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Abstract

We investigate the problem of classifying individuals based on estimated density functions
for each individual. Given labelled histograms characterizing red blood cells (RBCs) for
different individuals, the learning problem is to build a classifier which can classify new
unlabelled histograms into normal and iron deficient classes. Thus, the problem is similar
to conventional classification in that there is labelled training data, but different in that
the underlying measurements are not feature vectors but histograms or density estimates.
We describe a general framework based on probabilistic hierarchical models for modelling
such data and illustrate how the model lends itself to classification. We contrast this
approach with two other alternatives: (1) directly defining distance between densities using
a cross-entropy distance measure, and (2) using parameters of the estimated densities as
feature vectors for a standard discriminative classification framework. We evaluate all three
methods on a real-world data set consisting of 180 subjects. The hierarchical modeling and
density-distance approaches are most accurate, yielding cross-validated error rates in the
range of 1 to 2%. We conclude by discussing the relative merits of each approach, including
the interpretability of each model from a clinical diagnostic viewpoint.



1 Introduction and Background

Anemia, a reduction in the circulating red cell mass that may diminish the oxygen-carrying
capacity of the blood, is one of the most common medical problems. For diagnostic evalu-
ation of anemia and monitoring the response to therapy, blood samples from patients are
routinely analyzed to determine the volume of the red blood cells (RBCs) and the amount
of hemoglobin, the oxygen-transporting protein of the red cell. In this context it would be
highly cost-effective to have the ability to perform automated low-cost accurate diagnostic
screening of blood-related disorders using RBC measurements. Many anemia-related dis-
eases manifest themselves via fundamental changes in the univariate volume (V) distribution
and the univariate hemoglobin concentration (HC) of RBCs.

Automated techniques have been recently developed which can simultaneously measure
both volume and hemoglobin concentration of RBCs from a patient’s blood sample. Flow
cytometric blood cell counting instruments (Technicon H*1, H*2, H*3; Bayer Corporation,
White Plains, NY) make measurements using a laser light scattering system to provide
the red cell volume distribution, hemoglobin concentration, and joint red cell volume and
hemoglobin concentration distributions. The data we will describe in this paper was gen-
erated by such a machine. Typically it takes in about 40,000 blood cells and produces a
plot of both the univariate histogram of the V distribution and univariate HC distribution.
In addition, it provides a bivariate histogram (on a grid of about 100 x 100 cells) of the
joint V-HC distribution. Figure 1 shows a two-dimensional histogram of the RBC counts
in V-HC space for a healthy individual (control) and for an iron deficient patient. Existing
diagnostic techniques based on such measurements are largely limited to simple visual ex-
amination of such plots and approximate estimates of abnormality based on the skewness
or shift of the histogram in various directions in the bivariate space. While this general
approach will capture those patients whose distributions are very clearly far removed from
the normal pattern, it is relatively insensitive to more subtle changes and is also likely to
be relatively insensitive to differential diagnosis among different diseases.

In this paper we will focus on the problem of learning a classification model from the data
for the purposes of automated diagnostic screening in a clinical environment. Section 2 will
discuss the learning aspects of the problem in general and make connections with relevant
prior work. In Section 3 we introduce the notion of a probabilistic hierarchical model for this
problem. This is a powerful framework for modeling data sets where there are multiple levels
of variation in the data (here we have variation at the individual subject level as well as at
the RBC level). We will show that with relatively large amounts of data at the lowest level
of the hierarchy (as we have here, with 40,000 RBCs in two-dimensions per subject), that
there exists a relatively efficient closed form approximation to the full Bayesian solution.
In Section 4 we outline how the Expectation-Maximization (EM) algorithm is used to learn
densities from the binned and truncated data. Section 5 discusses two alternative methods
for classification: (1) a distance-based approach to classification based on pairwise directed
divergence between two densities, and (2) a standard discriminative framework using a
classification tree. In Section 6 we compare the empirical classification performance (using
cross-validation) of the hierarchical approach with the afore-mentioned alternatives. Section
7 contains a discussion of the merits of the different approaches, including suggestions on
how this framework, focusing in particular on the interpretability of the learned models.

In terms of related prior work McCallum et al (1998) and Heskes (1998) used hierarchi-
cal models to improve classification and regression performance, but in the more standard
manner of using feature vectors rather than densities. Hierarchical models are also widely
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Figure 1: Two-dimensional V-HC histograms of the raw data RBC counts for a Control
subject and a subject with Iron Deficient Anemia.

used throughout applied statistics (e.g., see Gelman et al (1995) for a Bayesian perspective).
However, we are not aware of any published work in the machine learning, pattern recogni-
tion, or statistics literature on using hierarchical models specifically for classifying density
functions; in this context, the contribution here is novel. In the context of screening for iron
deficiency using RBCs, McLaren and colleagues in a series of papers (McLaren, Brittenham,
& Hasselblad, 1986; McLaren et al., 1991; McLaren, 1996) have demonstrated that the dis-
tribution of RBC volume can be accurately modeled as a mixture of log-normal density
functions. In this paper we extend this work to bivariate V-HC measurements, explicitly
model the data-generating process via a hierarchical model, and evaluate the methodology
in terms of classification accuracy via cross-validation.

2 A Machine Learning Description of the Problem

Consider a slightly more general description of the problem described above. We have N
individuals and each individual belongs to one and only one of K groups, {cy,...,cx}.
For each individual 7, 1 < ¢ < N, in turn we have measurements on a set of n; “lower-
level objects” from that individual (for the RBC problem these lower-level objects are the
individual red blood cells). Each of the lower-level objects is itself characterized by a feature-
vector (for each patient we have a set of 2-dimensional counts, coming from the the RBCs
analyzed by the machine). This type of multi-level structure is not unique to the RBC
problem, there are numerous instances of similar scenarios which arise in many practical
learning applications, e.g., identifying an individual based on multiple facial images; based
on multiple spoken words; based on multiple passages of text written by the individual, and
so forth.
This type of data presents two general problems in a learning context:

1. What is an appropriate classification procedure or model for assigning a new individual
(described in terms of their RBC measurements) to one of the K classes?, i.e., what



should be the structure of a model which relates the multiple RBC measurements to
the class labels?

2. Having defined the general structure, how can we learn such a model from data?

One simple approach is to reduce the multiple measurements for each individual to a stan-
dard feature vector of fixed dimensionality. For example, we could take the mean of the V
and HC measurements across all 40,000 of an individual’s RBCs (or perhaps the variance,
or both, or some other summary statistics). However, we don’t know in advance whether
these features will be discriminative or not and so this approach has somewhat of an ad hoc
flavor to it.

A powerful idea in this context is the notion of a generative probabilistic model for the
data. It is particularly relevant in the context of the RBC problem, where the natural mode
of presenting the data to a physician is in the form of a joint distribution. In other words
it is the language of joint distributions which forms the existing basis for characterization
and description of blood-related diseases given the V and HC measurements.

Let D; represent the data for the ith individual (i.e., D; is a set of approximately
40,000 bivariate V-HC measurements made on patient i’s blood cells). Thus, we can think
of f(V, HC|D, 8;) as the probability density function for the joint variation of V' and HC
where 6; is the set of parameters for the model f. It turns out that, based on prior knowledge
of the physical mechanisms of RBC generation and evolution, the functional form of f can
be well-determined as being a mixture of log-normal density functions; we will return to
this point in Section 4. Thus, assuming the form of f is known, it remains to estimate the
parameters 6; for individual 7. We can use standard density estimation techniques (such as
EM, e.g., McLachlan and Krishnan, 1997) for this density estimation problem.

Thus, we can reduce the problem of learning from multiple measurements to that of
learning from densities, since the density function in principle accurately describes all of
the information contained in the original sample D;. At this point it is not clear yet what
we have gained, since it is still not obvious how to model and classify individuals given their
density functions, i.e., we are still not in the realm of more familiar classification modeling.
In the next section we outline how the hierarchical modeling framework naturally and
elegantly will allow us to model both similarities and differences among individuals based
on their density functions.

3 Hierarchical Models for Classifying Density Functions

3.1 A Generative Hierarchical Model

Consider the following “generative” model for red blood cell (RBC) production for indi-
viduals (a generative model is a model which in a sense can “generate” or “simulate” the
observed data: a discriminative model for example is not usually generative since it may
only describe the decision boundaries between classes).

1. Choose an individual randomly from the overall population, call this individual .

2. Assign this individual 7 to class ¢; with probability pg, 1 < k < K (for the RBC
problem we have two classes, K = 2, Controls and Iron Deficient).

3. Choose parameters §; for individual 7 using a prior density function 7;(6;) on param-
eters for class k (thus, each class has a density function 7 describing the variation in
parameters for that class).
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Figure 2: A graphical model (acyclic directed graph) for the hierarchical model for RBC
generation.

4. Generate observations (data) D; for this individual (namely, n; multivariate measure-
ments, such as V-HC measurements on the individual’s red blood cells), conditioned
on the parameters 6;, i.e., we have a data-generating model p(D;|6;).

Figure 2 summarizes the overall framework graphically. In fact, from a probabilistic
viewpoint this is a formal graphical model for the problem and we can read off the relevant
conditional independence relations. For example, the data set D; for any individual ¢ is
independent of all other data sets conditioned on the parameters 8; which generated data
D;. The hierarchical model is quite plausible as a generative mechanism for the RBC data.
Homogeneity within a class (Control or Normal) is captured by the assumption that the
parameters of the density functions for individuals belonging to that class (namely the 6;’s)
are themselves parametrized by a common class density function. It is in this parameter
space that we will perform classification: if there is relatively little overlap between the
different class densities in parameter space, then accurate classification should be possible.

Figure 3 illustrates the general concept of how we model variability in parameter space.
Here we have fitted each individual at the RBC level with a two-component mixture den-
sity function (full details in Section 4). Figure 3 is a scatter plot of the location of the
estimated two-dimensional V-HC bivariate mean for the larger (in probability mass) of the
two components in the fitted density function for each individual. The Controls and the
Iron Deficient individuals are given different symbols. Furthermore, we have fit a Gaus-
sian model to the parameters of each class (the covariance ellipses of these components are
shown); these correspond to the “prior” density functions 74 (6) on the parameters for class

Ck.

3.2 Interpretation of the Model

This type of hierarchical model setup is common in Bayesian statistics. In the Bayesian
framework, the densities 7 () on parameters are (naturally) referred to as priors. In fact in
a full Bayesian analysis we would put another level of priors in the model (“hyperpriors”),
but as we shall see this is not necessary for accurate classification of the RBC data.
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Figure 3: Scatter plot of the estimated mean parameters for individuals from the Iron
Deficient and Control groups, with Gaussian “parameter variation models” superposed.

For our problem, since we have K different classes, the “marginal prior” on parameters
is a mixture model of the form:

K

m(019) = D _ pler)mr(6]¢x) (1)

k=1

where the p(ci) are the prior probabilities on each class (3", p(cx) = 1), and the 7 (8|¢x) are
“component priors” on the parameters 8 in a class k£ and 6 here is a parameter vector. For
example, if we have univariate measurements at the RBC level which we wish to model by
a Gaussian density function for each individual, then we would have 8 = {u,o}. 73 would
then be a bivariate density function on p and o representing the way p and o vary within
class k. Let ¢ represent the overall set parameters which describe the prior on 4, and let ¢
be the parameters for component k of the prior. This appears to be quite a reasonable and
parsimonious description of a generative mechanism for the data. For example, in Figure
3, we can see both systematic within- and between-class variability for the means (the u’s).

3.3 Learning the Prior Parameters ¢ from Labelled Data

Given aset of RBC measurements from N individuals, denote the data by D = {D,..., Dy},
where D; is the set of measurements on blood cells for the ith individual, 1 <7 < N. Con-
ditioned on the parameters, and given the hierarchical graphical model of Figure 2, the
likelihood of the data can be written as:

N
p(D|by,...,0n,9) = [[ p(Dil;). (2)

=1

If we don’t know the parameters #; (as will be the case in practice), we get the marginal
likelihood as a function of the priors ¢:

L(6) = p(Di6) = [ (D16} (8:0)ds (3



Given that we have fairly large numbers of blood cells and are fitting a relatively par-
simonious bivariate model to their distribution, it seems reasonable to assume that the
integral above will be peaked around § where 6 is the maximum a posteriori (MAP) value
relative to the prior p(6;|¢). (If we further assume that this prior is relatively flat in this
part of parameter space, then the MAP and maximum likelihood values will be very close).
We will simply denote the value around which the integral is peaked as 6.

Furthermore, assume that our data are labelled, i.e., we know which of the K classes
each individual belongs to. (The generalization to unlabelled, or partially labeled data is
straightforward and useful, but is not discussed in this paper). Thus, we can focus on
estimating ¢, the parameters describing @ conditioned on membership in class k. For
simplicity of notation let us assume (temporarily) that we only have data from class &, and
that D = {Dy,..., Dy} is the data for the kth class of individuals. Let éZ be the estimated
density parameters for the ¢th individual in this class, 1 <7 < N. We have that

arg mgxp(¢k|D) = arg mgxp(DWk)p(qbk)

N
= arg m;,LX (H p(Dz|¢k)> p(r)

=1

N
= arg m;,LX (H /91 p(Di|9i)ﬂk(9i|¢k)d9i) p(¢k)

2

N
arg m;LX (H p(Dz|92)7rk(92|¢k)) (o)
;1

= argmax (]_:_[ ﬁk(éi|¢k)) P(Px)- (4)

This equation is a standard likelihood (under a conditional independence assumption given
the model) times a prior. In other words, to find the MAP value for ¢, we can just first
find the 6’s for each individual, and then find the ¢;’s which maximize the MAP expression
above (given a parametric density model for m(6|¢x)). If the prior p(¢y) is relatively
flat, it reduces to maximum likelihood estimation of the ¢, parameters based on the 6;
“observations,” 1 <1 < N.

For the RBC data, we will be fitting 2-component bivariate log-normal mixtures to the
original measurements: this will result in roughly 2 means and 3 covariance parameters per
component, for a total of 2(2+3)+1 = 11 independent parameters in total (i.e., each 6; will
be an 11-dimensional vector). Details on how these parameters are fit (at the individual
level) will be provided in Section 4.

3.4 Classification given the Fitted Model

Assume that we have estimated all the parameters of the hierarchical model as described
above. Now consider a new individual for whom we have RBC measurements, say Dny1.
We would like to know the class probabilities for this individual:

plek|Dng1) o< p(Dnyaler)p(cr)
- (/ p(DN+1|0N+1m<oN+1|ck>d0N+1) p(ex)

o< p(Dnt1l0n41)7x(On11]ex)p(er)
o< mr(On41ler)pler). (5)



Thus, based again on the MAP approximation, the posterior class probabilities have a very
simple intuitive form: find the parameters éN-H to fit the RBC data for the unclassified
individual, and use Bayes’ rule to classify these parameters relative to the prior m4(6|¢x)
(in the equation above, 7 (f|ck) is the same as 7 (0|¢x)).

Thus, we have arrived at a method for performing probabilistic classification given the
hierarchical model, as well as determining how that model can be learned from labelled
data. To summarize, the procedure is as follows:

Training: For each class k, 1 <k < K:

1. Estimate density function parameters 6, for each individual i labelled as class k,

2. Estimate the parameters ¢ of the“prior component” 7;(8|¢x) using the esti-
mated 6;’s,

3. Estimate the mixture weights in the prior, p(cx) (e.g., simply as the proportion
of individuals belonging to class k).

Classification: For a new unlabelled individual, with observed data Dy41:

1. Estimate the density parameters éN+1 for this individual

2. Find the maximum (over k) of p(ci|Dn41) as described in Equation 5.

4 Density Modeling at the RBC Level

4.1 The Functional Form of the RBC Density Model

The first step in modeling the data is to characterize the two-dimensional V-HC distribution.
It can be shown that the marginal volume distribution of a single population of RBC is
theoretically lognormal. The lognormality comes from the biological mechanism governing
the manner by which cells are produced (McLaren, Brittenham, and Hasselblad; 1986). At
each “production step” cells divide and have normal variations in their respective volumes.
Since the process is repetitive and the effect is multiplicative (i.e. cells divide), the resulting
distribution is lognormal. For iron-deficient subjects, the argument follows that the RBC
density can be well-approximated as a two-component log-normal mixture (McLaren, et al.
, 1991; McLaren, 1996). Specifically, there are two biological processes that are constantly
occurring in a body: 1) red blood cells are produced in the bone marrow; 2) these cells are
extruded into the bloodstream and die after about 120 days. For a healthy individual a single
population of red blood cells is produced with a mean cell volume and mean hemoglobin
concentration within the normal range. In iron deficiency anemia the red blood cells that
are produced have decreased volume and hemoglobin, below normal for that of a healthy
individual. Thus with development of the disease, gradually, a second subpopulation of red
blood cells begins to emerge and over a period of time, the relative ratio of subpopulations
of red cells changes.

4.2 Implementation of Mixture Modelling of RBC Count Data

The actual values of volumes and hemoglobin concentrations are not observed for each
blood cell (they are quantized). In addition, the counts outside the measurable range are
also missing. Model fitting under these conditions (binned and truncated data) has been
studied in McLachlan and Jones (1988) and McLachlan and Jones (1990) in connection with



Control #1 Control #2 Control #3
§ a0 40
B
75 35 35
8 30

20 60 100 140 20 60 100 140 20 60 100 140
Volume Volume Volume

8 &

Hemoglobin Concentration
® 8

Hemoglobin Concentration
@
8

Iron Deficient #1 Iron Deficient #2 Iron Deficient #3

@ 35 35
2% 25
20 20

60 100 140 20 60 100 140 20 60 100 140
Volume Volume Volume

8 8] 8

®

Hemoglobin Concentration
Hemoglobin Concentration
@
8
Hemoglobin Concentration
@
8

8

&
N
8

&

&

Figure 4: Contour plots from estimated density estimates for three typical Control patients
and three typical Iron Deficient Anemia patients. The lowest 10% of the probability contours
are plotted to emphasize the systematic difference between the two groups.

fitting univariate volume distributions of RBCs. The theoretical results in the cited papers
only handle the one-dimensional case; the extensions to multiple dimensions are relatively
straightforward but are not described in any detail here due to space considerations. The
workhorse of the fitting procedure is the EM algorithm (McLachlan and Krishnan, 1997).
For this problem the M-step does not have a closed-form solution as is the case when fitting
mixture models to non-binned data. The main quantities that need to be evaluated at each
EM step are now integrals over the bins (McLachlan and Jones, 1988).

Extending the McLachlan and Jones (1990) procedure to the bivariate case directly leads
to a rather slow EM algorithm (the execution time for a single EM step is rather large).
In the results presented here we used a heuristic initialization method which resulted in
reducing the computation time for EM by about a factor of 100. A sub-sample of data
points (3000 in the results here) are drawn from the histogram counts assuming a uniform
distribution in each bin (this uniform assumption is clearly incorrect since the true densities
will be smoothly varying in practice, however, the assumption is fine as a rough guess for
initialization). Standard EM is then run to convergence on the simulated sample. The
resulting density is then used as a starting point for the binned/truncated version of EM
which uses all of the data and performs numerical integration over each bin during each
EM step. This reduces the number of iterations of the full EM algorithm drastically while
not affecting the accuracy of the solution as the convergence criterion is defined by the full
(but slow) algorithm. It is guaranteed to return a local maximum of the likelihood function
for binned and truncated data. The process is repeated 10 times with different randomly
chosen subsamples to avoid poor local maxima.

Figure 4 shows the densities which were fit to the histogram data by applying this
EM mixture modeling procedure to 3 individuals from each class, in terms of the lower 10
percent probability contours of the estimated mixture density One can see that there are
differences between the two classes, as well as specific within-class variation.
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Figure 5: Matrix of Kullback-Leibler divergence scores for the fitted RBC density models.

5 Alternative Classification Techniques

We compared three qualitatively different approaches to classifying RBC data:
e The generative hierarchical modeling approach (described earlier),

e A non-parametric approach based on density distance and multidimensional scaling
(MDS), described in Section 5.1, and,

e Discriminative classification using the C5.0 and CART classification tree algorithms
(Quinlan, 1997; Breiman et al (1984)), described in Section 5.2.

5.1 Density Distance using K-L Divergence and Multidimensional Scaling

(MDS)

The idea here is to define a distance measure directly between the densities themselves,
and to completely avoid modelling parameters in parameter-space. A well-known distance
measure between two densities is the Kullback-Leibler (K-L) distance, defined as the cross-
entropy [ p(#) log %d@. This is not a metric, but is strictly positive unless p = ¢ every-
where. It can be made symmetric by defining the K-L divergence as

I p(6) (6)
KL(p.0) = 5 ([ 2(0) 1o Zglan + [ () 108 L50) (6)

The K-L divergence provides a well-defined notion of density distance. For a subset of the
Control and Iron Deficient individuals for whom we have RBC data, we fitted densities to
each as described in Section 4 and calculated the pairwise K-I divergence between each
pair of individuals. The resulting distance matrix is shown in Figure 5. The separation
of the two groups is very clear from the block-diagonal structure of the matrix (darker
pixels in the image correspond to smaller K-L values, i.e., the densities are more similar).
Furthermore, there appears to be a systematic difference in the two groups in that the
Controls (the upper left block) is much more homogeneous (in terms of density distances)
than the Iron Deficient group (lower right block) which has greater variability in terms of
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Figure 6: Kullback-Leibler matrix of pairwise density distance scores embedded in a two-
dimensional vector space using the MDS technique with fitted Gaussian covariance ellipses
for each class.

pairwise distances (i.e., there is greater spread among the densities). This is consistent with
Figure 3 where the spread in component means is lower for Controls than for Iron Deficient
subjects.

The K-L matrix is useful for exploratory analysis but does not easily lend itself to
classification in the standard manner. To define a classifier using this data we use mul-
tidimensional scaling (MDS) to approximate the distance matrix in a vector space (Borg
and Groenen, 1997). MDS places each individual (a row or column from the matrix) in a
d-dimensional space such that the pairwise (matrix) distances between points are preserved
as closely as possible in the Euclidean vector space. Based on analysis of the fit versus di-
mensionality, we determined that the best number of dimensions for MDS for this data was
2. The resulting MDS-derived vector space, showing the individuals positioned to reflect as
closely as possible their KL, divergences, is shown in Figure 6.

With MDS as a tool to embed RBC densities into a vector space (with a well defined
notion of “distance”), we then use a Gaussian mixture-model classifier in this vector space
to classify the “points” (representing individuals) in this space.

5.2 Discriminative Classification

We also consider a standard discriminative classifier to classify the fixed-length parameter
vectors obtained from the density modeling of Section 4. We chose classification trees as a
typical method for discriminative classification using the C5.0 and CART algorithms. The
decision tree approach is the most direct approach of the three methods for classification
and has the advantage of being relatively interpretable from a clinical viewpoint.

We also use the discriminative approach on “ad hoc” features estimated directly from
the histogram, Thus, no attempt is made to model the density of the RBCs but instead an
individual’s histogram is summarized by a vector of 4 simple features, namely, the univariate
mean and standard deviation for each of V and HC, as estimated from the histogram. The
tree algorithm is then used to learn a classification model in this 4-dimensional space. This
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approach has the advantage of being considerably simpler than any of the afore-mentioned
classification methods and we will refer to it as the Baseline method in the rest of the paper.

6 Experimental Methodology and Results

6.1 Experimental Methods for Comparing Classifiers

Data collection for this study was completed during 1995. A reference sample group of
healthy individuals was recruited from staff physicians and hospital employees at the West-
ern Infirmary, Glasgow, Scotland. Patients included in the study were seen on the wards
and in the outpatient clinics and referred to the hospital laboratories for a complete blood
count. The results described here are based on the 97 Control and 83 Iron Deficient subjects
in the study.

Each of the three methods begins with the EM estimates of the parameters 6; for each
individual 2, 1 < 2 < N. These estimates are obtained by fitting a two-component log-
normal mixture density using EM as described in Section 4. Each set of parameters 6; has
an associated class label (Control or Iron Deficient) for individual i.

For each of the three methods we performed 100 cross-validation runs, where in each
run the data were divided into a randomly chosen training set of 80% of the data and a
test set consisting of the remaining 20%. Overall performance for each method is reported
as the mean and standard deviation of classification accuracy on the test sets over the
100 runs. Note that the parameter estimation (the running of EM to determine the 6;’s)
is completely independent of any other data or class labels; it is a purely unsupervised
procedure performed on each individuals RBC measurements. Thus, the parameters 6; are
estimated once and for all, before any cross-validation takes place.

The hierarchical model takes the 11-dimensional parameters and constructs two density
models for the parameters, one for Controls and one for Iron Deficient. We experimented
with two different density models for the parameters:

1. “11-Parameters”: here we modeled all of the parameters with a Gaussian mixture
model, and used block covariance matrices which allowed covariance between all 4
means and between the 3 independent covariance parameters for each RBC compo-
nent.

2. “9-Parameters”: here we re-parametrized some of the parameters to reflect a more
natural scale for modeling. We modeled both the log-odds of the component weights
and the log of the eigenvalues of the covariance matrices as Gaussian. We again
used a two-component Gaussian mixture model with block diagonal covariance matrix
allowing covariance between the 4 means, covariance between the 2 log-eigenvalues for
each RBC component, and allowing the log-odds of the weight to be independent of
the other parameters.

On the training data, for each cross-validation run, we performed a further “internal”
cross-validation run to automatically determine whether a single Gaussian or a 2-component
Gaussian mixture provides the best fit (using 20 runs of cross-validated likelihood), i.e., each
7 (0) is itself modeled as either a 1 or 2-component Gaussian mixture. The motivation for
this last internal cross-validation is to allow the model to automatically choose a reasonable
structure for the “prior” in parameter space.
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Table 1: Means and standard deviations of the cross-validated classification error for each
of the different classification models across 100 runs.

H Method ‘ Features ‘ Mean Error Rate (%) ‘ Standard Deviation H
C5.0 Baseline 3.99 Not available
9-Parameters 3.49 Not available
11-Parameters 3.36 Not available
CART Baseline 4.72 3.05
9-Parameters 4.11 3.48
11-Parameters 3.53 3.05
KL-MDS 1.56 2.06
Hierarchical | 9-Parameters 2.08 4.98
11-Parameters 1.42 2.57

For the KL-divergence/MDS method, we project the training data as before using the
KL/MDS technique described earlier and then use an internal cross-validation strategy
(similar to that described above) to build a Gaussian mixture model for each class in the
MDS space, using the training data. Classification is then performed on the projected test
data points using this Gaussian mixture model.

6.2 Experimental Results

Table 1 summarizes the mean cross-validated error rates and standard errors across the
different methods. The discriminative algorithms (C5.0 and CART) were run on the 11
original parameters, the 9 rescaled parameters, and the 4 “Baseline” features. For both
trees, the lowest error rate was obtained with the 11 density parameters, followed by the 9
rescaled parameters, followed by histogram-based Baseline features. This suggests that the
density modeling is worthwhile in that it leads to lower error rates than simple histogram-
based features.

The KL-MDS method and the Hierarchical method (with either 9 or 11 features) had
lower error rates than any of the discriminative tree methods (usually on the order of a
factor of 2 lower). The 11-parameter hierarchical error rate of 1.42% corresponds to about
a 70% decrease in error rate from the error rate of 4.72% of CART on the baseline features
and about a 64% decrease in error rate from the 3.99% error rate of C5.0 on the baseline
features. Thus, for this particular problem, the hierarchical model and the KL-MDS method
appear superior in terms of classification accuracy. Note at the time of writing of this paper,
paired experiments have not yet been performed to allow formal statistical hypothesis tests.

For routine clinical classification of RBC data, the decision tree approaches are attractive
since the operation of the classifier can be explained in simple “rule-like” terms to a clinician.
However, as well as being not quite as accurate in our experiments, tree classifiers do not
produce particularly accurate posterior class probabilities and do not fully characterize the
within and between-class variability. Thus, if clinicians wished to rank subjects based on
likelihood of iron deficiency (for example), the hierarchical model approach may be the most
useful since it produces much more plausible posterior probabilities than can be produced
from the tree model. In addition, the hierarchical model is intrinsically interesting from a
medical research viewpoint since it provides a basis for a complete characterization of blood
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disorders in H-VC space both in terms of typicality and variability of individuals within
each group, as well as full characterization of group differences.

The KL-MDS approach is also an interesting alternative method. It is competitive with
the hierarchical method in terms of accuracy but it suffers from a lack of interpretability
(the MDS dimensions are not necessarily interpretable). However, it clearly has a strong
visual appeal and can be quite useful for exploratory data analysis in problems of this
nature.

7 Conclusions

We investigated the problem of automated screening of blood samples of individuals for
the purpose of detecting iron deficiency anemia. The problem is more complex than the
typical machine learning classification problem since each individual must be classified based
on a bivariate histogram (rather than a feature vector). Three different techniques for
classifying the individual densities were proposed: (1) a probabilistic hierarchical model,
(2) embedding pairwise KL distances between densities in a vector space, and (3) direct
discrimination of density or histogram parameters using a classification tree. All methods
were accurate in the 96 to 99% range in the cross-validation experiments, with density-based
methods outperforming simpler discriminative methods. We conclude that accurate low-
cost automated screening of subjects for iron deficiency, using V-HC count data, appears
quite feasible.
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