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ABSTRACT
Real-world sensor time series are often significantly noisier
and more difficult to work with than the relatively clean
data sets that tend to be used as the basis for experiments
in many research papers. In this paper we report on a large
case-study involving statistical data mining of over 300 mil-
lion measurements from 1700 freeway traffic sensors over a
period of seven months in Southern California. We discuss
the challenges posed by the wide variety of different sensor
failures and anomalies present in the data. The volume and
complexity of the data precludes the use of manual visu-
alization or simple thresholding techniques to identify these
anomalies. We describe the application of probabilistic mod-
eling and unsupervised learning techniques to this data set
and illustrate how these approaches can successfully detect
underlying systematic patterns even in the presence of sub-
stantial noise and missing data.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Statistical Models; I.2.6 [Artificial
Intelligence]: Learning—graphical models

General Terms
probabilistic modeling, traffic model, large-scale analysis,
case study

Keywords
loop sensors, MMPP, traffic, Poisson

1. INTRODUCTION
Large-scale sensor instrumentation is now common in a vari-
ety of applications including environmental monitoring, in-
dustrial automation, surveillance and security. As one exam-
ple, the California Department of Transportation (Caltrans)
maintains an extensive network of over 20,000 inductive loop
sensors on California freeways [1, 7]. Every 30 seconds each

∗contact information: (949) 232-7405

of these traffic sensors reports a count of the number of vehi-
cles that passed over the sensor and the percentage of time
the sensor was covered by a vehicle, measurements known
as the flow and occupancy respectively. The data are con-
tinuously archived, providing a potentially rich source from
which to extract information about urban transportation
patterns, traffic flow, accidents, and human behavior in gen-
eral.

Large-scale loop sensor data of this form are well known
to transportation researchers, but have resisted systematic
analysis due to the significant challenges of dealing with
noisy real-world sensor data at this scale. Bickel et al. [1]
outline some of the difficulties in a recent survey paper:

...loop data are often missing or invalid...a loop
detector can fail in various ways even when it re-
ports values...Even under normal conditions, the
measurements from loop detectors are noisy...

Bad and missing samples present problems for
any algorithm that uses the data for analysis...we
need to detect when data are bad and discard
them

A systematic and principled algorithm [for de-
tecting faulty sensors] is hard to develop mainly
due to the size and complexity of the problem.
An ideal model needs to work well with thou-
sands of detectors, all with potentially unknown
types of malfunction.

Even constructing a training set is not trivial
since there is so much data to examine and it
is not always possible to be absolutely sure if the
data are correct even after careful visual inspec-
tion.

Similar issues arise in many large real-world sensor systems.
In particular, the presence of “bad” sensor data is a persis-
tent problem—sensors are often in uncontrolled and rela-
tively hostile environments, subject to a variety of unknown
and unpredictable natural and human-induced changes. Re-
search papers on sensor data mining and analysis often pay
insufficient attention to these types of issues; for example,
our previous work [4, 5] did not address sensor failures di-
rectly. However, if research techniques and algorithms for
sensor data mining are to be adapted and used for real-world
problems it is essential that they can handle the challenges
of such data in a robust manner.
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Figure 1: (a) A sensor that is stuck at zero for almost
two months. (b) Five days of measurements at the
end of the period of sensor failure, after which a
typical pattern of low evening activity and higher
activity at morning and afternoon rush hour begins
to appear.
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Figure 2: (a) A sensor with normal (periodic) ini-
tial behavior, followed by large periods of missing
data and suspicious measurements. (b) A week at
the beginning of the study showing the periodic be-
havior typical of traffic. (c) A week in February.
Other than the missing data, these values may not
appear that unusual. However, they are not consis-
tent with the much clearer pattern seen in the first
two months. The presence of unusually large spikes
of traffic, particularly late at night, also make these
measurements suspicious.

In this paper we present a case study of applying probabilis-
tic sensor modeling algorithms to a data set with 2263 loop
sensors involving over 100 million measurements, recorded
over seven months in Southern California. The sensor mod-
eling algorithms are based on unsupervised learning tech-
niques that simultaneously learn the regular patterns of hu-
man behavior from data as well as the occurrence of unusual
events, as described in our previous work [4, 5].

The seven months of time-series data from the 2263 loop
sensors contain a wide variety of anomalous behavior in-

cluding “stuck at zero” failures, missing data, suspiciously
high readings, and more. Figure 1 shows a sensor with a
“stuck at zero” failure, and Figure 2 shows an example of a
sensor with extended periods both of missing data and of
suspicious measurements. In this paper we focus specifically
on the challenges involved in working with large numbers of
sensors having diverse characteristics. Removing bad data
via visual inspection is not feasible given the number of sen-
sors and measurements, notwithstanding the fact that it can
be non-trivial for a human to visually distinguish good data
from bad. In Figure 2, for example, the series of measure-
ments between January and March might plausibly pass for
daily traffic variations if we did not know the normal con-
ditions. Figure 2 also illustrates why simple thresholding
techniques are generally inadequate, due to the large vari-
ety in patterns of anomalous sensor behavior.

We begin by illustrating the results of a probabilistic model
that does not include any explicit mechanism for handling
sensor failures. As a result, the unsupervised learning algo-
rithms fail to learn a pattern of normal behavior for a large
number of sensors. We introduce a relatively simple mecha-
nism into the model to account for sensor failures, resulting
in a significant increase in the number of sensors where a
true signal can be reliably detected, as well as improved au-
tomatic identification of sensors that are so inconsistent as
to be unmodelable. The remainder of the paper illustrates
how the inferences made by the fault-tolerant model can
be used for a variety of analyses, clearly distinguishing (a)
the predictable hourly, daily, and weekly rhythms of human
behavior, (b) unusual bursts of event traffic activity (for ex-
ample, due to sporting events or traffic accidents), and (c)
sequences of time when the sensor is faulty. We conclude
the paper with a discussion of lessons learned from this case
study.

2. LOOP SENSOR DATA
We focus on the flow measurements obtained from each
loop sensor, defined as the cumulative count of vehicles that
passed over the sensor. The flow is reported and reset every
30 seconds, creating a time series of count data. As shown in
Figures 1 and 2, the vehicle count data is a combination of a
“true” periodic component (e.g., Figure 2(b)) and a variety
of different types of failures and noise.

We collected flow measurements between November 26, 2006
and July 7, 2007 for all of the entrance and exit ramps in
Los Angeles and Orange County. The data were downloaded
via ftp from the PeMS database [1, 7] maintained by U.C.
Berkeley in cooperation with Caltrans. Of the 2263 loop
sensors, 566 sensors reported missing (no measurement re-
ported) or zero values for the entire duration of the seven
month study. The remaining 1716 sensors reported missing
measurements 29% of the time on average. Missing data oc-
curred either when PeMS did not report a measurement due
to a faulty detector or a faulty collection system, or when
our own system was unable to access PeMS.

Aside from missing measurements and sensor failures, the
periodic structure in the data reflecting normal (predictable)
driving habits of people can be further masked by periods
of unusual activity [5]; including those caused by traffic ac-
cidents or large events such as concerts and sporting events.
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Figure 3: Graphical model of the original approach
proposed in [4, 5]. Both the event and rate variables
couple the model across time: the Markov event
process captures rare, persistent events, while the
Poisson rate parameters are linked between similar
times (arrows not shown). For example, the rate on
a particular Monday during the 3:00 to 3:05pm time
slice is linked to all other Mondays at that time.
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Figure 4: Example inference results with the model
from FIgure 3. The blue line shows actual flow mea-
surements for one sensor on one day, while the black
line is the model’s inferred rate parameters for the
normal (predictable) component of the data. The
bar plot below shows the estimated probability that
an unusual event is taking place.

Noisy measurements, missing observations, unusual event
activity, and multiple causes of sensor failure combine to
make automated analysis of a large number of sensors quite
challenging.

3. ORIGINAL MODEL
In Ihler et al. [5] we presented a general probabilistic model
(hereafter referred to as the original model) that learns pat-
terns of human behavior that is hidden in time series of count
data. The model was tested on two real-world data sets, and
was shown to be significantly more effective than a baseline
method at discovering both underlying recurrent patterns of
human behavior as well as finding and quantifying periods
of unusual activity. Our original model consisting of two
components: (a) a time-varying Poisson process that can
account for recurrent patterns of behavior, and (b) an ad-
ditional “bursty” Poisson process, modulated by a Markov
process, that accounts for unusual events.

If labeled data are available (i.e. we have prior knowledge
of the time periods when unusual events occur), then esti-
mation of this model is straightforward. However, labeled
data are difficult to obtain and are likely to be only partially
available even in a best-case scenario. Even with close vi-
sual inspection it is not always easy to determine whether
or not event activity is present. Supervised learning (using
labeled data) is even less feasible when applying the model
to a group of 1716 sensors.

Instead, the approach we proposed in [4, 5] separates the
normal behavior and the unusual event behavior using an
unsupervised Markov modulated Poisson process [9, 10].
The graphical model is shown in Figure 3. The normal (pre-
dictable) component of the data is modeled using a time-
varying Poisson process, and the unusual event activity is
modeled separately using a Markov chain. The event vari-
able can be in one of three states: no event, positive event
(indicating unusually high activity), or negative event (un-
usually low activity).

In the model, the Poisson rate parameter defines how the
normal, periodic behavior counts are expected to vary, while
the Markov chain component allows unusual events to have
persistence. If the observed measurement is far from the
rate parameter, or if event activity has been predicted in the
previous time slice, the probability of an event increases.

Given the model and the observed historical counts, we can
infer the unknown parameters of the model (such as the rate
parameters of the underlying normal traffic pattern) as well
as the values of the hidden states. Note that in addition to
the event state variables being connected in time, the rate
parameters λ(t) are also linked (not shown in Figure 3).
This leads to cycles in the graphical model, making exact
inference intractable. Fortunately, there are approximation
algorithms that are effective in practice. As described in [4,
5], we use a Gibbs sampler [3] for learning the hidden pa-
rameters and hidden variables. The algorithm uses standard
hidden Markov recursions with a forward inference pass fol-
lowed by a backwards sampling pass for each iteration of
the sampler. The computational complexity of the sampler
is linear in the number of time slices, and empirically con-
vergence is quite rapid (see [5] for more details).

Figure 4 shows an example of the results of the inference pro-
cedure. The measured vehicle count for this particular day
follows the model’s inferred time-varying Poisson rate for the
normal (predictable) component of the data for most of the
day. In the evening, however, the observed measurements
deviate significantly. This deviation indicates the presence
of unusual event activity and is reflected in the model’s esti-
mated event probability (bottom panel). The output of the
model also includes information about the magnitude and
duration of events.

The event activity in this example looks obvious given the
inferred profile of normal behavior; however, simultaneously
identifying the normal pattern and unusual event activity
hidden within the measurements is non-trivial. In our earlier
work [4, 5] we found that the Markov-modulated Poisson
process was significantly more accurate at detecting known
events than simpler baseline methods such as threshold-type



Event Fraction Number of Sensors
0 to 10% 912
10 to 20% 386
20 to 50% 265
50 to 100% 153

Table 1: Original model’s fit. The study’s 1716 sen-
sors are categorized using a measure of the model’s
ability to find a predictable periodic component in
the sensor measurements (if present). The event
fraction is defined as the fraction of time a sensor’s
measurements are classified as a positive or negative
event. For sensors higher in the table, the model has
found a strong periodic component with fewer peri-
ods of unusual event activity.

MON TUE WED THU FRI
0

0.5
1

Time

P
(E

)

MON TUE WED THU FRI

0

20

40

60

80

ve
h 

co
un

t

Figure 5: Original model output for the sensor in
Figure 1. Shown are the observed measurements
(blue) for one week (the same week as Figure 1(b))
along with the model’s inferred Poisson rate (black).
With a long period stuck at zero, a poor model is in-
ferred for normal behavior in the middle of the day.
This is reflected in the event probabilities (bottom),
where unusual event activity is predicted for most
of each day.

detectors based on Poisson models.

4. SCALE-UP CHALLENGES
After the initial successes described in Section 3, we wanted
to test the model on a much larger network of sensors.
The model can generally be applied to various types of sen-
sors which record count data, but the loop sensor data set
was a particularly appealing choice for our case study. As
mentioned earlier, we had access to the measurements of
2263 loop sensors in the Southern California area. We also
had additional information about the sensors that could
prove useful during analysis, such as geographic location
and whether each sensor was on an exit or entrance ramp.
In addition, there are many data analysis problems specific
to traffic data, including accident detection, dynamic popu-
lation density estimation, and others. In our work we were
motivated by the challenge of extracting useful information
from this large data set to provide a basic framework for
addressing these questions.

We applied the original model to the data from our seven
month study involving 1716 sensors and over 300 million
hidden variables. The model was subjected to much greater

levels of variability than experienced in our earlier studies.
Several weaknesses of the original model were identified as
a result.

Table 1 shows one method for judging how well the model
fit the data. The table shows the fraction of time that the
model inferred unusual event activity for each of the sensors
during our seven month study, i.e. the fraction of time slices
in which the event variable in Figure 3 was inferred to be
in an unusual event state and are thus not explained by the
periodic component of the data.

There is reason to be suspicious when the model infers un-
usual event activity for a large fraction of the time, especially
in cases where unusual event activity is more common than
normal activity (as in the last row of the table). A review of
the sensors where event activity was inferred over 50% of the
time revealed some weaknesses of the original model. Some
sensors in this category were apparently faulty throughout
the study. Another group of sensors recorded non-missing
measurements for only a very small fraction of the study,
which were not enough to form a good model. However,
there were many sensors which appeared to have an un-
derlying periodic behavior pattern that was missed by the
original model.

The sensor with the “stuck at zero” failure (Figure 1) is an
example of a sensor with a clear periodic pattern that the
original model missed. Figure 5 shows the model’s attempt
to fit the data from this sensor. The model is able to learn
early morning and late night behavior, but an inaccurate
profile is inferred for normal behavior in the middle of the
day. Examples such as this were observed across many other
sensors, and in many cases where a poor model was inferred
for normal behavior there appeared to be long periods where
the sensor was faulty.

We experimented with a number of modifications to the
model, including adjusting the priors on the parameters of
the Markov process, avoiding poor initialization of the Gibbs
sampler which sometimes occurred when extensive periods
of failure were present, and dealing with missing data dif-
ferently. These adjustments improved the performance of
the model in some cases. But in many cases (particularly in
sensors with extensive periods of sensor failure) inaccurate
profiles were still inferred for normal behavior.

5. FAULT-TOLERANT MODEL
It is clear from Section 4 that in order to make the original
model more general and robust, sensor failures should be
addressed directly instead of bundling them together with
unusual event activity. We note that heuristic approaches
to sensor fault detection in traffic data have been developed
in prior work [2, 6], but these techniques are specific to loop
detectors and to certain types of sensor failures. Our focus
in this paper is developing an approach that can handle more
general types of faults, not only in loop sensor data but also
in other sensors that measure count data.

One possible approach to solve these problems would be to
modify the model to broaden the definition of “events” to
include sensor failures. However, sensor failures and events
(as we define them) tend to have quite different characteris-



Time t+1

����������	
�
�������������

Time t-1 Time t

Observed
Measurement

Observed
Measurement

Observed
Measurement

Poisson 
Rate �(t-1)

Normal
Count

Poisson 
Rate �(t+1)

Poisson 
Rate �(t)

Normal
Count

Normal
Count

Event
Count

Event
Count

Event
Count

Event EventEvent

Fault Fault Fault

Figure 6: Graphical model of the fault-tolerant
method. The fault-tolerant model is very similar
to the original model (Figure 3), but with an addi-
tional Markov chain added to model sensor failure.

tic signatures. Events tend to persist for a few hours while
failures often have a much broader range of temporal du-
ration. Events also tend to be associated with a relatively
steady change (positive or negative) in count rates over the
duration of the event, while failures can have significant vari-
ability in count rates during the duration of the fault. Ul-
timately, while there is not a crisp boundary between these
two types of non-normal measurements, we will show in Sec-
tions 6 and 7 that both types are sufficiently different and
prominent in the data to merit separate treatment.

When we detect sensor failures visually, we are in essence
recognizing extensive periods of time where the periodic
structure that we have come to expect is not present. This
reasoning is built into a new model, defined by the graphical
model in Figure 6. The original model (Figure 3) has been
modified to include an additional Markov chain for failure
modes. This failure state is a binary variable indicating the
presence or absence of a sensor failure.

If the state variable in the event chain is in an event state,
the observed measurement is accounted for by both the nor-
mal and event count components. If the state variable in
the fault chain is in the fault state, however, the observed
measurement is treated as if it were missing. This allows our
model to ignore the faulty part of the data when inferring
the time-varying Poisson (normal) component of the data.

In a Bayesian framework, our belief about the relative du-
ration of events and failures can be encoded into the priors
that are put on the transition parameters for the two Markov
chains. We expect events to be short, ranging from a few
minutes to a couple of hours; in contrast, we expect failures
to be relatively lengthy, ranging from days to months.

The modular nature of graphical models makes it possible
to extend the original model without starting from scratch.
Some modifications were made to the inference calculations
when the fault sensor process was added to the original
model, but learning and inference proceeds in the same gen-
eral fashion as before (see [4, 5] for details). From a practical
viewpoint, relatively few changes to the software code were
needed to extend the model to include a failure state. De-
tails of these changes are given in the Appendix.

Original Model Fault-tolerant Model
Event Fraction Number of Sensors Number of Sensors

0 to 10% 960 1285
10 to 20% 375 242
20 to 50% 244 117
50 to 100% 137 72

Table 2: Comparison of the fraction of time in the
event state for the original and fault-tolerant mod-
els. We have excluded missing data and times de-
tected as faulty from the percentage calculation for
both models. While there is a slight shift to the
upper rows of the table for the original model (com-
pared to Table 1), we see a greater shift for the
fault-tolerant model, indicating that it has done a
better job of inferring the true periodic structure
underlying the data.

DEC JAN FEB MAR APR MAY JUN
0

0.5
1

P
(F

)

DEC JAN FEB MAR APR MAY JUN
0

20
40
60
80

ve
h 

co
un

t

MON TUE WED THU FRI
0

20

40

60

80

ve
h 

co
un

t

Figure 7: Fault-tolerant model results for the “stuck
at zero” example (refer to Figures 1 and 5 and Sec-
tion 4). Shown are the raw data (top), the model’s
estimate of the probability of a faulty sensor (cen-
ter), and the inferred time-varying Poisson rate of
the normal component (bottom). The model detects
the “stuck at zero” failure, and the model’s rate fits
the periodic signal in the data that was missed by
the original model (Figure 5).

6. EXPERIMENTAL RESULTS
Table 2 gives a sense of the gains made by the fault-tolerant
model compared to the original model. We compare the
percentage of time spent in an event state for sensors under
each model. In order to provide a fair comparison, missing
measurements as well as measurements detected as faulty by
the fault-tolerant model were removed for both models be-
fore calculating the event fraction of the remaining measure-
ments predicted by each model. The fault-tolerant model is
able to infer a better model of the periodic structure hid-
den within the flow data, seen as a shift of sensors to the
upper rows of the table where unusual activity is detected
less frequently and thus more of the data is explained by
the time-varying Poisson process. Of the 381 sensors in the
>20% range for event fraction with the original model, only
189 remain under the fault-tolerant model, a 50% reduction.

Figure 7 is a plot of the same sensor as in Figures 1 and 5,
where the original model was not able to find the normal
traffic behavior during the middle of the day. The fault-
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Figure 8: Fault-tolerant model results for the cor-
rupted signal example (refer to Figure 2). The cor-
rupted portion of the signal is detected (center),
and the model’s inferred time-varying Poisson rate
(bottom) fits the periodic signal present in the first
months of the study.
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Figure 9: Sensor with a corrupt signal. This sensor
appears to be faulty for the entire duration of our
study. There is no consistent periodic pattern to the
signal, and large spikes often occur in the middle of
the night when little traffic is expected.
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Figure 10: Sensor signal with no consistent periodic
component. There may be some periodic structure
within a particular week (bottom panel), but there
appears to be no consistent week-to-week pattern.

tolerant model was able to detect the “stuck at zero” failure
at the beginning of the study and find a much more accurate
model of normal behavior.

Figure 8 shows the performance of the fault-tolerant model
for a different type of failure. This is the same sensor shown
earlier in Figure 2, where the measurements display periodic
behavior followed by a signal that appears to be corrupted.

During this questionable period, the measurements are miss-
ing more often than not, and unusually large spikes (many
50% higher than the highest vehicle count recorded during
the first two months of the study) at unusual times of the
day are often observed when the signal returns. The fault-
tolerant model can now detect the corrupted signal and also
in effect removes the faulty measurements when inferring
the time-varying Poisson rate.

In the 50% to 100% row of the table, there are still a number
of sensors where the fault-tolerant model is not able to dis-
cover a strong periodic pattern. About half of these sensors
had large portions of missing data with too few non-missing
measurements to form a good model. Others such as seen
in Figures 9 and 10, had no consistent periodic structure.
Figure 9, is an example of a sensor that appears to be faulty
for the duration of our study. The measurements for the
sensor in Figure 10, on the other hand, appear to have some
structure; morning rush hour with high flow, and low flow
in the late evening and early morning as expected. How-
ever, the magnitude of the signal seems to alter significantly
enough from week to week so that there is no consistent
“normal” pattern. Even though the non-zero measurements
during the day could perhaps be accurate measurements of
flow, the unusual number of measurements of zero flow dur-
ing the day along with the weekly shifts make the sensor
output suspicious.

Before performing our large-scale analysis, we pruned some
highly suspicious sensors. With most sensors, the fault-
tolerant model makes a decent fit, and can be used to parse
the corresponding time-series count data into normal, event,
fault, and missing categories, and the results can be used in
various analyses. When the model gives a poor fit (Figures 9
and 10 for example), the parsed data can not be trusted, and
may cause significant errors in later analysis if included. So,
the outputs of such models (and the corresponding sensors)
need to be excluded.

We used the information found in Table 2 to prune our sen-
sor list, and limited our evaluation to the 89% of the sensors
that predicted less than 20% unusual event activity. The
retained sensors sufficiently cover the study area of Los An-
geles and Orange County, as seen in Figure 11. Removing
sensors with questionable signals visually, without the use
of a model, is not feasible. Our model allows us to prune
away sensors of which the model can not make any sense in
an automated way.

7. LARGE-SCALE ANALYSIS
After pruning the sensor list, 1508 sensor models remain,
which together have learned normal, predictable, traffic be-
havior for approximately 9 million vehicle entrances and ex-
its to and from the freeways of Los Angeles and Orange
County. During the seven month study, these models de-
tected over 270,000 events and almost 13,000 periods of
sensor failure. Sensors saw unusual event activity approxi-
mately once every 30 hours on average, and saw sensor fail-
ure once every 26 days on average.

After observing almost 300,000 periods of unusual and faulty
activity, the first question we ask is: On what day of the
week and at what time of the day is it most common to see



Figure 11: The locations of the sensors used in our
large-scale analysis which remain after pruning“sus-
picious” sensors as described in Section 6 (top), and
a road map (bottom) of our study area, Los Angeles
and Orange County.

unusual event activity? Figure 12 shows a plot of the fre-
quencies of unusual events and of sensor failures as a function
of time of day and day of week. Sensor failures do not ap-
pear to have much of a pattern during the day. The troughs
at nighttime reflect a limitation of our fault model to detect
failures at night when there is little or no traffic. Chen et
al. [2] also found it difficult to reliably detect failure events
in loop sensor data at night and as a consequence limited
fault detection to the time-period between 5am and 10pm.

Of more interest in Figure 12, the frequency of unusual event
activity does have a strong pattern that appears propor-
tional to normal traffic patterns. That is, weekdays have
spikes in unusual activity that appear to correspond to morn-
ing and afternoon rush hour traffic. The event pattern and
the normal traffic flow pattern are compared in Figure 13.
There is a strong relationship between the two (correla-
tion coefficient 0.94), although there are significant bumps
in the event activity each evening, particularly on weekend
evenings, that depart from the normal flow pattern.

To explain the shape of the event fraction curve in Fig-
ure 13, it is reasonable to consider two types of event ac-
tivity: events correlated with flow and events independent
of flow. Traffic accidents might fall into the correlated event
type, because one would expect an accident on the freeway
or on an artery close to a ramp to affect traffic patterns more
when there is already heavy traffic. Much less of a disruption
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Figure 12: Unusual event frequency and fault fre-
quency. The thin blue line with the greater mag-
nitude shows the fraction of time that events were
detected as a function of time of day, while the thick
black line shows the fraction of time that faults were
detected. Periodic structure is seen in the event fre-
quency.
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Figure 13: The event fraction (thin blue line, smaller
magnitude, right y-axis) is plotted alongside the
mean normal vehicle flow profile (i.e., the inferred
Poisson rate averaged across the sensors) shown as
the thick black line and using the left y-axis. The
profiles are similar, with a correlation coefficient of
0.94.

is expected if the accident occurs in the middle of the night.
Traffic from large sporting events, which often occur in the
evening, might fit the second type of event that is not corre-
lated with traffic flow since the extra traffic is not primarily
caused by people trying to escape traffic congestion.

Also of note in Figure 13 is that the flow patterns for week-
days look very similar. In Figure 14(a), the inferred time-
varying Poisson rate profile for normal activity, averaged
across all 1508 sensors, for each week day are plotted on
top of each other. This figure shows that the average nor-
mal traffic pattern does not vary much between Monday
and Friday. Note that in the fault-tolerant model used for
the scale up experiments, there is no information-sharing be-
tween weekdays, so there is nothing in the model that would
influence one weekday to look similar to another. The simi-
larity is not as clear in the raw data (Figure 14(b)).

In Figure 14(a) there is also evidence of bumps occurring at
regular intervals, especially in the morning and late after-
noon. To investigate if the model was accurately reflecting
a true behavior, we plotted the raw flow measurements for
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Figure 14: (a) The average Poisson rate (across all sensors) for each weekday, superimposed. Although
nothing links different weekdays, their profiles are quite similar, and the oscillation during morning and
afternoon rush hour is clearly visible. (b) The mean vehicle flow rates for each weekday (average of raw
measurements over all sensors), superimposed. The similarity in patterns is far less clear than in panel (a).
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Figure 15: The mean normal vehicle profile (as in
Figure 14) shown by the thick black line (using the
left y-axis), is plotted against the actual mean flow
(light blue line, right y-axis) for Mondays between
3pm and 5pm. The bumps that occur regularly
at 30-minute intervals in the model’s inferred time-
varying Poisson rate are also present in the raw data.

each weekday to compare with the model prediction. Figure
15 shows the plot of raw data and model profile for Monday,
zoomed in on the afternoon period where the phenomenon is
more pronounced. The raw data generally follows the same
pattern as the model, confirming that these oscillations are
not an artifact of the model. Interestingly, weekend days
do not experience this behavior; and when individual ramps
were examined, some showed the behavior and some did not.
The peaks of the bumps appear regularly at 30 minute in-
tervals. One plausible explanation [8] is that since many
businesses are located close to the highway, and people gen-
erally report to work and leave work on the half hour and on
the hour; the bumps are caused by people getting to work
on time and leaving work.

Note that this type of discovery is not easy to make with the
raw data. In Figure 14(b), the mean flow profiles the week-
days appear to be potentially different because events and
failures corrupt the observed data and mask true patterns
of normal behavior. It is not easy to see how similar these
daily patterns are, and the half hour bumps in common be-

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

16:55

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

16:40

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

17:25

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

17:20

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

16:30

34.055

34.06

34.065

34.07

34.075

34.08

34.085

18:20

−118.18 −118.16 −118.14 −118.12 −118.1 −118.08 −118.06 −118.04 −118.02 −118
34.055

34.06

34.065

34.07

34.075

34.08

34.085

17:05

34.055

34.06

34.065

34.07

34.075

34.08

34.085

18:05

34.055

34.06

34.065

34.07

34.075

34.08

34.085

17:50

16:30 16:40 16:55

17:05 17:20 17:25

17:50 18:05 18:20

Figure 16: Example of a spatial event that occurs
along a stretch of Interstate 10 in Los Angeles. Each
circle is a sensor on an exit or entrance ramp. It is
light colored when no unusual event activity was in-
ferred by the sensor’s model over the past 5 minutes,
and is darker as the estimated probability of an un-
usual event (inferred by the model) increases. The
9 snapshots span a nearly two hour period where
unusual activity spreads out spatially then recedes.

tween the days (Figure 15) are less likely to be spotted. An
important point here is that the model (in Fig 14(a)) has
automatically extracted a clear signal of normal behavior, a
signal that is buried in the raw data (Fig 14(b)).

Lastly, we present an example of spatial analysis of the
model output. Figure 16 shows an example of a “spatial
event”. The series of plots span a two hour period beginning
with a plot of one ramp seeing unusual activity, followed by
plots showing a spread of unusual activity detection. At its
height, the unusual event activity spans a seven mile stretch
of Interstate 10 in Los Angeles, which is followed by a grad-
ual reduction of unusual event activity. One can imagine
using information such as this to find the extent of disrup-
tion caused by an accident.



8. CONCLUSIONS
We have presented a case study of a large-scale analysis of
an urban traffic sensor data set in Southern California. 300
million flow measurements from 1700 loop detectors over
a period of seven months were parsed using a probabilis-
tic model into normal activity, unusual event activity, and
sensor failure components. The model provides a useful and
general framework for systematic analysis of large noisy sen-
sor data sets. In particular, the model was able to provide
useful insights about an urban traffic data set that is con-
sidered difficult to analyze. Future work could include link-
ing the sensors spatially, and extending the model to detect
the spatial and temporal effect of events such as traffic acci-
dents. Other future work could include use of the occupancy
values measured by loop sensors in addition to the flow mea-
surements, or making use of census information for dynamic
population estimation.
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APPENDIX
Using the notation and inference procedure described in our
earlier work [5], we explain below the necessary modifica-
tions for the fault-tolerant extension of the model.

We use a binary process f(t) to indicate the presence of a
failure, i.e., f(t) = 1 if there is a sensor failure at time t, and
0 otherwise. We define the probability distribution over f(t)

to be Markov in time, with transition probability matrix

Mf =

�
1− f0 f0

f1 1− f1

�
.

We put Beta distribution priors on f0 and f1:

f0 ∼ β(f ; aF
0 , bF

0 ) f1 ∼ β(f ; aF
1 , bF

1 ).

In the sampling procedure for the hidden variables given
the parameters, the conditional joint distribution of z(t)
(the event process) and f(t) is computed using a forward-
backward algorithm. In the forward inference pass we com-
pute p(z(t), f(t)|{N(t′), t′ ≤ t}) using the likelihood func-
tions

p(N(t)|z(t), f(t)) =8>>><>>>:
P(N(t); λ(t)) z(t) = 0, f(t) = 0P

i P(N(t)− i; λ(t))NBin(i) z(t) = +1, f(t) = 0P
i P(N(t) + i; λ(t))NBin(i) z(t) = −1, f(t) = 0

U(N(t); Nmax) otherwise

where Nmax is the largest observed flow measurement and
U(N(t); Nmax) is the uniform distribution over [0 . . . , Nmax].

If a failure state is not sampled (f(t) = 0), N0(t) and NE(t)
are sampled as in [5]. However, if a failure state is sampled
(f(t) = 1), the observed data is treated as missing.

In our previous work [5], N0(t) and NE(t) were sampled
if the measurement was missing. The fault-tolerant model
does not sample N0(t) and NE(t) when the data is missing
to avoid slow mixing of the Gibbs sampler for sensors with
extensive periods of missing data.

By not sampling N0(t) for missing time slices, the time-
varying Poisson rate parameter can no longer be decom-
posed into day, week, and time-of-day components as in [5].
Instead, a rate parameter is learned for each of the 2016
unique 5-minute time periods of the week. The Poisson rate
parameters have prior distributions

λi,j ∼ Γ(λ; aL
i,j = 0.05, bL

i,j = 0.01)

where i takes on values {1, . . . , 7} indicating the day of the
week and j indicates the time-of-day interval {1, . . . , 288}.

We used Dirichlet priors for the rows of the Markov transi-
tion matrix for the event process (Z):0@aZ

00 aZ
01 aZ

02

aZ
10 aZ

11 aZ
12

aZ
20 aZ

21 aZ
22

1A =

0@.999 .0005 .0005
.14 .85 .01
.14 .01 .85

1A× 106

The Beta parameters for the transition matrix of the fault
process (F ) were:�

aF
0 bF

0

aF
1 bF

0

�
=

�
.00005 .99995
.0005 .9995

�
× 106

Strong priors are used for the Markov transition parameters
in MMPPs [9] to prevent the model from trying to explain
normal sensor noise with the Markov component. The pri-
ors above ensure reasonable frequencies and durations for
inferred events and faults.


