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Abstract

We formulate the problem of change-point detection in a segmental semi-Markov model frame-
work where a change-point corresponds to state switching. The semi-Markov part of the model
allows us to incorporate prior knowledge about the time of change in a Bayesian manner. The seg-
mental part of the model allows flexible modeling of the data within individual segments, e.g., as
linear, quadratic, or other regression functions. This segmental semi-Markov model is an extension
of the standard hidden Markov model (HMM), from which learning and inference algorithms are
extended. Results on both simulated and real data from semiconductor manufacturing illustrate
the flexibility and accuracy of the proposed framework.
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Figure 1: An illustrative example of a change-point detection problem from semiconductor manu-
facturing.

1 Introduction

An important problem in time-series analysis is that of change-point detection, namely, detecting
when a time-series has “switched” in some manner. We consider our time-series to be composed of
segments between which are change-points. The simplest case (and the one we focus on primarily
in this paper) is that of two segments and a single change-point. As an example of a real change
detection problem, Figure 1 displays a sensor channel from an industrial plasma etch process in
semiconductor manufacturing. Two quadratic segments have been fitted to the data based on a
manual subjective estimate of a change-point in the process. The objective is to be able to detect
this change-point automatically. (We will return to this application further in Section 5). In this
paper we focus on an off-line formulation of the detection problem. Future work will extend the
approach to an online detector.
There is a long history of work on change detection in statistics and engineering (Basseville and Nikiforov,

1993; Lai, 1995). Many studies assume that within each segment, the distribution of individual
data points does not depend on time. The simplest (and most widely used) assumption is the
piecewise constant model in which each segment is a constant mean with Gaussian noise. The best
known algorithm for this kind of problem is the classic CUSUM method (Page, 1954).
Of more relevance to the type of data in Figure 1 is the work on piecewise regression (Hawkins,

1976; Gustafsson, 1996), also called segmented regression (Lerman, 1980; Esterby and El-Shaarawi,
1981), or multi-phase regression (Hinkley, 1971). When the number of segments is known a priori,
these techniques can be viewed simply as trying to minimize the sum of squared errors (SSE) when
fitting regression functions to the segments.
In this paper, we explicitly model the temporal nature of the problem by using a state-space

model (where each state corresponds to data within a segment). Specifically we propose a hidden
Markov model (HMM) framework. Each segment corresponds to a state in the HMM, so a change-
point corresponds to switching from one state to another. Fwu and Djuric (1996) also used a HMM
for signal segmentation. However, in this paper we incorporate into our framework two extensions
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of the basic HMM. One is the semi-Markov model to allow an arbitrary distribution on the location
of the change-point (the standard HMM restricts it to be geometric). The other extension is a
segmental HMM to model the “shape” in each segment. In contrast, Fwu and Djuric (1996) dealt
only with piecewise constant signals.
In the following sections of the paper, we first describe the general segmental semi-Markov model

framework for change detection, then a specific change-detection algorithm is given in section 4,
followed by results and evaluation in section 5.

2 Markov and semi-Markov Models for Change Detection

We begin our discussion with a standard discrete-time finite-state Markov model where each seg-
ment in the data corresponds to a state of the Markov model. Let the number of states be M .
The parameters of the model include π, the initial state distribution, and A, the M ×M state
transition matrix. In the context of change detection, the data y = y1y2 . . . yt . . . yT are observed,
but the corresponding states s = s1s2 . . . st . . . sT (i.e., segment labels) are hidden. In this hidden
Markov model, the joint distribution of the observed data sequence y and a state sequence s, can
be factored as:

p(y, s) =

(

T
∏

t=2

p(yt|st)p(st|st−1)

)

p(y1|s1)π(s1), (1)

A straightforward way of doing change detection is to infer, given y, the hidden states s, and
see whether (and when) there is a state transition. We will go into more detail about this in Section
4. But first let us look at some limitations of the standard Markov model.
In the standard Markov framework the distribution of the durations of the system in state i is

given by
pi(td = d) = ad−1

ii (1− aii) (2)

where aii is the self-loop transition probability of state i and d is the number of time-steps spent
in state i. In other words, the Markov assumption constrains the state-duration distributions to
be geometric in form. In reality we may want other kinds of distributions, e.g., Gaussian. For
example, in Figure 1 we have prior knowledge from the physics of the plasma etch process that a
change is more likely to occur about half-way through the process, rather than at the beginning or
at the end.
The problem of modifying the standard Markov model to allow for arbitrary state-durations

can be addressed by the use of semi-Markov models (e.g., Ferguson 1980). A semi-Markov model
has the following generative description:

• On entering state i a duration time td is drawn from a state-duration distribution pi(td).

• The process remains in state i for time td.

• At time td the process transitions to another state according to a transition matrix A, and
the process repeats.
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Figure 2: The graphical model for a discrete-time hidden semi-Markov model in the ‘only one
change” case.

The state-duration distributions, pi(td), 1 ≤ i ≤M , can be modeled using parametric distributions
(such as log-normal, Gamma, etc) or non-parametrically by mixtures, kernel densities, etc. If td
is constrained to take only integer values we get a discrete-time semi-Markov model. In a change-
detection context, by including the state-duration distributions in the model, we can encode a prior
on how long we expect the process to remain in each state. For the “only one change” model we
need only model the distribution of change times from state 1 to state 2 (since that is the only legal
transition). Such a model can be constructed from prior knowledge of the process. In applications
where we have multiple “runs” of the same process, the prior can be adapted to the data over
multiple runs.
The “only one change” model also permits a particularly simple representation as a graphical

model in the discrete-time case (Figure 2). The semi-Markov model can be represented in this case
by a non-stationary Markov model where the transition probabilities (from state 1 to state 2) are
a deterministic function of the state duration distribution p1(td). More specifically, they can be
derived directly from the cumulative distribution function corresponding to p1(td). A feature of
this representation is that we have again the same graphical model structure corresponding to a
hidden Markov model, with the attendant advantages of inference algorithms which scale linearly
in the length of the sequence being analyzed (e.g., Smyth et al. 1997). Finally, note that going from
a semi-Markov model to a semi-Markov HMM is straightforward; the unobserved state sequence is
semi-Markov and the observed y’s have the same dependency relations as for the standard HMM
(Figure 2 again).

3 Segmental Observation Models

We have not yet described the functional form of the conditional densities p(yt|st) which relate the
observed data to the hidden states. In the standard HMM framework (e.g., in speech recognition)
the real-valued yt’s are often modeled as Gaussians or mixtures of Gaussians. For Gaussians, this
implies a piecewise constant process with one mean µi per state i with additive Gaussian noise.
Mixtures allow switching between multiple means per state, but still imply a constant regression
process as a function of time.
There are many examples of real-world time-series where this piecewise-constant model is in-
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Figure 3: A simple illustration of the output of a simulated segmental Markov model. The solid
lines show the underlying deterministic components of the regression models within each state, and
the dotted lines show the actual noisy observations.

appropriate, e.g., the data in Figure 1. A natural generalization of the constant model is to allow
each state to generate data in the form of a regression curve, i.e.,

yt = fi(t|θi) + et (3)

where fi(t|θi) is a state-dependent regression function with parameters θi and et is additive inde-
pendent noise (often assumed Gaussian, but not necessarily so). In the Gaussian noise case we get
that p(yt|st = i) is Gaussian with a mean fi(t|θi) which is a function of time and with variance
σ2. Note that conditioned on the regression parameters θi, the yt’s only depend on the current
state st, as in the standard regression framework (i.e., observations are conditionally independent
of everything else given the current state and state regression parameters). Thus, once again the
simple graphical model structure of Figure 2 is applicable.
The segmental model (Holmes and Russell, 1999) is natural for the change detection problem

since change detection is often applied to problems involving transient phenomena. Examples
include linear trends, second order growth, exponential decay, etc. Figure 3 shows a simple example
of the output of a simulated segmental Markov model. The process begins in state A which produces
observations according to a noisy linear regression model. After 30 time steps or so it transitions
to state B and produces observations according to a noisy exponential decay model.

4 A Change Detection Algorithm

Given the general framework presented above we now formulate a specific change-detection al-
gorithm based on these ideas. We specifically focus on the “only one change” case, and give a
computationally efficient solution based on the generative graphical model framework we propose.
Our model has the following specific components:

• The process is assumed to start in state 1 and can then transition to state 2 and stay there.
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• A segmental hidden Markov model is used to model the “shape” in the data. We will assume
that the regression functions for states 1 and 2 are linear in their parameters θ1 and θ2 and
that the functional forms of the segment functions are known (typically from prior knowledge
about the nature of the process), but not their parameters. We will also assume that the
additive noise term et is Gaussian with zero mean and unknown variance σ

2.

• The process is semi-Markov, characterized by a state duration distribution for state 1, p1(td).
Initially we will assume that this is specified a priori based on prior knowledge. As discussed
earlier, this in turn specifies a set of non-stationary transition probabilities p(st = 2|st−1 = 1).
If the prior on the state duration distribution is not available, we will assume a flat prior.

Clearly one could generalize each of these assumptions for specific applications. For example,
if the functional form of the underlying regression shapes is not certain, one could fit multiple
different parametric regression functions and adopt a Bayesian approach to select the best model
(and change-point) which describes the data.
Under the state assumptions, given a sequence of observations y, the change-detection problem

in this context can be defined as finding the posterior probabilities of the hidden states of the model
p(s|y) (inference). Also “missing” are the regression parameters for each shape. The approach we
take here is to use the Expectation-Maximization (EM) algorithm to generate posterior estimates
of these parameters and the state probabilities, given the data and the prior distribution on times
of state changes.
The application of the EM algorithm to a segmental HMM is relatively straightforward, although

slightly more complex than EM for a standard HMM. The E-step proceeds as usual to generate
state probabilities given some estimates of the regression parameters θi, i = 1, 2. The only difference
is that the likelihood of the observations is calculated using the segmental regression models rather
than the usual “constant-mean” model. Given state probabilities, the M-step proceeds to use
weighted regression (where the weights are the posterior probabilities of the hidden states) to
estimate the θi’s for each state. Weighted regression is a relatively simple extension of standard
least-squares regression (Draper and Smith, 1998).
After EM converges we have point estimates of the regression parameters θ̂i, i = 1, 2. To estimate

whether (and when) the process changes from state 1 to state 2, we calculate the most likely state-
sequence (MLSS) ŝ for the data given the model using the Viterbi algorithm (or equivalently, “the
most probable explanation,” MPE):

ŝ = argmax
s
p(s|y, θ̂). (4)

If ŝ contains a transition from state 1 to 2, then a change occurs at the time of the transition. This
is one way of estimating the location of the change time, and we call it the “MLSS” approach.
An alternative approach to detection is based on the following observation. The most likely

state sequence is just one single state sequence with the highest posterior probability. Quite often
there are many other state sequences with posterior probabilities almost as high (i.e., only slightly
lower). Each of these state sequences makes a decision on the location of the change point, and the
“ MLSS approach” adopts the decision of ŝ only. Alternatively, we can pool together the decisions
of all the state sequences s, weighted by their posterior probabilities. We call this the weighted
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approach. Formally, the estimated change time is the weighted average

t̂c =
∑

s

p(s|y)t̂(s)c (5)

where {s} are the state sequences, p(s|y) is the posterior probability of s, t̂
(s)
c is the change time

for a particular state-sequence s, i.e., the decision of s on the change time.
Equation 5 can be evaluated using dynamic programming in a manner similar to the forward-

backward algorithm. Better still, we can make use of the calculated posterior probability of the
hidden states at the end of the EM algorithm. The posterior probability of point i being in state
1, p(si = 1|y), is related to p(s|y) by

p(si = 1|y) =
∑

s:t̂
(s)
c

>i

p(s|y), (6)

from which we have
∑

s:t̂
(s)
c

=i

p(s|y) = p(si−1 = 1|y)− p(si = 1|y). (7)

This can be used to evaluate Equation 5:

t̂c =
∑

s

p(s|y)t̂(s)c

=
∑

i






i×

∑

s:t̂
(s)
c

=i

p(s|y)







=
∑

i

(

i× (p(si−1 = 1|y)− p(si = 1|y))

)

. (8)

5 Experimental Results

5.1 Results on Simulated Data

We compared our change point detection method (“EM-Markov”) with what we call the “SSE”
method which minimizes the sum of squared errors (SSE) of all the fitted segments. As we men-
tioned in Section 1, when the number of segments is known, most existing techniques can be seen
as trying to minimize the SSE when fitting regression functions to the segments.
To systematically evaluate the EM-Markov and SSE detection methods, they were tested on

simulated data in the following manner:

• Data were simulated from a waveform of 100 points consisting of two linear segments with
additive Gaussian noise (zero mean and variance σ2). The slopes of two segments are k1 = 1,
k2 = 4, respectively. See Figure 4 for an example of the simulated data.
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Figure 4: Synthetic data with 2 linear segments. The slopes are k1 = 1, k2 = 2. The noise σy = 10.

• The true change-point from one segment to the other is sampled from a Gaussian distribution
with mean 35 and standard deviation 10. This distribution was used as the prior in the semi-
Markov model. To test the sensitivity of the EM-Markov method to specification of the prior,
we also looked at the case when no information on prior is available, in which case we used
the flat prior, i.e., all points are equally likely to be a change point (note that this is still a
semi-Markov model). Depending on whether the prior is used, and whether the “MLSS” or
“weighted” approach is used to find the change point, we have four different variations of the
EM-Markov method.

• 1000 random realizations of the process were generated and detections were made by the SSE
method and the four variations of EM-Markov method.

• The experiment was repeated for three different noise levels: σ = 5, σ = 10, σ = 15.

Figure 5 shows a histogram of the errors of the detected change time for each of the SSE
method and the EM-Markov method (with prior, “weighted”) for σ = 5. The EM-Markov method
is clearly superior in that the errors tend to be much smaller. Figure 6 tells a similar story for the
higher noise case of σ = 15. Note that as the underlying noise increases, the detection problem is
inherently more difficult (so the errors are larger for both methods). However, relative to the SSE
method, the EM-Markov method is now doing even better, i.e., the reduction in error from SSE
to EM-Markov is more pronounced at the higher noise level. The superiority of the EM-Markov
method can also been seen in Figure 7 which shows the mean absolute errors. As the noise level
increases the relative improvement from using the EM-Markov method also increases. This is as
we might expect, since as the ambiguity in the data increases we would expect that a probabilistic
model will be better able to deal with the ambiguities in the data compared to a non-probabilistic
approach. Conversely, for low-noise situations, the detection problem will be relatively easy and
we can expect relatively little difference between the two methods.
Additionally, we can see from the figure that the “weighted” variations of the EM-Markov

method are much better than the “MLSS” variations, and that, not surprisingly, “with prior” is
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Figure 5: Histograms of the detection time errors for the SSE method and the EM-Markov method
(with prior, “weighted”), σ = 5.
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Figure 6: Histograms of the detection time errors for the SSE method and the EM-Markov method
(with prior, “weighted”), σ = 15.
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Figure 7: Comparison of the SSE method and the four variations of the EM-Markov method (with
or without prior, “weighted” or MLSS), in terms of the mean absolute errors of detected change
times.

better than “without prior”. So the knowledge about the prior improves the performance, but it is
not essential: without it, the performance is still much better than the SSE method and relatively
close to performance with the prior.

5.2 Results on Plasma Etch Process Data

Plasma etch (Manos and Flamm, 1989; Williams, 1997) is a critical process in semiconductor man-
ufacturing. A semiconductor wafer is exposed to a plasma containing various chemical components
within a plasma gas chamber. The chemical composition of the plasma within the chamber is
altered as a function of time to remove different layers from the wafer. Since there is no direct way
of measuring when a layer on the wafer has been etched through, control of the plasma process
(i.e., when to extinguish the plasma so as to stop etching) is achieved indirectly by inferring the
nature of the material being etched from the spectral composition of the gas within the chamber.
Detecting the end of the etch process is quite important for reliable wafer processing. If etching

is terminated too early, the desired pattern will not be etched on the wafer: if it is terminated too
late, the etch may burn through to the next layer. In either case the electrical properties of the
resultant wafer will not meet specifications, resulting in lower yields overall.
The data in Figure 8 show the output of a single channel spectrometer within the plasma

chamber (tuned to a particular wavelength) during an actual wafer etch. The data come from a
commercially available plasma etch machine (LAM 9400). Based on prior knowledge of the physics
of the process, an engineer’s best estimate of when the change occurred is at t = 230 seconds.
Shown also on the figure is the change-point t = 232 detected by both the EM-Markov and the SSE
methods. Both methods performed quite well on this particular data set. We are in the process
of performing more extensive tests of the method on other wafer runs and expect (based on the
simulation results) that the EM-Markov method will be significantly more reliable on average.
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Figure 8: Detected change-points by EM-Markov and SSE methods for LAM plasma etch data.

6 Future Work and Conclusions

A natural extension of the off-line approach here is an online version of the same algorithm. For an
online analysis, one essentially runs the algorithm in real-time as each new data point yt arrives,
generating inferences about the likely location of the change-point. However, in this case, one must
also decide whether or not there is a change-point at all present. In theory, one can formulate
this either in a hypothesis-testing or Bayesian framework in a relatively straightforward manner.
Comparing different approaches empirically is a little more complex (than for the off-line case)
since there now are multiple performance measures, e.g., rate of false alarms, detection delay, etc.
More generally, in an industrial setting such as plasma etch one has multiple runs over multiple

wafers. In principle one can set up an adaptive Bayesian estimation methodology, where one “seeds”
the system using a fairly uninformative prior and then allow the algorithm to recursively update
the priors in a Bayesian fashion (where now one can have priors on regression shapes as well as
expected time of change).
We conclude that the proposed segmental semi-Markov model appears to be quite a useful,

flexible, and accurate framework for change-point detection. By modeling the problem within a
generative model framework (including notions of state and time explicitly) one can incorporate
prior knowledge in a principled manner and use the tools of probabilistic inference to infer change-
points in an optimal manner.
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