypothesis k = 3 is not rejected at the 1% level when compared to & = 4. All three methods
(cross-validation, bootstrap, and BIC) are in agreement on this data set, finding the same
number of classes (k = 3) as that of the original clinical classification. Table 1 also shows
the BIC and cross-validated scores per datapoint (original scores divided by N and N/2
respectively) indicating fairly close agreement between these normalized scores.

4.3 Application of Cross-Validated Clustering to Atmospheric Geopoten-
tial Height Data

4.3.1 Problem Background

Detection and identification of “regime-like” behavior in atmospheric circulation patterns is
a problem which has attracted a significant amount of attention in atmospheric science. (As
defined in the atmospheric science literature, regimes are recurrent and persistent spatial
patterns which can be identified from atmospheric data sets (Cheng and Wallace, 1993;
Kimoto and Ghil, 1993). The most widely-used data set for these studies consists of daily
measurements since 1947 of geopotential height on a spatial grid of over 500 points in the
Northern Hemisphere (NH). Geopotential height is the height in meters at which the at-
mosphere attains a certain pressure (e.g., one has 500mb height data, 700mb height data,
etc.). It can loosely be considered analogous to atmospheric pressure, particularly since one
can visualize the data using contour maps with “lows,” “highs”, “ridges,” and so forth.

Research on low-frequency atmospheric variability using geopotential heights during
the past decade has demonstrated that on time scales longer than about a week, large-scale
atmospheric flow fields appear to exhibit recurrent and persistent regimes. Direct identifi-
cation of these regimes in observed flow fields is difficult. This has motivated the use of a
variety of cluster analysis algorithms to objectively classify observed geophysical fields into
a small set of preferred regimes or categories, e.g., fuzzy clustering (Mo and Ghil, 1988),
kernel density estimation and “bump hunting” (Kimoto and Ghil, 1993), hierarchical clus-
tering (Cheng and Wallace, 1993), and least-squares (or k-means) clustering (Michelangeli,
Vautard, and Legras (1995)).

While these approaches have produced useful and repeatable results (in terms of sig-
nificant cluster patterns), there is nonetheless a degree of subjectivity in the application of
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Figure 2: Scatter plot of NH winter data projected into first 2 EOF directions.

these clustering techniques which is undesirable. In particular, none of these methods have
provided a fully objective answer to the question of how many clusters exist. Thus, among
the different studies, it is not clear how many different regimes can be reliably identified.

We analyzed the same data as has been used in almost all of the other clustering stud-
ies on this topic (e.g., Kimoto and Ghil (1993)), namely, daily observations of the NH
700-mb geopotential heights on a 10° x 10° diamond grid (with 541 grid points), com-
piled at NOAA’s Climate Analysis Center. The data are subject to a number of specific
preprocessing steps (full details are provided in Smyth, Ghil and Ide (1998)). For the
purposes of this paper it is sufficient to know that the daily 541 spatial grid points (or
maps) are treated as 541-dimensional data vectors and then projected into a subspace de-
fined by a few leading principal component directions for this 541-dimensional space. We
will use the atmospheric science terminology of “empirical orthogonal functions” (or EOF's;
Preisendorfer (1988)) to refer to the principal component directions in the rest of the pa-
per. Projections used in the results described here range from the first 2 to the first 12
EOFs. The 12-dimensional data are publically available online by anonymous ftp from
ftp.ics.uci.edu/pub/smyth/data/atmos/.

Figure 2 shows data from the 3960 days defined as “winter” projected onto the first two
EOFs. This projected winter data set is the “standard” data set which has been typically
used in clustering studies in the past and it is on this data set that the application of
cross-validation for model selection is investigated below.

4.3.2 Application of Mixture Model Clustering

We applied the mixture model cross-validation methodology to the data described in Sec-
tion 4.1, using Gaussian components with unconstrained (full) covariance matrices. (These



Table 2: Comparison of scores for Gaussian mixture models with components from & = 1
to k = 6 on the atmospheric data

‘ Scoring Method H k=1 ‘ k=2 ‘ k=3 ‘ k=4 ‘ k=5 ‘ k=6 ‘
Dk 5 11 17 23 29 35
Likelihood -1890.4 | -1799.3 | -1745.6 | -1733.7 | -1724.3 | -1711.7
BIC -1923.6 | -1869.7 | -1853.3 | -1878.7 | -1906.6 | -1931.2
CV-Likelihood -982.7 | -967.7 | -949.1 | -963.2 | -967.8 | -972.8
BIC/datapoint -0.486 | -0.472 | -0.468 | -0.474 | -0.481 | -0.489
CV-Likelihood /datapoint || -0.496 | -0.489 | -0.479 | -0.486 | -0.489 | -0.491

results, and various extensions, are described in more detail in Smyth, Ghil, and Ide (1998)).
In all experiments the number of cross-validation partitions was M = 100 and the fraction
of data  contained in each test partition was set to 0.5. The number of clusters (mixture
components) was varied from k = 1 to k = 15. The log-likelihoods for k > 6 were invariably
much lower than those for k& < 6 so for clarity only the results for £k = 1,...,6 are pre-
sented. The estimated cross-validated log-likelihoods are tabulated in Table 2 in addition
to the BIC scores. The cross-validation score is maximized at k& = 3 as is the BIC score,
providing evidence of three clusters under the Gaussian mixture model assumption. The
normalized scores for BIC and cross-validation also appear reasonably correlated. Approx-
imate posterior probabilities on k (assuming equal priors on different values of k) can be
calculated by exponentiating and normalizing the cross-validated log-likelihoods. For the
figures in Table 2, the posterior probability estimated in this fashion is effectively 1 for
k =3 and 0 for other £ values (within 4 decimal places).

The bootstrap method was also applied to the same data with B = 99 bootstrap repli-
cations. The null hypotheses k = 2 (versus k£ = 3) was rejected at the 1% level, while the
null hypothesis £ = 3 was not rejected at the 1% level when compared to k = 4.

Thus, the cross-validation, bootstrap, and BIC methods all point to & = 3 as the
most likely number of components, assuming a Gaussian mixture model. On checking the
maximum likelihood parameter values for each method (cross-validation, bootstrap, BIC)
there was no evidence of any problems with poor local maxima, i.e., all methods appeared
to be finding the same maxima consistently for each value of k. Figure 3 shows the three-
cluster solution (means and covariance shapes) in the two-dimensional EQF-space.

Note that the absolute values of the log-likelihoods are irrelevant—strictly speaking, like-
lihood is only defined within an arbitrary constant. Figure 4 shows the test log-likelihoods
on the first 20 (from 100 total) different cross-validation partitions, relative to the log-
likelihood on each partition of the £ = 3 model (dotted line equal to zero). k = 3 clearly
dominates. Note that for any particular partition & = 3 (the dotted line with value 0) is
not necessarily always the highest likelihood model, but on average across the partitions it
is significantly better than the other possible values for k.

4.3.3 Robustness of the Results

Numerous runs on the same data with the same parameters but with different randomly-
chosen winter partitions (M = 20) always provided the same result, namely, an estimated
posterior probability of p(k = 3) > 0.999 in all cases. The relative cross-validated likelihoods

10
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Figure 4: Log-likelihood of the test partition data on for the first 20 cross-validation runs
relative to the log-likelihood of the k& = 3 model for (from top) (a) £ =1, (b) k£ = 2, (c)
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Figure 5: Cross-validated log-likelihoods for £ = 1,...,6 relative to the cross-validated
log-likelihood of the & = 3 model for 10 such different randomly-chosen cross-validation
partitions

over 10 different runs are shown in Figure 5 where the likelihoods for each k£ are plotted
relative to k = 3.

We also investigated the robustness of the method to the dimensionality of the EOF-
space. The maps were projected into different subspaces, namely the first d EOF dimensions,
with d = 2,...,12. As afunction of the dimensionality d, the posterior probability mass was
concentrated at k = 3 (i.e., p(k = 3) &~ 1) until d = 6, at which point the mass “switched”
to become concentrated at £k =1 (i.e., p(k = 1) &~ 1)). Thus, as the dimensionality increases
beyond d = 6, the cross-validation method does not provide any evidence to support a model
more complex than a single Gaussian bump. This is to be expected since the number of
parameters in a k-component Gaussian mixture model grows as kd?. Since the total amount
of data to fit the models is fixed, as the dimensionality d increases there are fewer datapoints
relative to the number of parameters being estimated, and thus, one can anticipate increased
variance (and less reliability) in the higher-dimensional parameter estimates.

For the three-component Gaussian model we investigated the variability in the physical
grid maps obtained across different numbers of EOF dimensions. Note that each datapoint
in a projected EOF space can be represented as a pressure map on the original grid (since
each point is a linear combination of EOF vectors, and each EOF vector is a map). Thus,
cluster centers in the EOI space can be “mapped back” to equivalent grid points in the
original spatial grid to create spatial contour maps. Using the first d EOF dimensions,
d = 3,...,12, a Gaussian mixture model with 3 components was fit to the data for each
d. For each value of d, 3 physical maps were obtained from the centers of the 3 Gaussians.
The pattern correlations (as defined in Wallace and Cheng (1993), page 2676) were then
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Table 3: Pattern correlation coefficients between maps fitted using d EOF dimensions,
3 < d <12, and maps fitted using 2 EOF dimensions.

‘ EOF Dimensionality d H ry ‘ r9 ‘ r3 ‘
3 0.978 | 0.961 | 0.998
0.974 | 0.960 | 0.999

4

5 0.947 | 0.957 | 0.976
6 0.946 | 0.946 | 0.957
7

8

9

0.945 | 0.951 | 0.945
0.931 | 0.946 | 0.938
0.938 | 0.953 | 0.941

10 0.946 | 0.951 | 0.949
11 0.927 | 0.943 | 0.934
12 0.945 | 0.946 | 0.935

calculated between each of these maps (from d dimensions) and the corresponding maps
obtained from 2 EOF dimensions. The results are shown in Table 3. It is clear that there
is a high correlation between the maps obtained using only the first two EOF dimensions
and each of the maps obtained using & EOF dimensions, 3 < k£ < 12. This indicates that
as the dimensionality of the EOF space grows beyond d = 2, the clusters in any of these
dimensional spaces are essentially the same as for the the two-dimensional sub-space.

4.3.4 Interpretation and Discussion of the Cluster Results

An important aspect of this problem is the scientific interpretation of the clusters obtained.
The scientific interpretation is obtained by projecting the cluster centers (the Gaussian
means) “back” to the grid-space as described earlier, and then directly interpreting the
physical significance of the resulting spatial patterns.

Figure 6 shows the three maps corresponding to the three Gaussian centers on the left
and the three maps corresponding to the “most distinct clusters of the wintertime 500mb
field” on the right (Cheng and Wallace, 1993; also in Wallace, 1996). These two sets of
maps have a high degree of qualitative similarity to each other. The upper maps (a) and
(b) both clearly possess a distinctive ridge over the Gulf of Alaska. The middle maps (c)
and (d) are characterized by a very distinctive blocking pattern over southern Greenland.
The bottom maps (e) and (f) have a more complex pattern described as the “Rockies ridge”
in Cheng and Wallace (1993, p.2680). The Cheng and Wallace results are considered among
the most authoritative on this topic, and these particular three spatial patterns (or regimes)
are frequently discussed in the atmospheric science literature.

Cheng and Wallace’s methodology for arriving at three clusters was based on a combina-
tion of ad hoc resampling techniques and subjective judgement of the hierarchical clustering
results. In their own words, “the more reproducible clusters are strung out along three well-
defined branches of the family tree” (Cheng and Wallace, 1993). It is interesting to note
that the cross-validation results described in this paper were obtained completely indepen-
dently, i.e., the cross-validation data analysis was carried out without knowledge at that
time of the Cheng and Wallace result. Thus, the cross-validation results provided an objec-
tive and independent validation of the earlier work. For further discussion of the physical
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Figure 6: Geopotential height maps for the 3 cluster centers of the mixture model (left:
panels a, ¢ and e) and of Cheng and Wallace’s (1993) hierarchical cluster model (right:
panels b, d and f) which are reproduced in Wallace (1996) (panels b,d, and f reproduced
by permission).
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interpretation of the results see Smyth, Ghil, and Ide (1998).

An obvious question is whether or not the results are sensitive to the projection method-
ology being used, i.e., would projection pursuit for example lead to different clusters? The
answer would appear to be no. The similarity of the maps in Figure 6 (where one set is
obtained in EOF-space and the other set by directly clustering the grid patterns) indicates
that the EOF projection does not impact the resulting clusters. Cheng and Wallace (1993)
also reached the same conclusion, by finding that hierarchical clustering in EOF space
produced essentially the same clusters as the clusters obtained with no EOF projection.

5 Discussion and Conclusion

Cross-validated likelihood can play a useful practical role in model selection among different
mixture density models. The conceptual framework is simpler than the typical penalized
likelihood or Bayesian approach in that models are directly judged on their out-of-sample
predictive ability, as estimated in a cross-validated fashion. The simplicity of the framework
makes it directly applicable to a wide variety of practical problems. In this paper, only the
problem of finding the correct numbers of components for Gaussian mixture models was
discussed. However, one can in principle easily apply the methodology to a much broader
class of mixture problems, such as selecting among different independence structures (e.g.,
see Bensmail et al (1997) and Thiesson et al (1998)) or model selection in the context of
Markov models (e.g., see Smyth (1997) for an application to hidden Markov models).

Directions for further work on cross-validated likelihood include a bias-variance charac-
terization for better understanding of the trade-offs involved in choosing § (see for example
the work of Shao (1993) and Zhang (1993) in a regression context and Kearns (1996) in
a classification context), and comparative studies between penalized likelihood, Bayesian,
and cross-validation methodologies. In related work, Smyth and Wolpert (1998) extend the
framework in this paper to model averaging of mixture models for density estimation, using
cross-validation to empirically determine the model weighting coefficients rather than using
posterior probabilities on the models obtained from a Bayesian analysis.

A final point concerns the acceptance of any model selection methodology by domain
experts (in this case, atmospheric scientists). The scientists participating in this work
indicated a greater willingness to trust a methodology based on cross-validation than a
Bayesian analysis. This trust was due in large part to the direct interpretation which can
be given to the cross-validation result (i.e., one seeks the model which predicts best on
out-of-sample data). In contrast, the Bayesian formulation of the problem was perceived as
indirect and less appealing. It is suggestive that while in theory a fully Bayesian analysis
can be viewed as the optimal approach, in practice a cross-validation methodology can be
a practical alternative. The word “practical” here is intended in the sense that the cross-
validation method is relatively straightforward to implement and the results have a direct
interpretation. The method is particularly useful in cases when data and computational
resources are relatively plentiful.
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